Assessment of various practices of the mitigation of N2O emissions from the arable soils of Poland

Open access

Abstract

This review assesses the adaptability and effectiveness of the basic practices to mitigate the N2O emissions from the arable land in the climate, soil and agricultural conditions of Poland. We have analyzed the decrease in the nitrogen-based fertilization, selection of the fertilizer nitrogen forms, use of biological inhibitors of nitrogen transformation in the soil, control of the acidic soil reaction, reduction in the natural fertilizers use and afforestation of the low productive soils. The challenge evaluating the effectiveness of mitigation practices lies in the inadequacy of the national data on N2O soil emissions in particular agrotechnical conditions. In Poland, circumstances that favor intensive N2O emissions from the arable soils occur uncommonly, as shows the analysis of the literature reporting on the country climate, soil and agricultural conditions alongside the N2O emissions from soils under various cultivation conditions. Consequently, the effectiveness of mitigation practices that relies on an extensification of plant production may be insufficient. It can be assumed that, at the doses of nitrogen fitting the nutritional needs of crops, the soil N2O emissions are low and do not meaningfully differ from the emissions from untreated soils (literature data point to limited N2O emission from arable soils treated with N doses of ≤150-200 kg N·ha-1). The effectiveness of the nitrogen fertilization reduction as an N2O emissions mitigation practice is restricted to intensive farming. A universal registry of the mineral and natural fertilization use could help identify the agricultural holdings with a potential for high N2O emission and foster a targeted application of mitigation practices. It is suggested that normalization and maintenance of the optimum (i.e. close to neutral) soil pH should become a more common practice of N2O emissions mitigation in Poland in view of the extent of arable soils acidification and the literature data that indicate elevated N2O emissions from acid soils. Application of urease and nitrification inhibitors alongside nitrogen fertilization can be considered an effective practice of N2O emissions mitigation. Owing to economic reasons the use of nitrogen fertilizers with such additives is currently limited to non-agricultural segments of plant production. Afforestation of the low productive soils offers an attractive opportunity for mitigation of N2O emissions. Whereas N2O emissions from forest soils are considerably lower compared with those from the arable ones, the literature indicates that no N2O emissions mitigation is attained through a conversion of arable land to agroforestry. Considering the current forest area of Poland (24.9% of the total area) and the plans to increase the afforestation rate (to 33% in 2050) the measurable effects of this mitigation practice will only be seen in a long-term perspective.

Besides identifying and excelling the mitigation practices the authors postulate a review of the algorithms employed by the National Centre for Emissions Management (KOBiZE) for the calculation of the GHG emissions. Solutions applied by KOBiZE appear to address mainly the area - or population-related aspects and, to a much lesser degree, the actual N2O production. In this context, the effects of certain N2O emissions mitigation practices might be difficult to be taken into consideration. The application of national statistics of the use of mineral and natural fertilizers to the calculation of the N2O emissions from the arable soils might be questioned given that the N2O emissions are driven by the actual local N dose.

Amha Y., Bohne H., 2011. Denitrification from the horticultural peats: effects of pH, nitrogen, carbon, and moisture contents. Biology and Fertility of Soils 47: 293-302.

Baggs E.M., Smales C.L., Bateman E.J., 2010. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. Biology and Fertility of Soils 46: 793-805.

Ball B.C., McTaggart I.P., Scott A., 2004. Mitigation of greenhouse gas emission from soil under silage production by use of organic or slow release fertilizer. Soil Use and Management 20: 287-295.

Barneze A.S., Minet E.P., Cerri C.C., Misselbrook T., 2015. The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere 119: 122-129.

Bateman E.J., Baggs E.M., 2005. Contribution of nitrification and denitrification to N2O emission from soils at different water-filled pore space. Biology and Fertility of Soils 41: 379-388.

Bouwman A.F., 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agrosystems 46: 53-70.

Bouwman A.F., Boumans L.M.J., Batjes N.H., 2002. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles 16: 6,1-6,13.

Brierley E.D.R., Wood M., 2001. Heterotrophic nitrification in an acid forest soil: isolation and characterization of a nitrifying bacterium. Soil Biology and Biochemistry 33: 1403-1409.

Burghate S.P., Ingole N., 2013. Performance of fluidized bed biofilm reactor for nitrate removal. International Journal of Research in Engineering and Science 1(7): 38-47.

Burney J.A., Davis S.J., Lobell D.B., 2010. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences 107(26): 12052-12057.

Butterbach-Bahl K., Stange F., Papen H., Li C., 2001. Regional inventory of nitric oxide and nitrous oxide emissions for forest soil of southeast Germany using the biochemical model PnET-N-DNDC. Journal of Geophysical Research 106 (D24): 34, 155-34, 166.

