Comparing quartz silt surface microstructures in two sandy soils in young-glacial landscape of northern Poland

Open access

Abstract

The studies on quartz silt surface microstructures using scanning electron microscopy (SEM) were performed in Brunic Arenosol and Gleyic Ortsteinic Podzol, as major components of soil cover of the lower supra-flood terrace of the Słupia River, N Poland. Brunic Arenosols have developed from coarse- and medium-grained fluvioglacial sands, whereas Podzols from aeolian sands of mid-Holocene age, which in some places were covered with younger aeolian deposits. A group of at least 100 randomly selected grains from each soil horizon have been analyzed. The grains were classified into one of the following groups: fresh (type A), grains with the features of chemical weathering (type B), grains coated with scaly-grain incrustations (type C), grains coated with bulbous incrustations (type D), and cracked grains (type E). Parent materials of the investigated soils did not differ significantly in terms of contribution of grain types and type C predominated in both soils. Significant differences were noted in soil solums. Grains covered by scaly-grained incrustations predominated in Brunic Arenosol, which constituted 62–89%. In the profile of Gleyic Ortsteinic Podzol grains type B predominated in AE and E horizons (65–82%), whereas in the remaining horizons grains type C (54–77%).

Andrews J.A., Schlesinger W.H., 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15: 149–162.

Bartoli F., 1985. Crystallochemistry and surface properties of biogenic opal. Journal of Soil Science 36: 335–350.

Black J.M.W., Dudas M.J., 1987. The scanning electron microscopic morphology of quartz in selected soils from Alberta. Canadian Journal of Soil Science 67: 965–971.

Bullard J.E., Mctanish G.H., Pudmenzky C., 2004. Aeolian abrasion and models of fine particle production from natural red dune sand: and experimental study. Sedimentology 51: 1103–1125.

Cegła J., Buckley T., Smalley I.J., 1971. Microtextures of particles from some European loess deposits. Sedimentology 17: 129–134.

Costa P.J.M., Andrade C., Mahaney W.C., Marques da Silva F., Freire P., Freitas M.C., Janardo C., Oliviera M.A., Silva T., Lopez V., 2013. Aeolian microtextures of silica spheres inducted in a wind tunnel experiment: Comparison with aeolian quartz. Geomorphology 180/181: 120–129.

Degórski M., Kowalkowski A., 2011. The use of SEM morphoscopy in researching the litho-pedogenetic environments of Late Pleistocene and Holocene. Geographia Polonica 84(1): 17–38.

Degórski M., Kowalkowski A., Kozłowska A., 2013. Podzolic Earths – geographical trends and discontinuities in the development. SEDNO Wydawnictwo Akademickie, Warszawa.

Dietzel M., 2005. Impact of cyclic freezing on precipitation of silica in Me-SiO2-H2O system and geochemical implications for cryosoils and sediments. Chemical Geology 216: 79–88.

Dove P.M., 1999. The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochimica et Cosmochimica Acta 63: 3715–3727.

Dove P.M., Rimstidt J.D., 1994. Silica-water interaction. Reviews in Mineralogy and Geochemistry 29: 259–308.

Drees L.R., Wilding L.P., Smeck N.E., Sankayi A.L., 1989. Silica in soils: Quartz and disordered silica polymorphs. [In:] Minerals in soil environments (Dixon J.B., Weed S.B., Editors). SSSA Book series No.1, Madison, WI.

Dziadowiec H., Gonet S.S. (Eds.), 1999. Methodological guide for soil organic matter surveys. Prace Komisji Naukowych Polskiego Towarzystwa Gleboznawczego 120, Warszawa.

Florek W., 1991. Postglacial development of river valleys in the middle part of the northern slope of Pomerania. WSP, Słupsk.

Gerard F., Francois M., Ranger J., 2002. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France). Geoderma 107: 197–226.

