
How much is enough? 
Influence of number of 
presence observations on 
the performance of species 
distribution models 

Bente Støa, Rune Halvorsen, Jogeir N. 
Stokland and Vladimir I. Gusarov

Bente Støa, Rune Halvorsen, Jogeir N. Stokland and Vladimir I. Gusarov 2018. How much is 
enough? Influence of number of presence observations on the performance of species distribu-
tion models. – Sommerfeltia 39: 1-28. Oslo. ISBN 978-82-7420-053-5. ISSN 0800-6865. DOI: 
10.2478/som-2019-0001. 

Species distribution modeling (SDM) can be useful for many applied purposes, e.g., mapping 
and monitoring of rare and endangered species. Sparse presence data are a recurrent, major 
obstacle to precise modeling of species distributions. Thus, knowing the minimum number of 
presences required to obtain reliable distribution models is of fundamental importance for 
applied use of SDM. This study uses a novel approach to assess the critical sample size (CSS) 
sufficient for an accurate prediction of species distributions with Maximum Entropy Modeling 
(MaxEnt). Large presence datasets for thirty insect species, ranging from generalists to special-
ists regarding their responses to main bioclimatic gradients, were used to produce reference 
distribution models. Models based on replicated subsamples of different size drawn randomly 
from the full dataset were compared to the reference model using the index of vector similarity 
(IVS). Two thresholds for IVS were determined based on comparison of nine reference models 
to random null models. The threshold values correspond to 0.95 and 0.99 probability that a 
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model outperforms a random null model in terms of similarity to the reference dataset. For 90% 
of the species, clearly nonrandom models were obtained with less than 10 presence observa-
tions, and for 97% of the species with less than 15 presence observations. We conclude that the 
number of presence observations required to produce nonrandom models is generally low and, 
accordingly, that even sparse datasets may be useful for distribution modelling. 

Keywords: Hellinger distance, Maxent, Sample size, Species distribution modeling, Thresholds 
for critical sample sizes
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INTRODUCTION 

Distribution modeling (DM) is a rapidly evolving field of ecology (Franklin 2009, Lobo et al. 
2010, Peterson et al. 2011). Many methods are available for predicting species distributions 
using geo-referenced species presence data together with wall-to-wall covering data for relevant 
environmental explanatory variables (Elith et al. 2006, Guisan and Zimmermann 2000) .

Most of the data available for species DM are of the presence-only type, i.e., datasets from 
which observations of species absence are lacking (Franklin 2009, Stokland et al. 2011). Accord-
ingly, many of the commonly used DM methods are adapted to use presence-only data (Franklin 
2009). One of the currently most popular methods is MaxEnt (Elith et al. 2011, Halvorsen 2013, 
Phillips et al. 2006, Phillips and Dudík 2008)  which, based upon the maximum entropy principle 
(Jaynes 1957a, 1957b), estimates a probability distribution for the modeled target over the set 
of all n grid cells of a rasterized study area (Elith et al. 2011, Phillips et al. 2006, Phillips and 
Dudík 2008). MaxEnt has proved to give models with acceptable predictive ability even when few 
presence records are available, i.e., when the sample size is small (Elith et al. 2006, Hernandez 
et al. 2006, Marini et al. 2010, Peterson et al. 2011, Rebelo and Jones 2010).

Distribution models can be useful for many applied purposes, e.g., mapping and monitoring 
of rare and endangered species (Edvardsen et al. 2011, Engler et al. 2004, Guisan et al. 2006, Le 
Lay et al. 2010, Lomba et al. 2010, Marini et al. 2010) . Because rare species, by definition, are 
known from few localities and/or have restricted spatial distributions, sparsity of presence data 
is a major obstacle for modeling their distribution (Feeley and Silman 2011a, 2011b, Kamino et 
al. 2012, Lim et al. 2002, Papeş and Gaubert 2007). Thus, an important task of DM methodology 
is to determine a critical sample size (CSS), i.e., the minimum number of presence observations 
normally required to obtain reliable distribution models. In particular, knowledge of the CSS 
is important when rare species, typically known from few localities, are modeled. Assessment 
of a CSS has been addressed in several studies, without any general conclusions reached so 
far. Recommendations from these studies span from 5–10 (Hernandez et al. 2006) via 10–30 
(Mateo et al. 2010, Stockwell and Peterson 2002, Wisz et al. 2008) to more than 200 presence 
observations (Hanberry et al. 2012) needed. The contrasting recommendations given in these 
studies may result from differences with respect to study organisms, study areas, spatial reso-
lution (grid-cell size), modeling method and environmental variables used in the modeling, as 
well as from different criteria being used to assess acceptability of distribution models.