Clough T.J., Kelliher F.M., Sherlock R.R., Ford C.D., 2004. Lime and soil moisture effects on nitrous oxide emissions from urine patch. Soil Science Society of America Journal 68: 1600-1609.

de Brogniez D., Ballabio C., Stevens A., Jones R.J.A., Montanarella L., van Wesemae B., 2015. A map of topsoil organic carbon content of Europe generated by a generalized additive model. European Journal of Soil Science 66: 121-134.

de Klein C.A.M., Sherloch R.R., Cameron K.C., van der Weerden T.J., 2001. Nitrous oxide emissions from agricultural soils in New Zealand - a review of current knowledge and directions for future research. Journal of the Royal Society of New Zealand 31: 543-574.

Ding W.X., Yu H.Y., Cai Z.C., 2011. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain. Biology and Fertility of Soils 47: 91-99.

Dougherty W.J., Collins D., Van Zwieten L., Rowlings D.W., 2016. Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate. Soil Research 54: 675-683.

Dyrektywa Parlamentu Europejskiego i Rady 2009/29/WE z dnia 23 kwietnia 2009 r. zmieniaj¹ca dyrektywê 2003/87/WE w celu usprawnienia i rozszerzenia wspólnotowego systemu handlu uprawnieniami do emisji gazów cieplarnianych. Dziennik Urzêdowy Unii Europejskiej L140 z dn. 5.6.2009: 63-87.

Eagle A., Olander L.P. Henry L.R., Haugen-Kozyra K., Millar N., Robertson G.P., 2012. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States.

A Synthesis of the Literature. Companion Report to Assessing Greenhouse Gas Mitigation Opportunities and Implementation Strategies for Agricultural Land Management in the United States. Nicholas Institute for Environmental Policy Solutions Duke University: 84 pp.

Flessa H., Dörsch P., Beese F., 2012. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical research Atmospheres 100(D11): 23115-23124.

Goliñski J., Stêpniewska Z., Stêpniewski W., Ostrowski J., Szmagara A., 2000. A contribution to the assessment of potential denitrification in arable mineral soils of Poland. Journal Water and Land Development 4: 175-183.

Grzmil B., Kowal D., 2006. Otrzymywanie wielosk³adnikowych nawozów mineralnych zawieraj¹cych mocznik. Studium porównawcze. Przemys³ Chemiczny 85(8-9): 823-826.

He H., Jansson P.E., Svensson M., Mayer A., Klemedtsson L., Kasimir C., 2016. Factors controlling Nitrous Oxide emission from a spruce forest ecosystem on drained organic soil, derived using the Cup Model. Ecological Modelling 321: 46-63.

Jadczyszyn T., Kowalczyk J., Lipiñski W., 2010. Zalecenia nawozowe dla rooelin uprawy polowej i trwa³ych u¿ytków zielonych. Materia³y Szkoleniowe 95. Pu³awy: 24 s..

Jungkunst H.F., Freibauer A., Neufeldt H., Bareth G., 2006.& Nitrous oxide emissions from agricultural land use in German - a synthesis of available annual field data. Journal of Plant Nutrition and Soil Science 169(3): 341-351.

Kaiser E.A., Kohrs K., Kücke M., Schung E., Heinemeyer O., Munch J.C., 1998. Nitrous oxide release from arable soil importance of N-fertilization, crops and temporal variation. Soil Biology and Biochemistry 12: 1553-1563.

Kaiser E.A., Ruser R., 2000. Nitrous oxide emission from arable soils in Germany - An evaluation of six long-term field experiments. Journal of Plant Nutrition and Soil Science 163: 249-260.

Khalil M.I., Guster R., Schmidhalter U., 2009. Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil. Journal of Plant Nutrition and Soil Science 172: 651-660.

Kim S., Dale B.E., 2008. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environmental Science and Technology 42: 6028-6033.

Kim D.G., Kirschbaum M.U.F., Beedy T.L., 2016. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agriculture, Ecosystems and Environment 226: 65-78.

Krajowy raport inwentaryzacyjny, 2014. Inwentaryzacja gazów cieplarnianych w Polsce dla lat 1988-2012. Raport wykonany na potrzeby Ramowej konwencji Narodów Zjednoczonych w sprawie zmian klimatu oraz Protoko³u z Kioto. Krajowy Ooerodek Bilansowania i Zarz¹dzania Emisjami. KOBiZE. Warszawa, Maj 2014: 373 s.

Krasowicz S., Oleszek W., Horabik J., Dêbicki R., Jankowiak J., Stuczyñski T., Jadczyszyn J., 2011. Racjonalne gospodarowanie oerodowiskiem glebowym Polski. Polish Journal of Agronomy 7: 43-58.

Kyveryga P.M., Blackmer A.M., Ellsworth J.W., Isla R., 2004. Soil pH effects on Nitrification of fall-applied anhydrous ammonia. Soil Science Society of America Journal 68: 545-551.

