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Distribution modelling - research with the purpose of modelling the distribution of observ-
able objects of a specific type — has become established as an independent branch of ecological
science, with strong proliferation of approaches and methods in recent years. Since it was first
made available to distribution modellers in 2004, the maximum entropy modelling method
(MaxEnt) has established itself as a state-of-the-art method for distribution modelling. Default
options and settings in the user-friendly Maxent software has become established as a standard
practice for distribution modelling by MaxEnt.

A mini-review of 87 recent publications in which MaxEnt was used with empirical data to
model distributions showed that the ‘standard MaxEnt practice’ is followed by a large majority of
users and questioned by few. However, the review also provides indications that MaxEnt models
obtained by the standard practice are sometimes overfitted to the data used to parameterise the
model; examples of cases in which simpler MaxEnt models with predictive performance do exist.
Results of the review motivate strongly for a better understanding of the ecological implications
of the maximum entropy principle, as a basis for choosing MaxEnt options and settings.

This paper provides a thorough explanation of MaxEnt for ecologists, ending with a set of
suggestions for improvements to the current practice of distribution modelling by MaxEnt. The
explanation for MaxEnt given in the paper differs from previous explanations by being based
on the maximum likelihood principle and by being based upon a gradient analytic perspective
on distribution modelling. Four new findings are particularly emphasised: (1) that a strict
maximum likelihood explanation of MaxEnt is possible, which places MaxEnt among regression
methods in the widest sense; (2) that the true degrees of freedom for the residuals of a Max-
Ent null model is N - n, the difference between the number of background and the number of
presence observations used in the modelling; (3) that likelihood-ratio and F-ratio tests can be
used to compare nested MaxEnt models; and (4) that subset selection methods are likely to be
preferential to shrinkage methods for model selection in MaxEnt. Methods for internal model
performance assessment, model comparison, and interpretation of MaxEnt model predictions
(MaxEnt output), are described and discussed. Two simulated data sets are used to explore and
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illustrate important issues relating to MaxEnt methodology.

Arguments for development of a generally applicable ‘consensus MaxEnt practice’ for
spatial prediction modelling are given, and elements of such a practice discussed. Five main
additions or amendments to the ‘standard MaxEnt practice’ are suggested: (1) flexible, interac-
tive tools to assist deriving of variables from raw explanatory variables; (2) interactive tools
to allow the user freely to combine model selection methods, methods and approaches for
internal model performance assessment, and model improvement criteria, into a data-driven
modelling procedure, (3) integration of independent presence/absence data into the model-
ling process, for external model performance assessment, for model calibration, and for model
evaluation; (4) new output formats, notably a probability-ratio output format which directly
expresses the ‘relative suitability of one place vs. another’ for the modelled target; and (5) de-
velopment of options for discriminative use of MaxEnt, i.e., use of with presence/absence data.
The most important research needs are considered to be: (1) comparative studies of strategies
for construction of parsimonious sets of derived variables for use in MaxEnt modelling; and
(2) comparative tests on independent presence/absence data of the predictive performance
of MaxEnt models obtained with different model selection strategies, different approaches for
internal model performance assessment, and different model improvement criteria.

Keywords: Distribution modelling; F-ratio test; Gradient analysis; MaxEnt; Maximum likehood;
Model calibration; Model evaluation; Model selection; Regularisation

Abbreviations: AIC = Akaike’s information criterion; AUC = area under the (ROC) curve; BIC
= Bayesian information criterion; BRT = boosted regression trees; C = set of binary variables
derived from one categorical explanatory variable; D = deviation type of derived variables; DM
= distribution modelling; DV = derived (explanatory) variable; DVMT = derived variable main
type; DVT = derived variable type; ERM = ecological response modelling; EV = explanatory vari-
able; FP = frequency of presence; FPR = false positive rate; FTVA = fraction of total variation
accounted for; GAM = generalised additive models; GLM = generalised linear models; H = hinge
type of derived variables; HF = forward hinge subtype of derived variables; HOF = Huisman-
Olff-Fresco (models); HR = reverse hinge subtype of derived variables; ISDV = individually
significant derived variable; K-S test = Kolmogorov-Smirnov test; L = linear derived variable;
LM = linear regression model; M = monotonous type of derived variables; MARS = multivariate
adaptive regression splines; MaxEnt = maximum entropy (model); Maxent = maximum entropy
modelling software (Phillips et al. 2006, Phillips & Dudik 2008, Phillips 2011); O = covariance
type of derived variables; OC = optimisation criterion; OP = observed presence vector; OPA =
observed presence or absence vector; P = product derived variable; P/A = presence/absence;
PCA = principal component analysis; PE = prediction error; PL = penalised likelihood; PO =
presence-only; PPM = projective distribution modelling; PPP = predicted probability of pres-
ence; Q = quadratic derived variable; rDV = ‘raw’ derived variable; ROC = receiver operating
characteristic (curve); RPPP = relative predicted probability of presence; SE = standard error
(of the mean); SPM = spatial prediction modelling; T = threshold derived variable; TPR = true
positive rate; V = variance derived variable; VA = variation accounted for; VC = variable contri-
bution (to model); X = complex spline transformation type of derived variable.
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INTRODUCTION

SETTING THE SCENE: OVERVIEW OF THE DISTRIBUTION MODELLING PROCESS

Distribution modelling (DM) comprises ‘research with the purpose of modelling the distribution
of observable objects of a specific type’ [Halvorsen (2012), modified from Elith etal. (2006)]. DM
has proliferated strongly in recent years, with respect to the diversity of available approaches
[see Franklin (2009) and Peterson etal. (2011)] and the rate by which new papers are published
(Lobo etal. 2010). Distribution modelling has deep roots in ecology and biogeography, as shown
by the central position of the gradient analytic perspective in the theoretical foundation of DM
(Austin 2007, Halvorsen 2012).