This study uses Norwegian insects to examine the influence of the amount of available 
data on the performance of distribution models. Insects are the group represented by the largest 
number of species (2013 out of 4599) on the current Norwegian Red List (Kålås et al. 2010); 
very well represented in the IUCN (International Union for Conservation of Nature) categories 
DD (Data Deficient) and NE (Not Evaluated). The IUCN-approved criteria for evaluation of Red 
List status (IUCN 2001, SPWG 2006) emphasize the probability of extinction within a certain 
time span and the rate of population decline over a given number of generations. However, 
these criteria are in general difficult to apply to insects, in particular to rare and poorly known 
species, for which population decline cannot be observed directly. Accordingly, the supple-
mentary criteria based on changes in the species’ geographic range are often used for insects. 
Distribution models facilitate use of these criteria and may therefore, potentially, be of great 
importance for future Red List assessments. So far, however, DM methods have been applied to 
insects much less often than to plants and vertebrates (Guisan and Thuiller 2005) , and most 
studies of insects using DM methods have addressed vectors of human diseases (López-Cárdenas 
et al. 2005, Peterson et al. 2005) or introduced species (Fitzpatrick et al. 2007, Roura-Pascual 
et al. 2004). Some studies have, however, applied DM methods to insect data for conservation 
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purposes. This is exemplified by the studies of threatened beetles in Tasmania (Meggs et al. 
2004) and on the Iberian peninsula (Chefaoui et al. 2005). The CSS required to obtain accept-
able distribution models for insects seems so far to have been addressed only in one study, of 
the butterfly Danaus plexippus (Hernandez et al. 2006). The large uncertainty with respect 
to assessment of a CSS for insects is particularly unfortunate because insects comprise more 
than half of all described species (Chapman 2009) and many insects are represented by few 
presence records (New 2009). The effect of sample size (number of presence observations of 
the modeled target) on reliability of predictions by distribution models has high general and 
applied importance because DM methodology is an emergent and promising tool for routine 
use in Red List assessments.

The aim of this study is threefold: (1) to propose and explore a novel method for deter-
mining the CSS (critical minimum number of presence observations required to obtain reliable 
distribution models); (2) to assess the CSS for different species of Norwegian insects; and (3) 
to discuss the extent to which a generally applicable CSS value can be determined for use with 
MaxEnt.

MATERIAL AND METHODS

STUDY AREA 

Our study area is the mainland of Norway, which covers 323,782 km2 and spans from 58 to 71 
°N and from 5 to 31 °E. This area is particularly well suited for exploring properties of distribu-
tion models because it contains strong bioclimatic gradients in temperature (corresponding to 
vegetation zones from the boreonemoral to the high alpine) and oceanicity (corresponding to 
vegetation sections from the strongly oceanic to the slightly continental) (Moen 1999, Wollan 
et al. 2008). The main land-cover types in Norway are non-forested land (46%; mainly situated 
above and north of the tree line), forest (38%) and mires and lakes (6 % each). The high topo-
graphical and geological diversity in Norway, and the variation in intensity of human land-use, 
e.g. for agricultural purposes, bring about variation in environmental conditions and species 
composition over a large range of spatial scales (Halvorsen 2012).

SPECIES OCCURRENCE DATASETS

For this study we selected thirty insect species, ten from each of the following orders: Coleoptera, 
Diptera and Lepidoptera (Table 1). The species were selected to represent contrasting distribu-
tion patterns, from restricted to broad, based on the species’ ecological range (the method used 
to quantify the ecological range is described in the final section of the Methods chapter). For 
every combination of order and distribution pattern we selected the species with the largest 
number of available presence observations. 

Most of the presence observation data used in this study were extracted from the database 
of the insect collections at the Natural History Museum, University of Oslo, Norway. Additional 
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data were obtained from the insect collections at Bergen Museum (University of Bergen, Nor-
way) and the Museum of Natural History and Archaeology (Norwegian University of Science and 
Technology, Trondheim). Voucher specimens for all species were examined and only specimens 
for which the identity was confirmed and that could be geo-referenced with an uncertainty of 
1 km or less were used for this study and subjected to data analysis. 

The study area was rasterized by applying a 1 × 1 km grid including a total of 302,484 
grid cells. Presence observations were assigned to grid cells based on their geographic coor-
dinates. Multiple presences in one grid cell were treated as one single presence observation. 
Presences in grid cells with the center points outside the Norwegian border or in the sea were 
excluded from the analyses if situated more than 1 km off the coast or border. Otherwise they 
were moved to the nearest adjacent grid cell. The number of presences in the full datasets for 
each of the thirty investigated species ranged from 41 to 346 (Table 1).

EXPLANATORY VARIABLES 

We used two continuous environmental (bioclimatic) explanatory variables for all models: a 
step-less oceanicity gradient and a step-less temperature gradient (Bakkestuen 2008). Both 
variables were available for all 1 × 1 km grid cells in the rasterized study area. The two variables 
were obtained by PCA ordination of 54 climatic, topographical, hydrological and geological vari-
ables recorded or modeled for the entire mainland of Norway, followed by a subsequent rotation 
of the PCA axes to maximize the fit to the division of Norway by Moen (1999) into vegetation 
sections (reflecting the oceanicity gradient; PCA axis 1) and vegetation zones (reflecting the 
summer temperature gradient; PCA axis 2). These two explanatory variables, which will be 
referred to as oceanicity and temperature, respectively, are the two most important regional 
bioclimatic gradients in Norway (Bakkestuen 2008, Moen 1999). Together, they explain 63% of 
the variation in the set of 54 variables subjected to PCA ordination (Bakkestuen 2008).