Liu X.J., Mosier A.R., Halvorson A.D., Reule C.A., Zhang F.S., 2007. Dinitrogen and N2O emission in arable soils: effect of tillage, N source and soil moisture. Soil Biology and Biochemistry 39: 2362-2370.

Martikainen P.J. and de Boer W., 1993. Nitrous oxide production and nitrification in acid soil from a dutch coniferous forest. Soil Biology and Biochemistry 25: 343-347.

Mazzetto A.M., Barneze A.S., Feigl B.J., Van Groenigen J.W., Oenema O., De Klein C.A.M., Cerri C.C., 2015. Use of the nitrification inhibitor dicyandiamide (DCD) does not mitigate N2O emission from bovine urine patches under Oxisol in Northwest Brazil. Nutrient Cycling in Agroecosystems 101: 83-92.

McVicar K., Kellman L., 2014. Growing season nitrous oxide fluxes across a 125+ year harvested red spruce forest chronosequence. Biochemistry 120: 225-238.

McSwiney C.P., Robertson G.P., 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology 11: 1712-1719.

Menéndez S., Barrena I., Setien I., González-Murua C., Estavillo J.M., 2012. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biology and Biochemistry 53: 82-89.

Meng L., Ding W., Cai Z., 2005. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry 37(11): 2037-2045.

Mercik S., Moskal S., 2002. Ocena emisji podtlenku azotu w Polsce z rolnictwa w 1999 roku. Nawozy i Nawo¿enie 1: 122-134.

Misselbrook T.H., Cardenas L.M., Camp V., Thorman R.E., Williams J.R., Rollett A.J., Chambers B.J., 2014. An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters 9: 1-11.

Mogge B., Kaiser E.A., Munch J.C., 1999. Nitrous oxide emission and denitrification N-losses from agricultural soils in the Bornhöved Lake region: influence of organic fertilizers and land-use. Soil Biology and Biochemistry 31: 1245-1252.

Moran D., MacLeod M., Wall E., Eory V., Pajot G., Matthews R., McVittie A., Bames A., Rees B., Moxey A., Williams A., Smith P., 2008. UK marginal abatement cost curves for the agriculture and land-use, land-use change and forestry sectors out to 2022, with qualitative Analysis of options to 2050. Final report to the Committee on Climate Change. SAC Commercial Ltd: 168 pp.

Mutuo P. K., Cadish G., Albrecht A., Palm C.A., Verchot L., 2005. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems 71: 43-54.

Nyćkowiak J., 2014. Ocena wymiany tlenku diazotu i ditlenku wêgla na gruntach ornych wybranych regionów Polski. UP Poznañ: 64 s.

Oenema O., Pietrzak S., Sapek A., 1999. Controlling nitrous oxide emissions from grassland farming system in Poland; preliminary results. Materia³y Konfonferencyjne. Nitrogen cycle and balance in Polish agriculture. Falenty, Nadarzyn near Warsaw. December 1-2 1998: 126-139.

Parkin, T., Sextone, A.J., Tiedje, J.M., 1985. Adaptation of denitrifying Populations to low Soil pH. Applied and Environmental Microbiology 49: 1053-1056.

Poczta W., Sadowski A., Baer-Nawrocka A., 2013. Gospodarstwa rolne w Polsce na tle gospodarstw Unii Europejskiej - wp³yw WPR. Powszechny spis rolny 2010. GUS Warszawa 2013: 254 s.

Rocznik Statystyczny Rolnictwa. GUS, Warszawa 2013: 425 s.

Rocznik Statystyczny Rolnictwa. GUS, Warszawa 2015: 456 s.

Ruíz-Valdiviezo V.M., Mendoza-Urbina L.D., Luna-Guido M., Gutiérrez-Miceli F.A., Cárdenas-Aquino M.R., Montes-Molina J.A., Dendooven L., 2013. Emission of CO2, CH4 and N2O and dynamics of mineral N in soils amended with castor bean (Ricinus communis) and piñón (Jatropha curcas L.) seed cake. Plant Soil Environment 59: 51-56.

Ruser R., Flessa H., Russow R., Schmidt G., Buegger F., Munch J.C., 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Chemistry 38: 263-274.

Rütting T., Huygens D., Boeckx P., Staelens J., Klemedtsson L., 2013. Increased fungal dominance in N2O emission hotspots along a natural pH gradient in organic forest soil. Biology and Fertility of Soils 49: 715-721.

Sanchez-Martin L., Vallejo A., Dick J., Skiba U.M., 2008. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emission from two contrasting agricultural soils. Soil Biology and Biochemistry 40: 142-151.

Sapek A., 1998. Emisja gazów cieplarnianych z rolnictwa. Zeszyty Edukacyjne IMUZ 5: 17-26.

