Estimation of selected properties of forest soils using near-infrared spectroscopy (NIR)

Open access

Abstract

The study was focused on the application of near-infrared spectroscopy (NIR) as a tool for evaluation of selected properties of forest soils. We analysed 144 soil samples from the topsoil of nine plots located in southern Poland. Six plots were established under pine stands, and three plots under oak stands. The NIR measurements were performed using Antharis II FT scanner. On the basis of the spectrum files obtained from scanning of 96 samples and the measurement results obtained for selected properties of the soil samples, we developed a calibration model. The model was validated using 48 independent samples. We attempted to estimate the following properties of forest soils: pH, C:N ratio, the organic carbon content (Ct), total nitrogen (Nt), clay content (Clay), base cation content (BC), cation exchange capacity (CEC) and total acidity (TA). We conclude that estimation of soil properties using NIR method can be applied as additional (to laboratory analysis) or initial assessment of soil quality. Our results also suggest that forest species composition may affect the mathematical model applied to NIR spectra analysis, however, this hypothesis needs some of further investigations.

Ben-Dor E., Banin A., 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal 59(2): 364–372.

Brożek S., 2007. Liczbowa wycena „jakości” gleb – narzędzie w diagnozowaniu siedlisk leśnych. Sylwan 2: 35–42.

Brożek S., Gruba P., Lasota J., Zwydak M., Wanic T., Pacanowski P., Błońska E., Różański W., 2010. Opracowanie indeksów jakości gleb dla naturalnych siedlisk leśnych nizin i wyżyn Polski i ich zastosowanie w gospodarce leśnej jako narzędzia w zachowaniu i odtwarzaniu różnorodności lasów. Studia i Materiały CEPL w Rogowie 2(25): 292–302.

Chang C.W., Laird D.A., Mausbach M.J., Hurburgh C.R., 2001. Near-infrared reflectance spectroscopy – principal components regression analyses of soil properties. Soil Science Society of America Journal 65(2): 480–490.

Chodak M., Niklińska M., Beese F., 2007. Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal-polluted area. Biology Fertility of Soils 44: 171–180.

Cozzolino D., Morón A., 2006. Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil Tillage Research 85: 78–85.

Gruba P., 2012. Zależności pomiędzy wybranymi właściwościami jonowymiennymi gleb leśnych oraz ich zmiany pod wpływem drzewostanów. Zeszyty Naukowe Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie 366: ss.70.

Gruba P., Mulder J., 2015. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment 511: 655–662.

Gruba P., Pacanowski P., Mulder J., 2013. Factors influencing spatial heterogeneity of pH in forest soils on the example of luvisols with marlstone underlayer. Sylwan 157: 149–157.

Islam K., Singh B., McBratney A., 2003. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research 41: 1101–1114.

Ludwig B., Khanna P.K., Bauhus J., Hopmans P., 2002. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. Forest Ecology and Management 171: 121–132.

Shepherd K.D., Walsh M.G., 2002. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Science Society of America Journal 66: 988–998.

Stenberg B., Rossel R.A.V., Mouazen A.M., Wetterlind J., 2010. Visible and Near Infrared Spectroscopy in Soil Science. Advances in Agronomy 107: 163–215.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2017: 1.13

SCImago Journal Rank (SJR) 2017: 0.468
Source Normalized Impact per Paper (SNIP) 2017: 0.781

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 12
PDF Downloads 71 71 7