SUBSAMPLING PRESENCES FROM THE FULL DATASETS 

For each species effects of sample size on the predictive performance of distribution models 
were explored by generating random subsamples of different sizes from the full dataset. Sub-
samples ranged in size from 5 presences, with an increment of 5, up to 100 and, if applicable, 
with an increment of 20 beyond 100 presences, until the size of the full dataset was reached 
(Table 1). Twenty replicate subsamples were generated for each combination of species and 
subsample size.

For a given species, the random subsamples are not independent of the full dataset. This 
lack of independence is however not assumed to influence the properties of the distribution 
models at small sample sizes (See Discussion). To test this assumption, two additional datasets 
were prepared as described below.

Additional dataset I was obtained from data for the species with the largest number of pres-
ences in our study (346), the widespread generalist (in terms of ecological tolerance) butterfly 
Pieris napi. The full dataset for this species was randomly split into two subsets, with 246 and 
100 presences. This procedure was repeated ten times, resulting in ten subset pairs (referred 
to as Pieris napij; j = 1, ..., 10). This repeated random splitting procedure was chosen for evalu-
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ation of distribution models because it is among the best methods in cases where independent 
presence-absence evaluation datasets cannot be obtained (Austin 2007, Halvorsen 2012, Raes 
and ter Steege 2007, Veloz 2009). The larger subset in each pair was used as reference while 
the smaller was used to randomly generate 380 subsamples: 20 subsamples of each size from 
5 to 95 in increments of 5.

Additional dataset II was simulated to represent a locally common specialist species, i.e., 
a species with narrow ecological tolerance, represented by many presence observations from 
a restricted distribution area. This combination of properties was not encountered among the 
thirty species selected for the analyses. The following simulation procedure was used: (1) The 
full datasets for all the thirty species were pooled. (2) A subset of presences was selected from 
the pooled dataset according to the following conditions: 0.00028 ≤ oceanicity ≤ 0.00141 and 
0.00323 ≤ temperature ≤ 0.00416. These ranges of environmental values correspond exactly to 
those of the species with the narrowest bioclimatic envelope in our study, the butterfly Thecla 
betulae. This bioclimatic envelope for this simulated species, referred to as ‘Species narrow’, 
included 270 occurrence points. As for Pieris napi, the total dataset of 270 presences of Spe-
cies narrow was randomly split 10 times into paired subsets referred to as Species narrowj; 
j = 1, ..., 10. The larger subset, with 170 presence observations, was used as reference while the 
smaller, with 100 presence observations, was used to generate random subsamples as described 
for Additional dataset I above. 

DISTRIBUTION MODELING BY THE SOFTWARE MAXENT

Distribution models for all datasets listed in Table 1 were obtained using Maxent software, ver-
sion 3.3.1 (Phillips et al. 2006), which performs distribution modeling by the MaxEnt method 
(note the distinction between the software Maxent and the modeling method MaxEnt). This 
method is based on the maximum entropy principle (Jaynes 1957a, 1957b) and has been de-
scribed as a machine learning method (Elith et al. 2011, Phillips et al. 2006, Phillips and Dudík 
2008)  or as a maximum likelihood estimation method (Halvorsen 2013, Renner and Warton 
2013). MaxEnt estimates the probability distribution of maximum entropy for the modeled 
target, i.e., the distribution which is most spread out or closest to uniform, subject to a set of 
constraints that represent our incomplete information about the target distribution (Phillips 
et al. 2004). With access only to presence data, the true prevalence of a modeled species (the 
proportion of grid cells in the study area occupied by the species) is neither known nor possible 
to estimate, and distribution models therefore provide estimates for the probability of finding the 
modeled target under given ecological conditions, relative to other conditions. Model predictions 
are therefore relative predicted probabilities of presence (RPPP values; Halvorsen 2012).

All MaxEnt models were obtained using default Maxent program values for all settings 
and options (e.g., Phillips and Dudík 2008) except output format, which was set to “raw”. The 
raw output format consists of a set of values that sum to unity for the total training dataset of 
presence and uninformed background observations. With default settings Maxent is run with 
automatic generation of derived variables [“auto features” in the terminology of Phillips et al. 
(2006)] from the (in our study) two explanatory variables. This opens for derived variables 
of up to five types to be generated by the program from each supplied explanatory variable, 
depending on the number of presences in the set subjected to modeling: linear variables (all 
sets); quadratic variables (sets with ≥ 10 presences); hinge variables (≥ 15 presences), and 
product and threshold variables (≥ 80 presences). The default model selection method in Max-
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ent software, the shrinkage method referred to as ℓ1-regularisation (Hastie et al. 2009) or lasso 
penalty (Tibshirani 1996), was used with the default regularization multiplier = 1. Each model 
was trained on a dataset consisting of the presence observations and 10,000 randomly selected 
uninformed background observations (i.e., observation units for which nothing is known about 
presence or absence of the target species; Halvorsen 2012). All models were projected to all 
302,484 grid cells in the study area. The sum of predictions for all grid cells therefore summed 
to 302,484/ (ca. 10,000) ≈ 30.

