Statistical measures of the central tendency for H+ activity and pH

Open access

Abstract

Despite the numerous papers on the statistical analyses of pH, there is no explicit opinion on the use of arithmetic mean as a measure of the central tendency for pH and H+ activity. The problem arises because the transformation of the arithmetic mean for one does not give the arithmetic mean for the other. The paper presents 1) the theoretical considerations on the distribution of pH and H+ activity and relation between them, properties of these distributions, the choice of distributions which should be consistent with the distribution of pH and the distribution of H+ activity and measures of central tendency for features of such distributions and 2) examples of calculations of measures of central tendency for pH and H+ activity based on the literature data on soil and lake water pH. These data analyses included distributions of pH and H+ activities, properties of distribution, descriptive statistics for pH and for the H+ activity and comparison of arithmetic mean with the geometric mean. From the results, it could be concluded that a uniform approach to the choice of measure for the central tendency of pH and H+ activity requires the determination of the type of measure (mean) for one of them and then consistent transformation of this measure. The choice of measure of the central tendency for the variable should be preceded by determination of its distribution. Normal probability distribution of pH and thus lognormal distribution of H+ activity indicate that the arithmetic mean, and its corresponding geometric mean should be used as proper measures of the central tendency for pH and for H+ activity. Besides, the position statistic that is a median can be used for each of those variables, irrespective of their probability distributions.

Baker A.S., Kuo S., Chae Y.M., 1981. Comparisons of arithmetic mean soil pH values with the pH values of composite samples. Soil Science Society of America Journal 45: 828–830.

Barth E.F., 1975. Average pH. Journal-Water Pollution Control Federation 47: 2191–2192.

Bochenek W., 2014. Sezonowa zmienność i wieloletnie tendencje pH w opadzie atmosferycznym na Stacji Bazowej ZMŚP w Szymbarku w latach 1999–2013 (Seasonal variability and longterm trends of pH in precipitation on the Base Station of IMNE in Szymbark in the years 1999–2013). Monitoring Środowiska Przyrodniczego 16: 41–47.

Boutilier R.G., Shelton G., 1980. The statistical treatment of hydrogen ion concentration and pH. Journal of Experimental Biology 84: 335–339.

Boyle J.F., 1991. Acidity and organic carbon in lake water: variability and estimation of means. Journal of Paleolimnology 6: 95–101.

Dangles O.J., Guérold F.A., 2000. Structural and functional responses of benthic macroinvertebrates to acid precipitation in two forested headwater streams (Vosges Mauntains, northeastern France). Hydrobiologia 418: 25–31.

Forsberg L.S., Gustafsson J-P., Kleja D.B., Ledin S., 2008. Leaching of metals from oxidizing sulphide mine tailings with and without sewage sludge application, Water Air and Soil Pollution 194: 331–341.

Gaddum J.H., 1945. Lognormal distributions. Nature 156: 463–466.

Giesecke A.H., 1979. In reply. Anesthesiology 51: 482–483.

Gruba P., Błońska E., Socha J., 2010. Metodyczne aspekty pomiaru i statystycznej analizy wartości pH gleb (Methodological aspects of the measurement and statistical analysis of the soil pH values. Roczniki Gleboznawcze – Soil Science Annual 1: 29–37.

Kostrzewski A., Kruszyk R., Kolender R., 2006. Zintegrowany Monitoring Środowiska Przyrodniczego. Zasady organizacji, system pomiarowy, wybrane metody badań (The Integrated Monitoring of the Natural Environment. Principles of organization, measurement system, chosen methods), http://www.gios.gov.pl/zmsp/wyt2006/22_aneks_1.pdf

Krishnamoorthy K., Mathew T., 2003. Inferences on the means of lognormal distributions using generalized p-values and generalized intervals. Journal of Statistical Planning and Inference 115: 103–121.

Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasilewski M., 2007. Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, cz. 2. (Probability calculus and mathematical statistics in exercises, part 2). Wydawnictwo Naukowe PWN-SA, Warszawa: 330 pp.

Larsen B.M., Sanlund O.T., Berger H.M., Hesthagen T., 2007. Invasives, introductions and acidification: The dynamics of a stressed river fish community, Water Air and Soil Pollution Focus 7: 285–291.

Middleton A.C., Rovers F.A., 1976. Average pH (discussion). Journal-Water Pollution Control Federation 48: 395–396.

Moss B., Stephen D., Alvarez C. et al., 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.

Murphy M.R., 1981. Analyzing and presenting pH data. Journal of Dairy Science 65: 161–163.

Nőges P., Nőges T., Tuvikene L. et al., 2003. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia 506–509: 51–58.

Olszewska M., 2006. Wpływ zalesienia gleb lekkich porolnych sosną na zmiany ich właściwości. Praca doktorska (The effect of afforestation with Scots pine of light textured soils on changes in their properties, PhD Thesis), University of Life Sciences in Lublin: 200 pp.

Pace N.L, Ohmura A., Mashimo T., 1979. Averaging pH vs. H+ values. Anesthesiology 51: 481–482.

Pietruczyk D., 2010. Właściwości chemiczne i fizykochemiczne gleb porolnych zalesionych sosną zwyczajną (Pinus sylvestris L.), Praca doktorska (Chemical and physicochemical properties of post-agricultural soils afforested with Scots pine (Pinus sylvestris L.), PhD Thesis), University of Life Sciences in Lublin: 260 pp.

Simon L.M., Cherry D.S., Curie R.J., Zipser C.E., 2006. The ecotoxicological recovery of fly creek and tributaries (Lee County, Va) after remediation of acid mine drainage. Environment Monitoring and Assessment 123: 109–124.

Smal H., Olszewska M., 2008. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus, Plant and Soil 305: 171–187.

Svincov T., Cambell M., 2002. Statistics at square one. BMJ Publishing Group.

USGS-United States Geological Survey, 2008. National Field Manual for the Collection of Water-Quality Data. Techniques of water-resources Investigations, Book 9 Handbooks for Water-Resources Investigations, http://water.usgs.gov/owq/FieldManual/Chapter6/6.4_ver2.0.pdf

Wesselink L.G., Van Breemen N., Mulder J., Janssen P.H., 1996. A simple model of soil organic matter complexation to predict the solubility of aluminium in acid forest soils. European Journal of Soil Science 47: 373–384.

Yang J., Sun J., Hammer D., 2004. Distribution normality of pH and H+ activity in soil. Environmental Chemistry Letters 2: 159–162.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2017: 1.13

SCImago Journal Rank (SJR) 2017: 0.468
Source Normalized Impact per Paper (SNIP) 2017: 0.781

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 154 20
PDF Downloads 86 86 7