The distribution modelling process can be described as a 12-step process (Halvorsen
2012), as illustrated in Fig. 1 [see Halvorsen (2012) for definitions of terms and for further
explanation of each step]:

1. Problem formulation and specification
2. Collection of raw data for the modelled target. The modelled target is often a species,
but DM methods equally well apply to other natural phenomena, as exemplified by



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,... 5

Step 1 Problem formulation and specification

A 4 A\ 4
Step 2 Collection of raw data Step 3 Coll. of expl. data:
for the modelled target (1) updated overview
(i1) collection of new data

v y

Step 4 Conceptualisation of the study area

A 4
Step 6 Preparation of Step 5 Preparation of
response variable(s) independent variables
(1) Rasterisation
(i1) Transformation

\/

Step 7 Statistical model formulation
(1) Choice of modelling method
(1) Model specification

v
Step 8 Modelling of the overall ecological response
(1) Model selection
(1) Internal model performance assessment
(11) Model parameterisation
(1v) Extraction of model predictions

Step 9 Collection of presence/absence data for
model calibration and evaluation

* =" - Rl ~ 4
Step 10 Model calibration [€ =™  Step 11 Model evaluation

' =l

Step 12 Applications
(1) Map representation of predictions in geographical space
(11) Transfer of modelling results (spatial or temporal extrapolation)

Fig. 1. Overview of the distribution modelling process, emphasising interdependencies between
the 12 analytic steps. Steps are grouped into three composite steps, ‘ecological model’ (red
background), ‘data model’ (orange background), and ‘statistical model’ (yellow background), in
accordance with Austin (2002). Steps that are mandatory for a study to be distribution model-
ling, are indicated by thick borders. Steps involved in re-iteration of the model are indicated by
gray lines. Broken lines indicate optional pathways. From Halvorsen (2012: Fig. 8).
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species richness (Wohlgemuth et al. 2008, Aranda & Lobo 2011, Dubuis etal. 2011),
nature types (Dobrowski et al. 2008, Danz et al. 2011), landforms (Hjort & Marmion
2009), and ecological processes such as wildfire (Parisien & Moritz 2009) and aban-
donment of agricultural practices (Gellrich & Zimmermann 2007). The term ‘modelled
target’ is used for the studied entity throughout this paper.

3. Collection of explanatory data
4. Conceptualisation of the study area (as a rasterised geographical space)
5. Preparation of derived variables from ‘raw’ explanatory variables, by (i) rasterisation,

followed by (ii) transformation into derived variables (also termed ‘derived predictor
variables’) of which one or more may be derived from each explanatory variable

6. Preparation of response variable(s) from raw data for the modelled target

7. Statistical model formulation, by (i) choice of modelling method and (ii) model
specification

8. Modelling of the overall ecological response of the modelled target, i.e., (i) model
selection; (ii) internal model performance assessment; (iii) model parameterisation;
and (iv) extraction of model predictions

9. Collection of presence/absence data for model calibration and evaluation.

10. Model calibration, a term used here for the process by which the numerical accuracy
of model predictions is assessed: ‘the level of agreement between predictions gener-
ated by amodel and actual observations’ (Pearce & Ferrier 2000b). ‘Re-calibration’ of
models with PO data, as discussed by Phillips & Elith (2010), differs fundamentally
from model calibration by use of P/A data. Typically, calibration implies that relative
predicted probabilities of presence (RPPP) values obtained by use of presence-only
(PO) data for the response in DM are brought onto a probability scale. Calibration is
performed a posteriori, i.e., after modelling of the overall ecological response in Step
8, by calibration modelling.

11. Model evaluation, i.e., assessment of model performance by use of data not directly
used to parameterise the model (Guisan & Zimmermann 2000).

12. Applications.

The 12 steps can be grouped into three composite steps in accordance with Austin (2002: 101)
as follows (see Fig. 1): Step 1 belongs to ‘ecological model’, i.e., ‘theory to be used or tested’;
Steps 2-6, and 9, belong to ‘data model’ i.e., ‘collection and measurement of ... data’; and Steps
7,8,10,and 11 belong to ‘statistical model’, i.e., ‘the statistical theory and methods used’. Most
of Steps 2-12 benefit strongly from being informed by basic ecological theory.

Steps 1-8 are essential for a study to belong to distribution modelling (DM) as defined
above, i.e., as a study in which the primary response variable describes a distribution (Steps 2, 4
and 6), with explanatory variables that represent environmental gradients and are recorded or
estimated for all grid cells within the extent of the study (Steps 3-5), and in which the modelled
property is the overall ecological response (performance in environmental variables space;
Steps 7-8). Step 8, modelling of the overall ecological response, places DM unambiguously among
gradient analysis techniques as defined by ter Braak & Prentice (1988).

The outcome of the distribution modelling process most strongly hinges on the statisti-
cal model chosen by the modeller (Step 7) and his or her choice of options and settings for the
modelling process (Step 8), although also other steps, such as data collection (Steps 2-3) and
data preparation (Steps 5-6) are important (Halvorsen 2012). Modelling of modelled target’s
overall ecological response (Steps 7-8) is challenging for several reasons of which the most
important is likely to be the variability of response-curve shapes - between modelled targets,
for each modelled target between different environmental complex-gradients, and for each
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modelled target and complex-gradient between geographical areas and over time [see Halvorsen
(2012) and references quoted therein]. Furthermore, the performance of modelling methods,
options and settings interact with idiosyncratic properties of the modelled target in the study
area to determine the outcome of DM (Elith et al. 2006, Guisan et al. 2007, Tognelli et al. 2009,
Bedia etal. 2011).