ASSESSMENT OF SIMILARITY BETWEEN MODELS

Predictions from each MaxEnt model were converted into a vector of RPPP values. Vectors based 
on replicated subsamples were compared, grid cell by grid cell, with the vector based on the 
respective reference model obtained using the full dataset. Reference models for Pieris napij and 
Species narrowj were obtained by use of the larger subset in each pair of subsets.

The Index of Vector Similarity (IVS) was used to measure the similarity between RPPP 
vectors in each pair. IVS is derived from the Hellinger distance (Van der Vaart 1998) between 
the two corresponding RPPP vectors. After normalizing the vector of RPPP values to a sum of 
1, IVS was calculated as follows: 

                                                                                                 

where pxi and pyi are corresponding values of two RPPP vectors. IVS ranges from 0, when 
two vectors are completely dissimilar, to 1 when in every pair the two vectors are identical (i.e. 
all pxi = pyi). 

DETERMINATION OF THE CRITICAL SAMPLE SIZE

The critical sample size (CSS) was determined with reference to two threshold values of IVS 
by use of sets of random predictions generated as follows: (1) Ten datasets were created for 
each of seven sample sizes (5, 20, 40, 60, 100, 200 and 300) by randomly selecting the required 
number of grid cells from the 302,484 cells covering Norway. (2) MaxEnt models, referred to 
as null models, were obtained for each of these 70 datasets, using default Maxent settings. (3) 
Each null model was compared with the models obtained for full datasets for nine species (D. 
hyalipennis, E. arbustorum, E. pertinax, I. acuminatus, L. maculata, P. apollo, P. napi, R. mordax 
and T. betulae) representing all combinations of three insect orders and three ecological range 
types (broad, intermediate and restricted). In order to decide if the threshold IVS values had 
to be set separately for each group of species, separate one-way ANOVAs with IVS as response 
variables and random dataset size and distribution type as predictors were conducted. IVS 
(F1,628 = 0.039, p = 0.844) was not significantly related to subsample size (Fig. 1) but differed 
significantly among the three distribution types (F2,627 = 567.1, p < 10-10; Fig. 1), being lower 
for the species with restricted ecological range and higher for the species with broad ecological 
range. (4) The 0.95 and 0.99 quantiles in the distribution of 630 pooled IVS values, calculated 
for all combinations of the nine species and seventy datasets, were used as thresholds defining 

IVS(px,py) = 1 – – √ Σ(√pxi – √pyi)2 ,1
√2
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nonrandom and clearly nonrandom models, respectively. The threshold values were IVS = 0.622 
and 0.652, respectively, for nonrandom (0.95 quantile) and clearly nonrandom (0.99 quantile) 
models. The significant relationship between IVS and distributional type makes the CSS esti-
mates based upon the general threshold conservative when applied to species with restricted 
and intermediate distributions.

Two critical sample sizes, defined as the number of presences required to obtain nonran-
dom and clearly nonrandom models (CSSn and CSScn), were determined for all species (including 
the 20 ‘species’ Pieris napij and Species narrowj) as follows: (1) For each subsample size (5, 10, 
...), the 5%-percentile in the distribution of twenty IVS values, obtained by comparing the mod-
els based on subsamples with the reference model, was plotted as a function of the number of 
presence observations (which will be referred to as the ‘sample size’). (2) CSSn and CSScn were 
determined as the number of presences at which the graph that joins subsequent values of 
IVS crosses the threshold values for nonrandom and clearly nonrandom models, respectively. 
(3) In cases where the graph was not monotonously ascending, the graph was smoothed until 
it became monotonous by applying a three-point moving averages approach with weights of 
1, 2 and 1 for three consecutive points (subsample sizes). (4) CSS values were rounded off to 
the nearest integer value. The CSS can be interpreted as the number of presence observations 
needed for a model to produce predictions that are, in 19 out of 20 and 99 out of 100 cases, 
respectively, more similar to predictions from the reference model (based on the full dataset) 
than to the predictions of random models.

Fig. 1. Distribution of IVS in comparisons between seventy null models based on random datasets 
(ten replicates of seven sample sizes) and reference models for nine species.
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STATISTICAL ANALYSIS OF THE CRITICAL SAMPLE SIZE

General patterns of variation in IVS with increasing sample size were modeled by non-linear 
regression analyses (Crawley 2007), using IVS as response variable and subsample size as inde-
pendent variable. We fit the asymptotic exponential function, y = 1 – ae –bx, with two parameters 
and the horizontal asymptote y = 1 (corresponding to the maximum possible value for IVS); a 
is 1 minus the y intercept, and b is the rate constant. 

