Application of passive seismic to shallow geological structures in urban areas

Open access


To study the shallow geological structure the Refraction Microtremor (ReMi) method was applied. This technique uses seismic noise analysis where a source of this small vibrations is the human activity e.g.: traffic, production, factories. The surveys were carried out in selected urban areas in the region of the Upper Silesian Industrial District : Sosnowiec - Pogoń , Chorzów - Chorzow Stary and Bytom - Karb. Each area is characterized by the presence of nearby roads with a very high traffic. The results of passive seismic (ReMi) were confronted with data obtained using Multichannel Analysis of Surface Waves (MASW) and resistivity imaging (RI). Seismic surveys were performed by apparatus PASI with 24 channels using geophones of 4.5Hz. The results showed that passive seismic can be satisfactorily used in such urban conditions. The shallow geological structure interpreted by seismic methods have been well-correlated with resistivity studies.

Binley, A., Kenmna, A., 2005. DC Resisitivity and Indcuced Polarization Methods. In eds Rubin, Y., Hubbard, S.S., Hydrogeophysic, 50, 129-156, Springer.

Boiero, D., Socco, L.V., 2011. The meaning of surface wave dispersion curves in weakly laterally varying structures. Near Surface Geophysics, 9, 561-570.

Cudak, J., Wantuch, A., 2009. Chorzów [In:] Wody podziemne miast Polski. Miasta powyżej 50 000 mieszkańców, ed. Z. Nowicki. Państwowy Instytut Geologiczny Warszawa. (Website accessed 26.04.2014),4743.pdf.

Dal Moro, G., Pipan, M., Gabrielli, P., 2007. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. Journal of Applied Geophysics, 61, 39-55.

Eker, A.M., Akgün, H., Koçkar, M.K., 2012. Local site characterization and seismic zonation study by utilizing active and passivesurface wave methods: A case study for the northern side of Ankara, Turkey. Engineering Geology , 151: 64-81.

Gamal, M.A., Pullammanappallil, S., 2011. Validity of the Refraction Microtremors (ReMi) Method for Determining Shear Wave Velocities for Different Soil Types in Egypt. International Journal of Geosciences, 2, 530-540.

Hamimu, L., Safani, J., Nawawi1, M., 2011. Improving the accurate assessment of a shear-wave velocity reversal profile using joint inversion of the effective Rayleigh wave and multimode Love wave dispersion curves. Near Surface Geophysics, 9, 1-14.

Kowalczyk, S., Zawrzykraj, P., Mieszkowski, R., 2014. Application of electrical resistivity tomography in assessing complex soil conditions. Geological Quarterly, 59, 2, (in print).

Kowalska, A., Kondracka, M., Mendecki, M.J., 2012. VLF mapping and resistivity imaging of contamineted Quaternary formations near to „Panewniki“ coal waste disposal. Acta Geodynamica et Geomaterialia, 9, 4 (168), 473-480.

Lambert, D.W., Adams, G., Hawley, V., 2007. Use of refraction microtremor (REMI) data for shear wave velocity determination at an urban bridge rehabilitation sit. Proceedings of the Geophysics 2006 conference, Dec 40-7th, 2007, St. Louis, Missouri, USA.

Loke, M.H., Acwort, I. and Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys. Exploration Geophysics 34(3), 182-187.

Loke, M.H., 2004. Tutorial: 2-D and 3-D electrical imaging surveys. (Website accessed 26.04.2014)

Louie, J.N., 2001. Faster, Better: Shear-Wave Velocity to 100 Meters Depth from Refraction Microtremor Arrays. Bulletin of the Seismological Society of America, 91, 2, 347-364.

Liu, H. P., D. M. Boore, W. B. Joyner, D. H. Oppenheimer, R. E. Warrick, W. Zhang, J. C. Hamilton, Brown L.T., 2000. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear wave velocity profiles, Bull. Seism. Soc. Am. 90, 666-678.

Mendecki, M.J., 2012. Zastosowanie testu statystycznego Albarello do wykrywania fałszywych maksimów na widmach HVSR uzyskanych z szumu sejsmicznego zarejestrowanego w Ojcowie, Raciborzu i Planetarium Śląskim.(Application of the Albarello statistical test to detect false peaks in the spectra obtained from the HVSR seismic noise recorded in the Ojcow, Raciborz and Silesian Planetarium). Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, Miesięcznik WUG, 9, 36-40 (in Polish).