The modelling purpose dictates what is regarded as a good distribution model and, hence,
determines which model performance criteria are appropriate (Step 8,ii and Step 11). Halvorsen
(2012) distinguishes between three main purposes of distribution modelling:

1. Ecological response modelling (ERM), distribution modelling with the main purpose
of modelling the relationship between the performance of a modelled target and a
set of explanatory variables, to find and understand general patterns in the modelled
target’s overall ecological response to the supplied explanatory variables. ERM thus
addresses relationships in environmental variables (or ecological) conceptual spaces
(Halvorsen 2012). ERM purposes can be divided into two sub-categories:

a. Specific-purpose ecological response modelling, i.e., to describe and under-
stand distributional variation at relevant scales, with regard to a specific set
of explanatory variables.

b. General-purpose ecological response modelling, i.e., to describe and understand
distributional variation at relevant scales, without regard to a specific set of
explanatory variables.

2. Spatial prediction modelling (SPM), distribution modelling with the main purpose of
optimising the fitbetween model predictions and the true distribution of the modelled
target’s performance in the study area in the time interval data were collected

3. Projective distribution modelling (PPM), distribution modelling with the main purpose
to transfer model predictions to a spatiotemporal setting different from the one at
which the data used for modelling were collected. PPM purposes comprise variation
from pure spatial-transfer distribution modelling, by which model predictions are to be
projected into an area different from the area in which data were collected (the study
area) but with environmental variation within the range spanned by the study area,
and pure temporal-transfer distribution modelling, by which model predictions are to
be projected into the study area, respectively, to ‘new-context distribution modelling’,
by which projections are to be made into an environmental (e.g., climatic) scenario
different from the range of environmental variation of the study area.

While SPM models are benchmarked by their capability for accurate prediction of independent
presence/absence (P/A) evaluation data from the study area (Austin 2007, Lahoz-Monfort etal.
2007, Raes & ter Steege 2007, Veloz 2009, Edrén et al. 2010, Edvardsen et al. 2011, Halvorsen
2012), ERM cannot be evaluated by performance on data and have to be judged by ecological
realism (Austin 2007), i.e., by their ability to summarise generalisable relationships between
the modelled target and the environment, transferable in space and time (Halvorsen 2012).
Independent P/A data can be used to evaluate spatial-transfer PPM models while empirical
data for evaluation of temporal-transfer PPM models typically cannot be obtained. Evaluabil-
ity by predictive performance on empirical data is an important difference between SPM and
ERM (Aratgjo & Guisan 2006, Jiménez-Valverde et al. 2008, Braunisch & Suchant 2010, Warren
& Seifert 2011, Halvorsen 2012).

Modelling of the overall ecological response (Step 7-8 in the six-step DM process) is a
special case of statistical modelling. Statistical modelling can be defined as the process of finding
the most parsimonious model (Hastie et al. 2009), i.e., the model which best combines simplic-
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ity in terms of number of model parameters with high predictive power (SPM) and/or expres-
sion of generally valid relationships between the performance of the modelled target and the
environment (ERM). During the search for the most parsimonious model, the modeller makes
many important decisions. Examples of such decisions are: which to choose among the large
number of statistical modelling methods available for DM; which to choose among the numer-
ous options and settings for the chosen method [see Franklin (2009) for an overview]; which
methods to use for model comparison and evaluation; how to choose explanatory variables; and
how to transform these in the most appropriate way [ e.g., see Steyerberg etal. (2000), Burnham
& Anderson (2002), Reineking & Schroder (2006), Zuur et al. (2007), Hastie et al. (2009), and
Halvorsen (2012) for overview]. While there is growing consensus about which methods gen-
erally give the best SPM models ( e.g., Elith et al. 2006, Mateo et al. 2010, Rebelo & Jones 2010,
Rupprechtetal. 2011), choosing strategy for transformation of explanatory variables (Step 5,ii)
and model selection (Step 8,i) have remained controversial issues for which clear guidelines
still do not exist (Guisan & Zimmermann 2000, Pearce & Ferrier 2000a, Aratijo & Guisan 2006,
Anderson & Gonzalez 2011, Merckx et al. 2011). The importance of model selection is empha-
sised by Warren & Seifert (2011) who state that ‘... models that are inappropriately complex
or inappropriately simple show reduced ability to infer habitat quality, reduced ability to infer
the relative importance of variables in constraining the species performance-environment
distributions, and reduced transferability to other time periods.’

MAXENT MODELLING OF SPECIES DISTRIBUTIONS

Distribution modelling branched off from mainstream gradient analysis in the 1990s (Guisan
& Zimmermann 2000), developed into a more or less independent branch of ecological science
in the 2000s (Franklin 2009, Halvorsen 2012), and now makes up the core of the new research
field of conservation biogeography (Whittaker et al. 2005, Franklin 2010). Halvorsen (2012)
argues that this new branch of ecological science still lacks ‘the firm foothold offered by a strong
theoretical foundation: in-depth understanding of the major processes and mechanisms thatare
responsible for observed patterns, built upon a conceptual basis that consists of precisely defined
terms’. In support for this claim he cites the disagreement among distribution modellers on the
relevance of ecological niche theory for DM, the lack of consensus on performance of several
modelling methods and their options and on model selection and evaluation procedures, and the
tendency for development of ‘schools’ with different research paradigms, a characteristic typical
ofresearch areas tenuously rooted in theory (Austin 2007). However, since 2004 a strong trend
in DM has been the steadily increasing use of maximum entropy (MaxEnt) modelling (Elith et
al. 2011) for Step 7,i in the 12-step DM process. MaxEnt’s growing popularity is a result of easy
access to user-friendly software and consistently high performance of the MaxEnt method in
comparative tests of SPM methods.

MaxEnt was first proposed as a method for distribution modelling in 2004 (Phillips et
al. 2004). The method has been freely available to users from day one via the Maxent software
[note that ‘MaxEnt’ is used throughout this paper to denote the statistical method while ‘Maxent’
is used for the software] which has frequently been updated with new options (Phillips et al.
2006, Phillips & Dudik 2008, Elith et al. 2010, Phillips 2011). Recently, initiatives have been
taken to integrate Maxent software with the R programming environment (Warren et al. 2010,
Hijmans & Elith 2011, Phillips 2011).