Sapek A., Sapek B., Pietrzak S., 2002. Pomiar emisji podtlenku azotu z gleb trwa³ych u¿ytków zielonych. Zeszyty Edukacyjne IMUZ 8: 37-56.

Šimek M., Cooper J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53: 345-354.

Schulte-Bisping H., Brume R., 2003. Nitrous oxide emission inventory of German forest soil. Journal of Geophysical Research 108 (D4, 4132): 1-9.

Singh J., Kunhikrishnan A., Bolan N.S., Saggar S., 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Science of the Total Environment 465: 56-63.

Skiba U., Smith K.A., Fowler D., 1993. Nitrification and denitrification as source of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biology and Biochemistry 25: 1527-1536.

Smith K.A., Thomson P.E., Clayton H., Mc Taggart I.P., Conen F., 1998. Effects of Temperature, water content and nitrogen fertilization on emission of nitrous oxide by soil. Atmospheric Environment 32: 3301-3309.

Sosulski T., £abêtowicz J., 2007. Oszacowanie rozpraszania azotu z rolnictwa polskiego do atmosfery oraz wód powierzchniowych i gruntowych. Postêpy Nauk Rolniczych 5: 3-19.

Sosulski T., Szara E., Stêpieñ W., Szymañska M., 2014. Nitrous oxide emissions from the soil under different fertilization systems on a long-term experiment. Plant Soil and Environment 60: 481-488.

Sosulski T., Szara E., Stêpieñ W., Rutkowska B., 2015. The influence of mineral fertilization and legumes cultivation on the N2O soil emissions. Plant Soil Environments 61: 529-536.

Sosulski T., Szara E., Stêpieñ W., Szymañska M., Borowska- Komenda M., 2016a. Carbon and nitrogen leaching in longterm experiments and DOC/N-NO3 - ratio in drainage water as an indicator of denitrification potential in different fertilization and crop rotation systems. Fresenius Environmental Bulletin 25(8): 2813-2824.

Sosulski T., Szara E., Stêpieñ W., Szymañska M., 2016b. Impact of liming management on N2O emissions from arable soils in three long-term fertilization experiments in central Poland. Fresenius Environmental Bulletin 25(12a): 6111- 6119.

Syp A., Faber A., 2016. Porównanie emisji N2O z upraw pszenicy ozimej w Polsce przy wykorzystaniu metodologii IPCC (TIER 1) i modelu DNDC. Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu, Roczniki Naukowe 18(1): 254-259.

Tiedje JM., Sexstone AJ., Myrold DD., Robinson JA., 1983. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48: 569-583.

Wang L., Cai Z., Yang L., Meng L., 2005. Effects of disturbance and glucose addition on nitrous oxide and carbon dioxide emissions from a paddy soil. Soil and Tillage Research 82: 185-194.

Włodarczyk T., 2000. Emisja i absorpcja N2O na tle emisji CO2 w glebach brunatnych w zró¿nicowanych warunkach oksydoredukcyjnych. Acta Agrophysica 28: 138 s.

Włodarczyk T., Stêpniewski W., Brzeziñska M., Stêpniewska Z., 2004. Nitrate stability in loess soils under anaerobic conditions - laboratory studies. Journal Plant Nutrition and Soil Science 167: 1-8.

Włodarczyk T., Kotowska U., 2005. The role of nitrate and temperature in N2O emission (a review). „Review of Current Problems in Agrophysics” 2005, Chapter 6, Oxygenology: 485-487.

Wybrane elementy sytuacji ekonomicznej gospodarstw rolnych.ZWS, GUS Warszawa 2003: 120 s.

van Den Heuvel R.N., van der Biezen E., Jetten M.S.M., Kartal B., 2010. Denitrification in a riparian buffer zone. Environmental Microbiology 12(12): 3264-3271.

van Den Heuvel R.N., Bakker S.E., Jetten M.S.M., Hefting M.M., 2011. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology 9: 294-300.

van Groenigen J.W., Velthhof G.L., Oenema O., Van Groenigen K.J., 2010. Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Science 61: 903-913.

Velthof G., Kuikman P., Oenema O., 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biology and Fertility Soils 37: 221-230.

Vermoesen A., de Groot C.J., Nollet L., Boeckx P., van Cleemput O., 1996. Effect of ammonium and nitrate application on the NO and N2O emission out of different soils. Plant and Soil 181: 153-162.

Vidon P., Hill A.R., 2004. Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biochemistry 71: 259-283.

Yanai Y., Toyota K., Okazaki M., 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition 53: 181-188.

Zalewski A., 2013. Zmiany na rynku nawozów azotowych w Polsce w latach 2000-2010. Journal of Agribusiness and Rural Development 4(30): 257-267.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2017: 1.13

SCImago Journal Rank (SJR) 2017: 0.468
Source Normalized Impact per Paper (SNIP) 2017: 0.781

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 16
PDF Downloads 84 84 8