Mendecki, M.J., Zuberek, M.W., Hrehorowicz, P., Jarek, S., 2012. An inversion of Rayleigh waves dispersion curves as a tool to recognize the bedrock depth in Chorzów Stary, Poland. Contemporary Trends in Geoscience, 1, 39-44.

Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute, 30, 1, 25-33.

Park, C.B., Miller, R.D., Xia, J., 1999. Multichannel Analysis of Surface Waves. Geophysics, 64, 3, 800-808.

Pullammanappallil, S., Honjas, B., Louie, J., Siemens, J. A., Miura, H., 2003. Comparative Study of the Refraction Microtremors Method: Using Seismic Noise and Standard P-Wave Refraction Equipment for Deriving 1D Shear- Wave Profiles. Proceedings of the 6th SEGJ International Symposium, Tokyo, January 2003, 192-197.

Ramillien, G., 2001. Genetic algorithms for geophysical parameter inversion from altimeter data. Geophys. J. Int. 147, 393-402.

Razowska-Jaworek, L., Brodziński, I., 2009. Bytom [In:] Wody podziemne miast Polski. Miasta powyżej 50 000 mieszkańców, ed. Z. Nowicki. Państwowy Instytut Geologiczny Warszawa. (Website accessed 26.04.2014),4742.pdf.

Rosenblad, B.L., Li, J., 2009. Comparative Study of Refraction Microtremor (ReMi) and Active Source Methods for Developing Low-Frequency Surface Wave Dispersion Curves. Journal of Environmental & Engineering Geophysics, 14, 101-113.

Rudzki, M., 2002. Zastosowanie metody tomografii elektrooporowej do wykrywania podziemnych obiektów antropogenicznych. (Application of electrical resistivity tomography to detect subsurface man-made objects) Publications of The Institut of Geophysics Polish Academy of Sciences: Geophysical Research of Geological Environment, Monographic Volume M-27(352), 195-208 (in Polish).

Satoh, T., Kawase, H., Iwata, T., Irikura K., 1997. S-wave velocity structures in the damaged areas during the 1994 Northridge earthquake based on array measurements of microtremors (abstract), EOS Trans. AGU 78, no. 46, 432.

Stephenson, W. J., Louie, J. N., Pullammanappallil, S., Williams, R. A., Odum, J. K., 2005. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground motion assessment, Bull. Seis. Soc. Amer., 95, 6, 2506-2516.

SeisImager/SWTM Manual, 2009. Geometrics, Inc.

Schön, J.H., 1996. Physical Properties of rocks, Pergamon.

Strobbia, C., Laake, A., Vermeer, P., Glushchenko, A., 2011. Surface waves: use them then lose them. Surface-wave analysis, inversion and attenuation in land reflection seismic surveying. Near Surface Geophysics, 9, 503-514.

Telford, W.M., Geldart, L.P. and Sheriff, R.E., 1990. Applied Geophysics, 2nd ed. Cambridge University Press, Cambridge.

Wagner, J., Rolka, M, Zembal, M., 2009. Sosnowiec [In:] Wody podziemne miast Polski. Miasta powyżej 50 000 mieszkańców, ed. Z. Nowicki. Państwowy Instytut Geologiczny Warszawa. (Website accessed 26.04.2014),4762.pdf.

Wyczółkowski, J., 1957. The Detailed Geological Map of Poland, scale 1:50 000, sheet Zabrze, M34-62A, Geological Institute, Warsaw (in Polish).

Xia, J., Miller, R.D., Park, C.B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64, 3, 691-700.

Żogała, B., Gołębiowski, T., Mendecki, M., Antonik, W., Zuberek, W.M, Panajew, P., 2013. Determination of the fracture zone extension around the mine opening with the resistivity and GPR methods. In eds M. Kwasniewski, D. Lydzba Rock Mechanics for Resources, Energy and Environment, 181-188, CRC Press/Balkema.

Studia Quaternaria

The Journal of Institute of Geological Sciences and Committee for Quaternary Research of Polish Academy of Sciences

Journal Information

SCImago Journal Rank (SJR): 0.200
Source Normalized Impact per Paper (SNIP): 0.312


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 249 249 25
PDF Downloads 77 77 13