Shortly after MaxEnt was first introduced to distribution modellers, the method was
ranked top three in the most comprehensive test of DM methods published to date (Elith et al.
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2006). The other top-ranked methods were boosted regression trees (BRT; De’ath 2007, Elith
et al. 2008) and multivariate adaptive regression splines (MARS; Friedman 1991, Leathwick
et al. 2006). Elith et al. (2006) used presence/absence evaluation data to test the predictive
performance of 15 methods or variants of methods for 226 species of plants and animals. Later
comparative studies of DM methods have confirmed the results of Elith et al. (2006), ranking
MaxEnt as the best method or among the best (Hernandez et al. 2006, Guisan et al. 2007, Sérgio
etal. 2007, Wang et al. 2007, Wisz et al. 2008, Roura-Pascual et al. 2009, Tognelli et al. 2009,
Vaclavik & Meentemeyer 2009, Veloz 2009, Williams et al. 2009, Mateo et al. 2010, Rebelo &
Jones 2010, Rupprecht et al. 2011). Inferior performance of MaxEnt has only been found in a
few, exceptional cases [Peterson et al. (2007), Rota et al. (2011); but see Phillips (2008)].

Maximum entropy modelling is not one single method but rather a family of methods
which originated in statistical mechanics more than 50 years ago (Jaynes 1957a, 1957b). Since
then MaxEnt has undergone considerable development ( e.g., Jaynes 2003), including adaptation
to different research questions in several branches of science (see Phillips et al. 2004, Dudik &
Phillips 2007). In ecology, MaxEnt is used among others for testing community assembly rules
(e.g, Shipley et al. 2006, Roxburgh & Mokany 2010, Shipley 2010).

MaxEnt was introduced to distribution modellers as a machine-learning approach, i.e.,
as a method based on ‘the idea ... to estimate a target probability distribution by finding the
probability distribution of maximum entropy (i.e., that is most spread out, or closest to uni-
form), subject to a set of constraints that represent our incomplete information about the target
distribution’ (Phillips et al. 2004, 2006, Dudik et al. 2007). Phillips & Dudik (2008) characterise
MaxEnt as ‘robust Bayes estimation ... explained from a decision theoretic perspective’, and
Dudik & Phillips (2009) affiliate MaxEnt with ‘robust Bayesian decision theory’.

In most publications intended for distribution modellers MaxEnt is characterised as a
method for analysis of presence-only (PO) or presence/background data (Phillips et al. 2006,
Phillips & Dudik 2008, Elith et al. 2011). MaxEnt modelling of presence /background data is the
generative approach to MaxEnt modelling, in machine learning language also known as one-
class estimation (Dudik & Phillips 2009). With presence-only data MaxEnt provides estimates
of the probability that one specific presence cell, selected at random from all presence cells, is
grid cell i (Phillips et al. 2006). The maximum entropy principle does, however, also apply to
presence/absence (P/A) data. This is the discriminative approach to MaxEnt modelling or two-
class estimation (Berger et al. 1996). With presence/absence data MaxEnt provides estimates
of a quantity that is monotonously related to the probability of presence of the modelled target
in grid cell i, conditioned on the environmental conditions (Dudik & Phillips 2009).

CURRENT PRACTICE: A MINI-REVIEW OF DISTRIBUTION MODELLING STUDIES USING MAX-
ENT

MaxEnt is a flexible modelling method with many options and settings that may be specified,
or ‘tuned’, by the user (see Phillips 2011). Many of these options and settings can be tuned in-
dependently of each other, and innumerable MaxEnt models can therefore be constructed for
the same data set. Detailed technical explanations of each of these options and settings from a
machine-learning perspective are available, as exemplified by the description of the algorithm
used in the Maxent software and the proof for its convergence to a unique solution provided
by Dudik et al. (2007). However, machine-learning theory and concepts are outside the experi-
ence of most ecologists, and the theoretical framework of machine learning cannot easily be
transferred to the ecological realities dealt with in distribution modelling - modelled target’s
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responses to the environment and distributions in geographical and environmental variables
spaces (Elith et al. 2011). Accordingly, choosing the optimal combination of MaxEnt options
and settings when the distribution of a specific modelled target is to be modelled for a specific
purpose, often by use of a data set given a priori, and understanding how these choices interact
with the ecological interpretability of modelling results, have remained major and to a large
extent unresolved challenges for practical distribution modellers ( e.g.,, VanDerWal et al. 20093,
Anderson & Gonzalez 2011, Warren & Seifert 2011).

As apreamble to this study of distribution modelling by MaxEnt, | performed a mini-review
of 87 distribution modelling studies published in international journals 2006-11, in which Max-
ent software was applied to empirical data (Table 1). Nearly one half of the reviewed studies
(41 %) neither included explanations of how the derived variables used in parameterisation
of the MaxEnt model were derived from the raw explanatory variables (Step 5,ii of the 12-step
DM process) nor reported settings for the model selection procedure (Step 8,i), and 33 % of the
studies (only partly overlapping with the former group) failed to contain an explicit statement
of which version of Maxent software was used. Most likely all of these studies used Maxent
default values for all options and settings, including the so-called ¢ -regularisation method by
which model selection (Step 8,i), internal model performance assessment (Step 8,ii) and model
parameterisation (Step 8,iii) are combined into one complex procedure.

Before models are built, Maxent software transforms all continuous explanatory variables
[‘environmental layers’ in the terminology used by Phillips (2011)] into derived variables of (up
to) four different types [termed ‘features’ by Phillips & Dudik (2008)]: in addition to the raw
explanatory variable (the ‘linear’ variable type) the ‘quadratic’, the ‘hinge’ and the ‘threshold’
types. The two last-mentioned types are exceptional in that a very high number of variables
of each type can be derived from each explanatory variable (Dudik et al. 2007). Maxent model
complexity is regulated in the first place by applying (default) threshold minimum values for
the number of presence observations required for derived variables of the ‘quadratic’, ‘hinge’
and ‘threshold’ types to enter the model. Threshold minimum numbers are set separately for
each type. Default values for these thresholds were overruled (mostly by replacement with
more restrictive settings) only in 16 % of the studies considered for the mini-review, and the
default value for constructing interaction variables (‘product features’) was overruled in 13 %
of the studies only (the overlap with the former group was high).