Goyne K.W., Zimmerman A.R., Newalkar B.L., Komarneni S., Brantley S.L., Chorover J., 2002. Surface charge of variable porosity Al2O3 (s) and SiO2 (s) adsorbents. Journal of Porous Materials 9(4): 243–256.

Haines J., Mazullo J., 1988. The original shapes of quartz silt grains: a test of the validity of the use of quartz grain shape analysis to determinate the sources of terrigenous silt in marine sedimentary deposits. Marine Geology 78: 227–240.

Helland P.E., Huang P-H., Diffendal Jr. R.F., 1997. SEM analysis of quartz sand grain surface textures indicates alluvial/colluvial origin of the Quaternary “glacial” boulder clays at Huangshan (Yellow Mountain), East-Central China. Quaternary Research 48: 177–186.

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Jefferson I.F., Jefferson B.Q., Assallay A.M., Smalley I.J., 1997. Crashing of quartz sand to produce soil particles. Naturwissenschaften 84: 148–149.

Jonczak J., 2015. Genesis, evolution and properties of the soils of headwater valleys in young glacial lacustrine plains on the example of the Leśna Creek (Sławno Plain). Wydawnictwo Naukowe Akademii Pomorskiej w Słupsku, Słupsk.

Jonczak J., Olszak I., Łazarczyk A., 2013. Genesis, evolution and properties of soils of lower supra-flood terrace of the Słupia River in southern part of Słupsk. [In:] Środowisko glebotwórcze i gleby dolin rzecznych (Jonczak J., Florek W., Editors). Wydawnictwo Naukowe Bogucki, Poznań: 57–66.

Joshi V.U., 2009. Grain surface features of alluvial sediments of Upper Pravara basin and their environmental implications. Journal of the Geological Society of India 74: 711–722.

Kirschenstein M., Baranowski D., 2008. Annual precipitation and air temperature fluctuations and change tendencies in Słupsk. Dokumentacja Geograficzna 37: 76–82.

Konishev V.N., 1982. Characteristics of cryogenic weathering in the permafrost zone of the European USSR. Arctic, Anthartic and Alpine Research 14: 261–265.

Kowalkowski A., 1984. Surface texture of quartz grains from tundra soils under electron microscope. Quaternary Studies in Poland 5: 75–79.

Kowalkowski A., Brogowski Z., 1983. Features of cryogenic environment of soils of continental tundra and arid steppe on the southern Khangai slope under the electron microscope. Catena 10: 199–205.

Kowalkowski A., Kocoń J., 1998. Microtextures of cryopedogenic weathering in soils of the mountain Tundra of Middle Sweden. Roczniki Gleboznawcze – Soil Science Annual 49(1–2): 53–59.

Kowalkowski A., Mycielska-Dowgiałło E., Krzywobłocka-Laurow R., Wichrowska M., 1980. Analysis of surface textures of quartz sand grains observed in the electron microscope from the tundra and arid steepe soils of the Khangai Mts. Studia Geomorphologica Carpatho-Balcanica 14: 135–155.

Krinsley D., McCoy F., 1978. Aeolian quartz sand and silt [In:] Scanning electron microscopy in study of sediments (Whalley B.H., Editor). GeoAbstracts: 249–261.

Leyval C., Berthelin J., 1991. Weathering of mica by roots and rhizospheric microorganisms of pine. Soil Science Society of America Journal 55: 1009–1016.

Mehra O., Jackson J., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay and Clays Minerals 5: 317–327.

Monger H.C., Kelly E.F., 2002. Silica minerals [In:] Soil mineralogy with environmental applications (Dixon J.B., Schulze D.G., Editors). Book Series SSSA No.7, Madison, WI.

Moss A.J., 1972. Initial fluviatile fragmentation of granitic quartz. Journal of Sedimentary Petrology 42: 905–916.

Moss A.J., Green P., 1972. Sand and silt grains: predetermination of their formation and properties by macrofactures in quartz. Journal of Geological Society 22: 485–495.

