Effect of manure, clay, charcoal, zeolite, and calcium oxide on some properties of soil contaminated with cobalt

Open access

Abstract

The study has been undertaken in order to determine the influence of different substances (manure, clay, charcoal, zeolite and calcium oxide) on soil pH, hydrolytic acidity, total exchangeable bases, cation exchange capacity, the base saturation of soil contaminated with cobalt (0, 20, 40, 80, 160, 320 mg·kg−1 of soil). The analysed properties of soil proved to be dependent on the cobalt contamination and the kind of substances. In the series without substances soil contamination with the highest doses of cobalt raised the soil’s hydrolytic acidity but depressed its pH, total exchangeable bases and base saturation. Among the substances applied to soil in order to neutralize the effect of contamination with cobalt, calcium oxide had the strongest influence on the soil’s properties. In the series with calcium oxide application the hydrolytic acidity was decreased and other soil properties were increased. Manure addition to soil had positive but weaker effect on analysed soil properties.

Arimoto R., Duce R.A., Ray B.J., Uni C.K., 1985. Atmospheric trace elements at Enewetak Atoll, 2. Transport to the ocean by wet and dry deposition. Journal of Geophysical Research 90 (D1): 2391–2408.

Biswas S., Dey R., Mukherjee S., Banerjee P.C., 2013. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger. Applied Bio-chemistry and Biotechnology 170(7): 1547–1559.

Chatterjee J., Chatterjee C., 2002. Amelioration of phytotoxicity of cobalt by high phosphorus and its with drawal in tomato. Journal of Plant Nutrition 25(12): 2731–2743.

Collins R.N., Kinsela A.S., 2010. The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79(8): 763–771.

Elinder C.G., 1984. Health hazards from exposure to cobalt with special reference to carcinogenic, mutagenic and teratogenic effects. Toxicogical and Environmental Chemistry 7: 251–256.

Glisic I.P., Milosevic T.M., Glisic I.S., Milosevic N.T., 2009. The effect of natural zeolitesand organic fertilisers on the characteristics of degraded soils and yield of crops grown in Western Serbia. Land Degradation and Development 20(1): 33–40.

Hansson H.C., Ekholm A.K.P., Ross H.B., 1988. Rainwater analysis: A comparison between proton induced x-ray emission and graphite furnace atomic absorption spectroscopy. Environment Science and Technology 22: 527–531.

Hinojosa M.B., Dick R.P., Garcia-Ruiz R., Carreira J.A., 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology and Biochemistry 36(10): 1559–1568.

Hu Y., Liu X., Bai J., Shih K., Zeng E.Y., Cheng H., 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research 20(9): 6150–6159.

Huang L., Li T., Liu C., Quan X., Chen L., Wang A., Chen G., 2013. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology 128: 539–546.

Jain V., Nainawatee H.S., 2000. Cobalt reduces nitrate inhibition of nodulation in mungbean (Vigna radiata). Biology and Fertility of Soils 31(6): 522–524.

Jayasinghe G.Y., Tokashiki Y., Kinjo K., Liyana-Arachchi I.D., 2010. Evaluation of the use of Synthetic Red Soil Aggregates (SRA) and zeolite as substrate for ornamental plant production. Journal of Plant Nutrition 33(14): 2120–2134.

Kabata-Pendias A., Pendias H., 2001. Trace elements in soils and plants. 3 rd ed. CRC Press: Boca Raton, FL: 413 pp.

Kosiorek M., Wyszkowski W., 2016a. Effect of neutralising substances on selected properties of soil contaminated with cobalt. Journal of Ecological Engineering 17(3): 193–197.

Kosiorek M., Wyszkowski M., 2016b. Selected properties of cobalt-contaminated soil following the application of neutralising substances. Environmental Protection and Natural Resources 27 1(67): 22–25.

Kukier U., Peters C. A., Chaney R.L., Angle J.S., Roseberg R.J., 2004. The effect of pH on metal accumulation in two Alyssum species. Journal of Environmental Quality 33(6): 2090–2102.

Kwiatkowska J., Maciejewska A., 2008. Wpływ rodzajów substancji organicznej na właściwości fizykochemiczne gleby i zawartość węgla organicznego. Roczniki Gleboznawcze – Soil Science Annual 59(1):128–133.

Lange B., Faucon M.P., Meerts P., Shutcha M., Mahy G., Pourret O., 2014. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant and Soil 379(1): 275–287.

Li H.F., Gray C., Mico C., Zhao F. J., McGrath S. P., 2009. Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75(7): 979–986.

Li Z., McLaren R.G., Metherell A.K., 2004. The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zealand Journal of Agricultural Research 47(1): 33–43.

Łabętowicz J., Rutkowska B., 2001. Czynniki determinujące stężenie mikroelementów w roztworze glebowym. Postępy Nauk Rolniczych 6: 75–85.

Micó C., Li H.F., Zhao F.J., Mcgrath S.P., 2008. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environmental Pollution 156(3): 883–890.

Migaszewski Z.M., Gałuszka A., 2016. Geochemia środowiska. Wydawnictwo Naukowe PWN, Warszawa: 638 ss.

Nilsson K., Jensen B.S., Carlsen L., 1985. The migration chemistry of cobalt. European Applied Research 7: 23–86.

Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa. 333 ss.

Pshinko G.N., 2008. Impact of complexing agents on the processes of sorption treatment of waters containing cobalt. Journal of Water Chemistry and Technology 30(4): 197–202.

Rozporządzenie Ministra Środowiska z dnia 1 września 2016 roku w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi (Dz.U. 2016, poz. 1395).

StatSoft, Inc. STATISTICA data analysis software system, version 12, www.statsoft.com, 2014.

Toxicological Profile for Cobalt., 2004. US Departament of Health and Human Services Agency for toxic Substances and Diseases Registry: 1–398.

Wyszkowski M., Sivitskaya V., 2015. Effect of different substances on some properties of soil contaminated with heating oil. Journal of Ecological Engineering 16(1): 62–66.

Wyszkowski M., Wyszkowska J., 2009. The effect of contamination with cadmium on spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresenius Environmental Bulletin 18(7): 1046–1053.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2017: 1.13

SCImago Journal Rank (SJR) 2017: 0.468
Source Normalized Impact per Paper (SNIP) 2017: 0.781

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 33
PDF Downloads 29 29 14