A pre-selection of explanatory variables before default options for ‘feature’ construction
and regularisation were applied, was found in 25% of the studies. Methods used for variable
pre-selection include inspection of correlation patterns and removal of variables that are strongly
correlated with other variables (Gibson et al. 2007, Young et al. 2009, Gaikwad et al. 2011, Ko
et al. 2011, Marino et al. 2011, Parisien & Moritz 2011, Rupprecht et al. 2011), and variable
reduction by principal component analysis (PCA) ordination (Tognelli et al. 2009; Verbruggen
et al. 2009, Williams et al. 2011) or generalised linear modelling (GLM; Wollan et al. 2008,
Bedia et al. 2011). In a few, exceptional cases derived variables were manually selected also
for the final model by forward, backward, or forward-backward selection, using Maxent vari-
able diagnostics to compare competing models (Parolo et al. 2008, Lahoz-Monfort et al. 2007,
Bradley et al. 2010, Merckx et al. 2011).

The default MaxEnt procedure for preventing models to be overfitted to the training data,
£ -regularisation (the lasso; Tibshirani 1996), is one among several methods for model shrinkage,
which in turn is one among several strategies for model selection (a full explanation of model
selection in MaxEnt is given in the ‘Theory’ chapter). The modus operandi of £ -regularisation is
to reduce (shrink) the absolute values of model parameters (Phillips & Dudik 2008, Hastie et al.
2009) in a process that is very flexible and requires tuning of the regularisation parameter(s)
which determine the degree to which parameters are penalised for being large (Reikeking
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& Schroder 2006). The default Maxent procedure is to determine regularisation parameters
separately for each derived variable from the number of presence observations in the data set,
the type of variable (‘feature type’), and its variance (Phillips & Dudik 2008). Strong faith in £ -
regularisation with default tuning as a guarantor against overfitting is expressed in many stud-
ies (e.g., Hernandez et al. 2006, Parolo et al. 2008, Wisz et al. 2008, Wollan et al. 2008, Merckx
etal. 2011, Rupprecht et al. 2011). Accordingly, default regularisation settings are reported to
be overruled by the user only in five of the studies (6 %) included in the mini-review, of which
stronger than default regularisation was reported in three (Lamb et al. 2008, Elith et al. 2010,
Naimi et al. 2011). None of the authors of studies included in the mini-review reported not to
have used ¢ -regularisation.

The mini-review clearly shows that use of default options and settings in Maxent software
constitutes a well-established standard practice for distribution modelling by MaxEnt. [ will use
the term ‘standard Maxent practice’ for distribution modelling by MaxEnt which makes use of
following options (see Elith et al. 2011, Phillips 2011):

1. Automatic transformation of raw explanatory variables to derived variables of specific
types (‘feature types’ in Maxent terms), governed by number of presence observa-
tions

2. Interactions automatically included, by product variables (‘product features’), when
the number of presence observations exceeds a default threshold

3. Model selection by ¢ -regularisation (the lasso) to prevent overfitting

This standard MaxEnt practice is followed by a large majority of users of Maxent software and
has only occasionally been questioned [but see Anderson & Gonzalez (2011) and Warren &
Seifert (2011)].

A CRITIQUE OF THE ‘STANDARD MAXENT PRACTICE’ FOR DISTRIBUTION MODELLING

The mini-review reveals that most MaxEnt users apply default settings of the Maxent software.
However, based on indications that models obtained by standard MaxEnt practice may be overfit-
ted to the data, some authors have recently questioned uncritical use of these default options and
settings. In a comparative study of methods for model comparison and regularisation parameters
Warren & Seifert (2011) conclude that ‘at present little guidance is available for setting the ap-
propriate level of regularisation, and the effects of inappropriately complex or simple models
are largely unknown’. In their detailed study of the rare species Cryptotis meridensis Anderson
& Gonzalez (2011) report that individual tuning of regularisation parameters enhances the
models’ predictive ability compared to default settings. Furthermore, Raes & ter Steege (2007)
and Merckx et al. (2011) report tendencies for Maxent models with default settings, trained on
80 or more presence observations (the minimum number of presence observations at which
‘threshold’ and ‘product’ variable types are by default allowed to enter MaxEnt models), to be
overfitted to the training data. Merckx et al. (2011) suggest that default values for the regulari-
sation multiplier and threshold minimum values for transformation of explanatory variables
into the derived variables that are used to parameterise the model should be reconsidered or,
simply, that more strict rules for pre-selection of variables should be applied.

In DM contexts, the concept of overfitting can only be precisely defined by taking model-
ling purpose into account (Halvorsen 2012): Halvorsen (2012) defines an overfitted model as ‘a
distribution model that fits more complex overall response curves than appropriate, given the
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modelling purpose’. Furthermore, Halvorsen (2012) recognises three types of overfitting:

1. Type I overfitting, i.e., that a more complex model has lower predictive performance
on independent data than a simpler model.

2. Type II overfitting, i.e., that a more complex model is similar (in the meaning ‘not
significantly better’) in predictive performance on independent data than a simpler
model.

3. Type Il overfitting, i.e., that a more complex model with higher predictive perform-
ance on independent data than a simpler model fails to fit realistic overall ecological
response curves.

Type-I and Type-II overfitted models are inferior regardless of modelling purpose, the Type-II
overfitted model because the simpler model is better according to the principle of parsimony,
while Type-III overfitting is relevant to ERM models only.