Generalized linear models (GLMs) with identity link and normal errors (standard linear 
regression analyses and ANOVAs; Crawley, 2007), and the non-parametric Wilcoxon-Mann-
Whitney tests (Crawley 2007) were used to explore relationships between each of the two 
alternative response variables, CSSn and CSScn, and properties of the species (three independent 
variables): the species’ relative ecological range, taxonomic affiliation (order) and the number 
of presence observations in the full dataset. The relative ecological range of a species was esti-
mated using the full dataset for the species as follows: (1) The smallest interval along each of the 
oceanicity and the temperature gradients containing 90% of the species presences was found. 
(2) The widths of both intervals were rescaled as the fraction of the range along the respective 
gradients spanned by all grid cells (in Norway). (3) The product of the two fractions was used 
as an estimate of the relative ecological range of the species. This relative ecological range was 
used to assign species to distribution types (see Table 1). Species with restricted, intermediate 
and broad distribution had relative ecological ranges of 0.0163–0.1150, 0.1228–0.2135 and 
0.2182–0.3161 respectively. 

RESULTS

Comparisons between subsample-based models and reference models for the respective full 
datasets revealed substantial variation in IVS (range = 0.131–0.990, mean = 0.872) among the 
9860 models obtained for all combinations of subsample sizes and species. MaxEnt models 
based on subsamples became more similar to corresponding models based on the full datasets 
with increasing subsample size, for all species pooled (Fig. 2) and for each species analyzed 
separately (Figs 5-28), including P. napij and Species narrowj (Fig. 3 and Fig. 4). 

IVS was generally higher (range = 0.549–0.939, mean = 0.846) for the widespread gen-
eralist species P. napij (j = 1, ... , 10) than for Species narrowj (range = 0.470–0.931; mean = 
0.785) (Wilcoxon test: p < 1∙10-10). A comparison of IVS values for P. napij and Species narrowj 
with those for P. napi and T. betulae (which determine the relative ecological range on which 
Species narrowj is based), respectively, revealed higher values when subsamples were drawn 

Figs 2–4. Relationship between model similarity, expressed by IVS, and subsample size (the 
number of presence observations). Models for each subsample size are compared with the 
respective reference models based on full datasets. (2) All 30 species pooled; (3) Pieris napij 
and Pieris napi; (4) Species narrow and Thecla betulae. The black and red lines show non-linear 
regression curves (two-parameter asymptotic exponential functions are fitted) for the species 
listed in the legend. The green and blue lines indicate the nonrandom and clearly nonrandom 
thresholds, respectively (see text for more details).
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Figs. 5-28.  Relationship between IVS and subsample size (the number of presence observations). 
The black lines show the non-linear regression curves (two-parameter asymptotic exponential 
function). The green lines show the nonrandom threshold and the blue line shows the clearly 
nonrandom threshold. See text for more details.

from the full dataset than when they were drawn from the corresponding independent dataset 
(all four Wilcoxon two-sample paired tests: p < 1.0∙10-10).

The CSSn and CSScn ranged from 4 to 21 (mean = 7) and from 4 to 22 (mean = 8), IVS (range 
= 0.131–0.990, mean = 0.872) varied accordingly, depending on the species (see Table 2 for 
details). CSSn and CSScn were higher for Species narrowj, than for P. napij. (Table 2), as confirmed 
by Wilcoxon tests (p = 0.0002 and 0.0026, respectively). Comparisons between corresponding 
CSSn and CSScn values for the 30 species as one group and the 10 P. napij as another group re-
vealed no significant differences (Wilcoxon paired two-sample tests, see Table 3). Comparisons 
between the 30-species group and Species narrowj showed that CSSn was higher for Species 
narrowj than for the 30 species (p = 0.0001). CSScn was also higher for Species narrowj than for 

Species CSSn  CSScn 

Ips acuminatus 5 6
Leptura maculata 5 7
Meligethes aeneus 6 8
Otiorhynchus nodosus 4 4
Pogonocherus hispidus 8 9
Rhagium mordax 5 7
Rhagonycha limbata 7 10
Selatosomus aeneus 7 8
Strophosoma capitatum 7 8
Tetrops praeusta 7 8
Conops quadrifasciatus 5 6
Dioctria hyalipennis 5 7
Eristalis arbustorum 8 10
Eristalis interrupta 12 13
Eristalis intricaria 7 7
Eristalis pertinax 6 8
Laphria flava 4 5
Neoitamus socius 8 9
Sicus ferrugineus 11 12
Volucella bombylans 5 5
Aporia crataegi 21 22
Glaucopsyche alexis 6 7
Heterothera serraria 8 9
Lasiocampa trifolii 5 6
Parnassius apollo 8 9

Species CSSn  CSScn

Pieris napi 5 8
Thecla betulae 6 8
Xanthoroe annotinata 7 8
Xanthoroe decoloraria 4 5
Zygaena exulans 4 4
Pieris napi 1 5 5
Pieris napi 2 6 7
Pieris napi 3 9 11
Pieris napi 4 8 11
Pieris napi 5 6 8
Pieris napi 6 6 8
Pieris napi 7 8 10
Pieris napi 8 6 7
Pieris napi 9 6 7
Pieris napi 10 6 7
Species narrow 1 10 12
Species narrow 2 12 14
Species narrow 3 9 10
Species narrow 4 13 15
Species narrow 5 10 11
Species narrow 6 9 10
Species narrow 7 10 15
Species narrow 8 10 16
Species narrow 9 9 9
Species narrow 10 9 11

Table 2. CSS needed to exceed the threshold values of IVS for nonrandom and clearly nonran-
dom models.
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the 30 species (p = 0.0001) (Table 3).
CSSn and CSScn neither differed significantly among species with different relative ecological 

ranges (Table 4), nor among species that belonged to different taxonomic orders (Table 5), nor 
among species with different numbers of presence observations in the full dataset (Table 4).