Moss A.J., Walker P.H., Hutka J., 1973. Fragmentation of granitic quartz in water. Sedimentology 20: 489–511.

Mycielska-Dowgiałło E., 1988. Relief features of the surface of the quartz grains of beaches in different climatic regions of the world. [In:] Geneza osadów i gleb w świetle badań w mikroskopie elektronowym (Mycielska-Dowgiałło E., Editor). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa: 27–46.

Mycielska-Dowgiałło E., 2007. Methodology for studying textural parameters of clastic deposits. [In:] Badania cech teksturalnych osadów czwartorzędowych i wybrane metody oznaczania ich wieku (Mycielska-Dowgiałło E., Rutkowski J., Editors). Wydawnictwo Szkoły Wyższej Przymierza Rodzin Warszawa: 95–180.

Niedziałkowska E., 1991. The textural diversity of upper Quaternary fluvial deposits in the Carpathian Foreland. Geographical Studies 6: 119–146.

PTG, 2009. Classification of texture of soils and mineral deposits – PTG 2008, Roczniki Gleboznawcze – Soil Science Annual 60(2): 5–17.

Pye K., 1987. Aeolian dust and dust deposits. Academic Press, London.

Rywocka-Kenig K., 1997. Surface microtextures of quartz grains from loesses. Prace Państwowego Instytutu Geologicznego 155.

Schluz M.S., Whrite A.F., 1999. Chemical weathering in tropical watershed. Luquillo Mountains, Puerto Rico III: Quartz dissolution rates. Geochimica et Cosmochimica Acta 63: 337–350.

Smalley I.J., Cabrera I.J., 1970. The shape and surface texture of loess particles. Geological Society of America Bulletin 81: 1591–1595.

Smith B.J., Whalley W.B., 1981. Late Quaternary drift deposits of north-central Nigeria examined by scaning electron microscopy. Catena 8: 345–368.

Sommer M., Kaczorek D., Kuzyakov Y., Breuer J., 2006. Silicon pools and fluxes in soils and landscapes – a review. Journal of Plant Nutrition and Soil Science 169(3): 310–329.

Tréguer P., Pondaven P., 2000. Silica control of carbon dioxide. Nature 406: 358–359.

Tsoar H., Pye K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34: 139–153.

Van Reeuvijk L.P., 2002. Procedures for soil analysis. Sixth edition. ISRiC, FAO, Wageningen.

Whalley W.B., Krinsley D.H., 1974. A scanning electron microscope study of surface textures of quartz grains from glacial environments. Sedimentology 21: 87–105.

Woronko B., 2007. Micromorphology types of quartz grains surface of silt fraction of their interpretative meaning. [In:] Badania cech teksturalnych osadów czwartorzędowych i wybrane metody oznaczania ich wieku (Mycielska-Dowgiałło E., Rutkowski J., Editors). Wydawnictwo Szkoły Wyższej Przymierza Rodzin, Warszawa: 181–204.

Woronko B., Hoch M., 2011. The development of frost-weathering microstructures on sand-sized quartz grains: Examples from Poland and Mongolia. Permafrost and Periglacial Processes 22: 214–227.

Woronko B., Pisarska-Jamroży M., van Loon A.J., 2015. Reconstruction of sediment provenance and transport processes from the surface textures of quartz grains from Late Pleistocene sandurs and an ice-marginal valley in NW Poland. Geologos 21(2): 105–115.

Wright J., 2000. The spalling of overgrowths experimental freezethaw of a quartz sandstone as a mechanism of quartz silt production. Micron 31: 631–638.

Wright J., Smith B., Whalley B., 1998. Mechanism of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23: 669–680.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2017: 1.13

SCImago Journal Rank (SJR) 2017: 0.468
Source Normalized Impact per Paper (SNIP) 2017: 0.781

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 10
PDF Downloads 23 23 6