These three definitions of ‘overfitting types’ all require information on the ‘predictive
performance on independent data’, i.e., results of model evaluation (Step 11 in the 12-step DM
process). Overfitting of Types I and II of MaxEnt models for the SPM purpose can be revealed
in several ways, of which one of the most frequently used are comparison of the area under
the receiver operating (ROC) curve (AUC; Hanley & McNeil 1982, Pearce & Ferrier 2000b)
between simpler and more complex models (Merckx et al. 2011): much lower AUC values for
complex models on evaluation data than on training data (i.e., the data used to parameterise
the model), and reversed ranking of models by AUC from higher AUC of more complex than of
simpler models on training data to the converse on evaluation data, are indications that the
more complex models are overfitted. Thus, Parolo et al. (2008) found that an eight-variable
MaxEnt model obtained for 60 presence observations of the plant species Arnica montana by
use of default Maxent settings had lower AUC value (AUC = 0.864) on set-aside evaluation data
than a manually pruned three-variable model (AUC = 0.888) while the two models were ranked
differently by AUC on training data (AUC = 0.941 and 0.924, respectively). Svenning et al. (2008)
concluded from visual inspection of map representations of model predictions in geographical
space that a MaxEnt model with 12 explanatory variables was overfitted and inferior to a model
with three manually selected variables, despite the former model had slightly higher AUC than
the latter on training data (AUC = 0.767 and 0.751, respectively). Wollan et al. (2008) found in
preliminary analyses with 75 explanatory variables that MaxEnt models with default Maxent
settings tended to be strongly overfitted, and used logistic regression for pre-selection of vari-
ables before MaxEnt modelling. Finally, Yost et al. (2008) found a very small difference in AUC
between models evaluated by repeated resubstitution of data between a full model with seven
variables and a two-variable model obtained by sequential backward elimination of variables
included in the full model.

Two results obtained by applying standard Maxent practice to empirical data have, in
particular, triggered my suspicion that default Maxent options and settings result in overfitted
models more often than previously anticipated: (1) The tendency for overall response curves
produced by Maxent to be very complex ( e.g., Dudik et al. 2007: Fig. 8; Elith et al. 2011: Fig. 5,
Tab. S5-2), with shapes that deviate strongly from the smooth, symmetric or skewed, unimodal
or truncated unimodal responses to major complex-gradients expected from gradient analytic
theory (see Halvorsen 2012 and references cited therein). (2) The large number of derived
variables with nonzero parameters that are typically listed in the NN.lambdas (NN is the name
of the modelled target) output file from Maxent software. This file contains a list of all derived
variables created during the modelling process and their parameters; all variables with nonzero
parameters are included in the model. One example is the study by 1. Auestad et al. (unpubl.
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results) in which seven continuous explanatory variables were represented in the model by
110 derived variables with nonzero parameters. Visual inspection of this final model revealed
clear signs that the model was overfitted: very strong local variation in the predicted response
and very complex overall response curves to environmental gradients.

These concerns raise several questions: How complex are the published MaxEnt mod-
els? How many derived variables are included in the final models? How large are the model
parameters, and how many hinge- and threshold-type variables are used to represent each
explanatory variable? The mini-review (Table 1) failed to reveal one single study in which
the number of derived variables or the values of parameters in the final MaxEnt model was
reported; the methodological study by Warren & Seifert (2011) was not included in the mini-
review. The practice in distribution modelling by MaxEnt not to report properties of the final
model other than evaluation results and map representations of predictions strongly contrasts
the practice in ecological modelling by standard statistical tools like GLM for other purposes,
by which analysis and documentation of the model itself is regarded as essential (cf. Zuur et al.
2007, Hastie et al. 2009).

The mini-review (Table 1) suggests that a better understanding of effects of choice of op-
tions and settings in MaxEnt modelling is needed and, in particular, that the standard Maxent
practice should be carefully evaluated. If the predictive power of MaxEnt models may, at least
in some cases, be further improved by making simpler models, an important side effect will
be that models optimised for spatial prediction (SPM) may also express more generally valid
relationships between the modelled target and the environment, as required of ERM and PPM
models. These simpler MaxEnt models may, in case, have the additional benefit that they open
for the dual purpose of combining good spatial predictions with improved understanding of
the ecological determinants of observed distributions (Halvorsen 2012).

Table 1. Mini-review of current practice in distribution modelling by MaxEnt, using the Maxent
software: characteristics of 87 recent publications in international journals (marked by asterisk
in the reference list).

Characteristic % of studies
Reference to version of Maxent software lacking 33
Explanation of method used to derive derived variables from explanatory

variables and regularisation settings lacking 41
Departure from automatic procedure for transformation of single

explanatory variables to derived variables 16
Default threshold for including derived variables of the product type (= 80

presence observations) overruled by the user 13
Default regularisation settings overruled by the user 6
¢ -regularisation not used 0
Pre-selection of explanatory variables prior to Maxent modelling in which

default options are used for formation of derived variables and regularisation 25
Explicit statement of the number of derived variables (parameters) in the final

MaxEnt model 1

Explicit specification of the final MaxEnt model, including model parameters 0
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THE NEED FOR A MAXIMUM LIKELIHOOD EXPLANATION OF MAXENT

The prospect that the current practice of MaxEnt modelling might be improved triggered my
curiosity for what really goes on in the ‘MaxEnt black box’, and, notably, how to understand the
method and its options and settings from an ecological point of view. The machine-learning
perspective, which is adopted in most explanations of MaxEnt (e.g., Phillips et al. 2006, Phillips
& Dudik 2008), is generally recognised as difficult to translate into ecological terms (Elith et al.
2011). However, Phillips et al. (2006) mentioned that ‘Maxent has strong similarities to some
existing methods for modelling species distributions, in particular, generalised linear models
(GLMs) [and] generalised additive models (GAMs)’, but also wrote that MaxEnt ‘is not as mature
a statistical method as GLM or GAM ... [and that] there are fewer guidelines for its use in general
..and fewer methods for estimating the amount of error in a prediction’. In recent years several
authors have explored the similarity between MaxEnt and regression methods ( e.g., Gibson et
al. 2007, Willems & Hill 2011). Elith et al. (2011) were the first to explain MaxEnt as a statistical
method for modelling the overall ecological response in (continuous) environmental variables
space: using a combination of regression (GLM and GAM) modelling terminology and Bayesian
statistical concepts they characterised MaxEnt as a method that ‘minimizes the relative entropy
between two probability densities (one estimated from the presence data and one, from the
landscape) defined in covariate space’.