DISCUSSION

COMPARISONS BETWEEN OUR RESULTS AND RESULTS OF OTHER STUDIES

The main result of our study, that distributions are modeled more accurately when sample 
size increases, agrees with results of previous studies (Cumming 2000, Hernandez et al. 2006, 
Kadmon et al. 2003, Pearce and Ferrier 2000, Reese et al. 2005, Stockwell and Peterson 2002, 
Wisz et al. 2008). Furthermore, our results indicate that nonrandom models are obtained for a 

Table 4. Linear regression analyses with critical sample size (response variables CSSn and CSScn) 
and species’ relative ecological range and full dataset size (number of presence observations in 
the full dataset) as predictor variables.

Response variable Explanatory variable Coefficient Standard error p-value

CSSn Species’ relative  4.810 6.900 0.491
 ecological range 
CSScn Species’ relative  5.539 7.006 0.436
 ecological range 
CSSn Full dataset size -0.008 0.009 0.401
CSScn Full dataset size -0.006 0.009 0.536

Table 5. Results from ANOVA with critical sample size (response variables CSSn and CSScn) and 
taxonomic order (explanatory variable). df = model degree of freedom. F and p refer to F-test 
of the hypothesis of no difference between taxonomic orders.

Response variable Explanatory variable F df p

CSSn Taxonomic order 0.411 2 and 27 0.667
CSScn Taxonomic order 0.263 2 and 27 0.771
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majority of species with as few as 10 presence observations, although with some variation in 
the critical sample size (CSS) among species. The relatively small spread of CSS values obtained 
in our study does, however, contrast with the considerable disagreement among the above-
mentioned studies with respect to the minimum sample size required for models to be reliable. 
Extremes in this respect are Pearson et al. (2007), who conclude that as few as 5 presences can 
be sufficient for MaxEnt to produce acceptable predictions of the distribution of geckos endemic 
to Madagascar, and Hanberry et al. (2012) who conclude that Random Forest models based on 
less than 200 presences may fail to be accurate. Sample sizes in between these two extremes are 
recommended by others. Thus, Stockwell and Peterson (2002), using GARP, find that 10 pres-
ence observations are in general sufficient to obtain a mean prediction accuracy of 90% of the 
maximum obtainable accuracy, while 50 presences result in near-maximal accuracy. Hernandez 
et al. (2006), using MaxEnt, find that useful results can be obtained with sample sizes as small 
as 5–10 presence observations. Mateo et al. (2010), on the other hand, find that the predictive 
power is considerably improved when sample size exceeds 18–20 presence observations, and 
Wisz et al. (2008) find that none among several compared methods, the overall best-performing 
method MaxEnt included, consistently provide good predictions with sample sizes smaller than 
30 presence. Accordingly, Wisz et al. (2008) advise against the use of predictions from models 
obtained with fewer than 30 presence observations for practical conservation purposes.

Many factors have been claimed to influence the sample size required to obtain accurate 
distribution models, including the spatial resolution and extent of the study area (Loe et al. 
2012), the modeling method (Dupin et al. 2011), and characteristics of the modelled species 
(Hernandez et al. 2006). Moreover, the criteria for considering a model as ‘acceptable’, ‘use-
ful’ or ‘reliable’, which are frequently used as qualifiers (cf. Araújo & Guisan et al. 2006), will 
inevitably affect assessments of a minimum required sample size. Most published DM studies 
apply the AUC [the Area Under the receiver operating Curve (Fielding and Bell 1997, Pearce and 
Ferrier 2000)] as a model performance criterion. However, used with training data only, AUC 
is an internal model performance assessment criterion that measures the ability of the model 
to distinguish between presence and background observations in the training dataset and not 
the model’s predictive capability in general, e.g. its ability to predict presence in other areas 
(Halvorsen 2012). The purpose of the current paper is to investigate how the modeled distri-
bution is affected by changes in the number of presence observations used to make the model. 
We therefore restrict ourselves to discussing variation in similarity between models based on 
subsamples and reference models obtained from full datasets, using the similarity index, IVS.

SELECTING THRESHOLD VALUES FOR DETERMINING CRITICAL SAMPLE SIZE

To avoid the common practice of arbitrarily setting the thresholds for separating useful models 
from useless models, we determine thresholds based on comparisons with randomly gener-
ated models (i.e., models based upon sets of randomly selected grid cells). The rationale for 
this approach is that a model performing better than random (i.e., the model is more similar to 
the reference model than a randomly generated model) provides useful information about the 
modeled species. Significance levels of 0.05 and 0.01 are commonly used in tests of statistical 
hypotheses. For this reason, we selected two threshold values, based on 0.95 and 0.99 quantiles 
in the distribution of similarity indices calculated between a random model and a reference 
model, for assessment of the CSS.