Phillips et al. (2006) and Dudik et al. (2007) point to the existence of an element of
maximum likelihood estimation implicit in the MaxEnt method, and thus open for the pos-
sibility that the maximum likelihood perspective can be used to understand MaxEnt. While
the machine-learning perspective emphasises MaxEnt’s ability to provide robust estimates of
relative 'habitat’ suitabilities in abstract geographical space [see Halvorsen (2012) for explana-
tion of conceptual spaces], statistical principles like maximum likelihood estimation emphasise
the method’s ability to model relative suitabilities in environmental variables space (Elith et
al. 2011). Elith et al. (2011) argue that ‘for many users, this [statistical] viewpoint is likely to
be a more accessible way to understand the [MaxEnt] model than previous ones that rely on
machine learning concepts’.

Proper understanding of complex methods requires in-depth knowledge of the principles
on which the methods are based and how the methods are linked with basic theory (@kland
1990, 2007, Austin 1999, 2007). Halvorsen (2012) argues that the appropriate theoretical
background for distribution modelling is the gradient analytic perspective (Halvorsen 2012).
Maximum likelihood estimation stands out as a promising methodological platform for linking
MaxEnt to ecological theory.

FOCUS AND AIMS

The main aims of this paper are: (1) to provide a strict maximum likelihood explanation of the
MaxEnt method, including options and settings implemented in the Maxent software (Phillips et
al. 2004, 2006, Phillips & Dudik 2008, Phillips 2011) and other integrated tools ( e.g., Franklin
2009, Halvorsen 2012), and to link this explanation with the gradient analytic perspective on
distribution modelling; (2) to provide a description of the MaxEnt method, including options
and settings, that is sufficiently detailed to allow the interested reader to follow all steps; (3)
to illustrate MaxEnt by simple worked examples, (4) to address still unsettled issues in MaxEnt
modelling; (5) to discuss practical implications of the strict maximum likelihood explanation
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of MaxEnt; and, (6) to discuss additions to, or changes of, the standard Maxent practice for
distribution modelling.

This paper is organised in three parts: (1) a theory chapter that provides a strict maximum
likelihood explanation of MaxEnt, its options and settings, and that links MaxEnt with the gradi-
ent analytic perspective on distribution modelling; (2) a worked examples chapter in which two
simple simulated data sets are used to illustrate the method (with options, settings and tools)
and to address important, still unsettled issues in MaxEnt methodology; and (3) a final chapter
in which the use of MaxEnt in distribution modelling is discussed with the aim of suggesting
additions to, or changes of, this practice, and to point to issues in need of further research.

THEORY

This chapter provides a full description of the MaxEnt method for DM, based on maximum likeli-
hood principles. The chapter is structured according to the 12-step process of the DM (Fig. 1),
starting with the data model (Steps 2-6) which is followed by the statistical model (Steps 7, 8,
10 and 11). A full account of the notation used in this chapter is given in Appendix 1.

DATA MODEL

Distribution modelling takes place within the bounds of a geographically delimited study area.
For the purpose of distribution modelling by MaxEnt we assume that the study area is concep-
tualised as a rasterised geographical space (Step 4 of the 12-step DM procedure), i.e., that the
area is divided into N equal-sized, quadratic grid cells or pixels in which the modelled target
and explanatory variables are recorded. The set of N discrete observation units is denoted D=
{d,..d,..d,..d,.., dNT}. The grid-cell edge length defines the unit grain, or observation unit,
size of the study. If N is very large (typically > 10 000; Phillips & Dudik 2008), computation
time can be reduced without loss of model precision by using a subset of the N, observations
for modelling. The theory is equally applicable to modelling situations in which a subset D of
D_, with N observations, is used. Therefore, if not otherwise is stated, it will be assumed that
D =D_and that N = N, i.e, that modelling makes use of all grid cells in the study area.

The ‘raw’ explanatory data set used for DM (Steps 3 and 5,i), which is denoted Z, consists
of an N x s matrix with elements z_that are values for the jth explanatory variable in grid cell d,
d. € D. The matrix Z has the s explanatory variables Z as columns; Z=1[Z, .., Z ], Z= [le’ o ZM.]T.
The row vectors of Z, i.e., the values for the s explanatory variables recorded for grid cell i, are
denoted Z.

Response variables for DM by MaxEnt (Step 2) can be of two principally different kinds:
presence-only (PO) and presence/absence (P/A) data. MaxEnt models parameterised by use PO
data are referred to as generative MaxEnt models while models parameterised by P/A data are
referred to as discriminative MaxEnt models (Dudik & Phillips 2009). However, for most cases
of practical distribution modelling only PO data are available (e.g., Franklin 2009, Robertson
etal. 2010, Feeley & Silman 2011, Niamir et al. 2011) and generative MaxEnt is therefore the
main focus of this paper.
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The rasterised observed presence (OP) response vector €= [c,, .., C, .., ,]" (Step 6) con-
sists of records of observed presence in n grid cells (c, = 1) while information about presence or
absence is lacking for the remaining N - n cells. The latter, which are referred to as uninformed
background cells, are given the value c, = 0. We adopt the sorting convention that grid cells
=1, .., n are the n observed presence cells while cellsi =n + 1, .., N are the N - n uninformed
background cells:

_( 1fori=1,..,n
c"_{Ofori=n+1,...,N (1)

The rasterised observed presence or absence (OPA) response vector will, when available, be
referred to as B=[b,, .., b, .., b ]". This vector consists of records of presence in n, presence
grid cells (b, = 1) and of absence in N - n, absence cells (b, = 0). As above, we adopt the sort-
ing convention that the first n, cells of B are the n, presence cells and. In cases where both PO
and P/A response vectors exist, the first n of the n, presence cells are observed presence cells
(c,=1). The vectors B and C differ by the identity of the N - n grid cells in which presence is not
recorded (c,=0):¢,=1= b, =1 (ngrid cells) and b= 0 = ¢, = 0 (N - n, grid cells), while ¢ = 0
(N - n grid cells) corresponds to an unknown value of b. I use bold-face italicised capital letters
for sets and vectors with N (= N) elements, i.e., that contain values for all grid cells in the study
area. Bold-face normal letters are used for matrices.