We determine thresholds for IVS by comparisons between null models (based on randomly 
generated datasets of different sizes) and reference models for nine species that represent three 
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classes of ecological ranges; restricted, intermediate and broad. We find that species distribu-
tion patterns affect the threshold IVS values (see Results), being significantly lower for species 
with restricted distributions than for species with broader distributions. This result is likely to 
be due to the models based upon randomly chosen presences from all over the modeled area 
being more similar to the models based upon presence records for broadly distributed species 
than to models for species with restricted distributions. However, a threshold that applies to a 
broadly distributed species is definitely applicable also to a species with restricted distribution. 
Accordingly, we used pooled IVS values for all the nine species to determine threshold values 
for non-randomness that were to be used for comparisons between subsamples and reference 
models for all species and for CSS estimation. This represents a non-arbitrary and conservative 
criterion for estimating CSS that does not require prior knowledge of a species’ distribution and 
that may thus also apply to rare or poorly known species, for which few presence observations 
are available. 

USE OF SUBSAMPLING OF FULL DATASETS FOR DETERMINATION OF CRITICAL SAMPLE 
SIZE

Random subsamples of presence records for a species are not independent from the full dataset 
from which the subsamples are drawn. Accordingly, distribution models obtained from subsam-
ples may be similar to reference models obtained for the full dataset for two reasons: (1) because 
they represent the same species, i.e., they indicate similar responses to the main underlying 
environmental complex-gradients; and (2) because they make use of the same presence records. 
If explanation (2) prevails, CSS estimates obtained by the subsampling method used in this paper 
are likely to underestimate the real CSS values, and conclusions about the reliability of distri-
bution models based upon small datasets may be overly optimistic. Theoretically, the relative 
roles of the two explanations are expected to depend on subset size, as illustrated in Fig. 29. in 
which two model similarity curves (S), corresponding to the two sampling approaches, with and 
without subsampling, are compared. At large sample size N, the models based on subsamples 
from the full dataset become more and more similar to the reference model as N approaches Nfull 
until the subsample and the full dataset become identical when N = Nfull (Fig. 29). Explanation (2) 
then prevails. Conversely, smaller subsets are expected to become increasingly independent of 
the full dataset when N is low compared to Nfull. Explanation (1) then prevails. However, without 
independent datasets, it is difficult to evaluate the relative contributions of explanations (1) and 
(2) to the similarity between the reference model and the model based on a subsample [Fig. 29 
illustrates a situation in which explanation (1) completely prevails at low N].

Our study rests upon the assumption that, at small N, the two S curves in Fig. 29 will be 
very close to each other or even coincide. This assumption is tested using two independent 
datasets. Our results for Pieris napi (Fig. 3) show that already at N = 100 ≈ 0.5∙Nfull, the two S 
curves are very close to merging, indicating that when N << Nfull, eventual non-independence 
of subsamples from the full dataset does not affect our results. The CSS estimates obtained in 
this study are in the range of 5–20 presences, well within the range of subsample sizes in which 
the S curves of subsamples and independent samples coincide or are close to coinciding. We 
therefore conclude that our results are not influenced by non-independence of subsamples 
and the full dataset.

Our results based on the pair Thecla betulae and Species narrowj differ from those for 
Pieris napi in that the subsample S curve (for T. betulae) and the independent S curve (for Species 
narrowj) do not converge, even at N = 5. However, the two curves correspond to two ‘species’ 
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Figs 29-30. Similarity between the models based on the full dataset (i.e., the reference model) 
and smaller samples as a function of sample size. (6) Similarity between the models based on 
subsamples and the full dataset (Subsampling S curve), compared to similarity between the 
models based on independent samples and the full dataset (Independent S curve). Nfull is the 
size of the full dataset. Smax is the maximum possible similarity, e.g. when the full dataset is com-
pared with itself. At N = Nfull – 1, a subsample includes all the points of the full dataset except 
one. The resulting model is thus very similar to the reference model (SNfull - 1 ≈ Smax). When N << 
Nfull, the two S curves are expected to merge. (7) Similarity between the reference models and 
the models based on smaller samples, for two full datasets of different size (Nfull(1) > Nfull(2)). Solid 
line indicates the larger dataset, dashed line indicates the smaller dataset. The gap between 
the Subsampling S curve and the Independent S curve is larger (Gap 2 > Gap 1) when the full 
dataset is smaller (Nfull(1)). As a result, the threshold of the similarity measure Sthr may intercept 
the Subsampling and independent S curves at different sample size N resulting in different CSS 
estimates, NCSS(Ind) > NCSS(Subs).

29

30
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that are ecologically different because Species narrowj was simulated by sampling within the 
tolerance limits of T. betulae along the two environmental complex-gradients used in this study. 
A bivariate uniform (‘rectangular’) distribution in underlying ecological space is a rather crude 
representation of a species’ overall ecological response to two main gradients compared with the 
expected bivariate unimodal response (cf. Halvorsen 2012). Thus, the set of presence records 
for Species narrowj is likely to include unrealistically many presences near the tolerance limits 
of T. betulae, whereby Species narrowj obtains a broader optimum range and hence stands out 
as having broader tolerance to the two gradients than T. betulae. This is likely to explain the 
lack of convergence of the S curves for the two ‘species’.

The size of full datasets for the 30 insect species studied in this paper varies from 41 to 
346 presence observations. In theory, the smallest among the full datasets could be so small that 
even CSS estimates based upon the smallest subsamples were affected by non-independence. 
Indeed, the gap between the subsampling S curve and the independent S curve at a given N may 
be expected to be wider when the full dataset is smaller (Fig. 30). Thus, when the full dataset is 
small, the subsampling S curve may cross the S-threshold (Sthr) line at a smaller sample size N 
than the independent S curve (Ncss(Subs) < Ncss(Ind)). If this is the case, a negative correlation between 
CSS and the size of the full dataset is expected. The lack of a significant relationship between 
CSS and the size of the full dataset in our study (Table 4) indicates that even the smallest of the 
full datasets were sufficiently large to provide unbiased estimates of CSS.

RELATIONSHIPS BETWEEN CRITICAL SAMPLE SIZE AND SPECIES PROPERTIES 

We find no significant relationships between the taxonomic affiliation or relative ecological 
range on the one hand and the CSS estimates for the thirty species on the other. Differences 
between insect orders could have been expected, because within the same order species may 
share life-history and life-cycle properties, dispersal capabilities and other biologically impor-
tant characteristics. The fact that in our results CSS is affected neither by taxonomic affiliation 
nor ecological range suggests that our generally low CSS estimate is a robust result, of general 
validity. Some studies have, however, reported differences in species characteristics, such as 
distribution patterns, to be of importance for the predictability of species distributions by DM 
methods (Guisan et al. 2007, Hernandez et al. 2006, Mateo et al. 2010, Stokland et al. 2011). These 
studies conclude that specialist species, i.e., species with narrow distributions in environmental 
space and restricted distributions in geographical space, are easier targets for spatial prediction 
modeling (SPM; Halvorsen 2012) than generalist species, i.e., species with a broader distribution 
in the two conceptual spaces, and, accordingly, that fewer presence observations are needed to 
obtain acceptable distribution models for the former. The argument underpinning this view is 
that generalists have broader ecological requirements and that more presences are needed to 
represent the entire range of suitable environmental conditions for such species. Our results 
do, however, suggest that distributions also of broadly distributed species may be reasonably 
accurately predicted with few presence observations. Contrary to the reasoning above, however, 
our analyses of the simulated specialist species, Species narrowj, and the widespread species, 
P. napij, result in a higher CSS for the specialist species. 
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DOES THE GENERAL CRITICAL SAMPLE SIZE EXIST?

Two important issues have to be taken into account when the CSS results for individual  species 
are interpreted: firstly, that the distribution of observed presences for the species along the 
underlying gradient in question, expressed by the observed frequency-of-presence (FoP) curve, 
has to be adequately captured by the available presence observations; and, secondly, that the 
derived variables that represent the gradient, and/or the modelling method, must be able to 
fit a function that adequately describes the main features of the FoP curves (Støa et al. 2015). 
Species responses are typically unimodal, but hinge-shaped, linear, or other types of truncated 
curve shapes may also occur (Halvorsen 2012, Whittaker 1956). The reasons for the different 
conclusions in the literature regarding required minimum sample size is likely to be a combina-
tion of the two issues raised above and the fact that different criteria for minimum acceptable 
sample size are used. Our results suggest that 15 presence observations are often sufficient to 
capture the general response of the species to important environmental variables. 

CONCLUDING REMARKS

The present study is part of a project with a broader goal of assessing if distribution mod-
eling is a useful tool for studying rare and endangered insect species. Because that available 
information about the distribution of rare species is often limited to a few recorded presence 
observations, it is important to know the minimum number of presence records necessary for 
generating potentially useful models. As expected, we find that the probability that distribution 
models trained by use of real data outperform random models increase with the number of 
presence observations in the dataset. However, our results also show that nonrandom models 
are obtained in most cases when very few presences are available. Using IVS, we find that only 
3 out of the 30 modeled species require more than 10 presence observations for a nonrandom 
model to be obtained, and that more than 15 presence observations are required for only 1 
out of 30 species. We therefore propose, as a rule of the thumb, that MaxEnt modeling may be 
applied to species when at least 10–15 presence observations are available. Furthermore, we 
consider this to be a conservative recommendation because nonrandom models are obtained 
for many species with as few as 5 presences. All nonrandom distribution models may be useful 
by providing insights about species’ distributions that cannot easily be obtained from simple 
inspection of the primary distribution data. 

We conclude that sample size is an important factor that may influence the reliability of 
distribution models. Our study indicates that valuable information about a species’ distribution 
can be obtained even when few presence records are available for distribution modelling.
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