A small simulated example data set will be used to illustrate the data model and exemplify
some aspects of MaxEnt theory. This data set, which will be denoted 17, is a subset of example
data set 1 used in the ‘Worked examples’ chapter. The rasterised study area for data set 1" con-
sists of 40 grid cells and is denoted D={d,, ..., d,, ..., d40}. The grid cells are arranged in 8 rows
x 5 columns (Fig. 2a). A simulated target species ‘Sp’ is observed in n = 10 (25 %) of the total
N =40 grid cells in D (Fig. 2a). No information is available about eventual presence or absence
of Sp in the remaining N - n = 30 uninformed background grid cells. The environmental data
set Z consists of two explanatory variables (s = 2), of which both are recorded for each grid cell
inD;Z = [21’1, o Zy ) ZMO]T and Z, = [Zz,l' i Zops Z2,40]T' Z indexes northing (Y coordinate’) in the
rasterised geographical space representation of the study area (Fig. 2b) while Z, indexes easting
(‘X coordinate’) in this space (Fig. 2c). The PO response vector C = [c,, .., C,, .., ¢, ]" for Sp has
the value ¢,= 1 in 10 cells which, by applying the sorting convention, are indexed from 1 to 10.
The remaining 30 cells are uninformed background cells for which ¢,= 0.

OUTLINE OF THE MAXENT STATISTICAL MODELLING PROCESS

Basically, the statistical model comprises Steps 7, 8, 10 and 11 in the 12-step DM process (Hal-
vorsen 2012). However, in generative MaxEnt the response variable € is modelled not directly
as a response to s explanatory variables Z (EVs) but to a set X of m derived variables X, (DVs)
obtained from 4 by transformation. The term ‘derived variable’ (DV) is used here in exactly the
same meaning as the term ‘feature’ in studies by Phillips et al. (2006), Dudik & Phillips (2007),
Phillips & Dudik (2008), and Elith et al. (2011). The general relationship between DVs X, and EVs
Z, is given by transformation and back-transformation functions h and h™' defined as follows:

X,=h,(Z) & Z=h" (X) 2)

In this theory chapter, elements of the statistical modelling process by MaxEnt are ordered by
their sequence of appearance in the modelling process. Because the transformation from EVs



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,... 17

=N W bk 0O
=N W bk o

=N W kU

=N W Bk 00NN

=N W Bk U0 N

O O I SO = P TN =
NN NN NN NN
wlw w wlw w w Hw
e N I s e e
oo (oo

Fig. 2. Example data set 1 (and 17). (a) The study area D which is rasterised into 40 grid cells
of which the modelled target is recorded in 10 (black cells). Values for the observed presence
vector C in each cell is shown. (b) Observed values z,; for explanatory variable (EV) Z, in the
40 grid cells. (c) Observed values z, for EV Z, in the 40 grid cells.

to DVs (Step 5,ii in the 12-step DM process) often, like in the Maxent software (Phillips et al.
2006), is carried out an integrated part of the statistical modelling process, the transformation
step is described here first, followed by a detailed description of the MaxEnt statistical model.
The following notation and terms are used for the DVs: X = [X,, .., X, .., X ] denotes the ma-
trix of values for m DVs in N observation units. The column and row vectors of X are denoted
X, =[x, 0 Xy X |"and X =[x, , ..., X, .., X, ], respectively.

The description of the MaxEnt statistical model starts with a detailed description of the
‘core’ of the modelling process, which is followed by ‘other important aspects of the MaxEnt
statistical model’. Starting with the ‘core’ of the MaxEnt modelling process, a brief outline of
DM by MaxEnt is given here to motivate the way issues are sorted on these two main groups as
well as within each group in this paper.

Formulated in the most generally way, a MaxEnt distribution model Q describes the
relationship between one response variable (RV), Y=[y,, .., y,, .., y,]", and one or more EVs, Z,
that are represented by DVs, X, , by mathematical functions of the exponential family in which
the exponent is linear in X,. Choice of MaxEnt as modelling method (Step 7,i) therefore also
specifies the model (Step 7,ii).

A DM ideal for applied purposes should provide predictions of the probability of pres-
ence (PPP) of the modelled target, i.e., the real probability that the modelled target is present
in grid cell ;; y, = Pr (b, = 1| Z) (Edwards et al. 2005, Guisan et al. 2006, Edvardsen et al. 2011,
Halvorsen 2012). However, MaxEnt model estimates Q@ = [q,, .., 9, -, q,]" can be interpreted as
estimates of PPP if and only if the prevalence of the modelled target in the study area, i.e., the
modelled target's frequency of presence (Hirzel et al. 2006, Halvorsen 2012), is known. This
condition can only be directly met by discriminative MaxEnt, i.e,, MaxEnt models obtained by use
of the observed presence or absence (OPA) vector B as RV (Ward et al. 2009). In contrast, ‘raw’
estimates, or predictions, from generative MaxEnt models are relative predicted probabilities
of presence (RPPP) for the N observation units used for model parameterisation (Phillips et al.
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2006, Phillips & Dudik 2008, Ward et al. 2009). The ‘raw’ RPPP values, the qi's, of generative
MaxEnt models Q, are by definition probabilities that one specific presence cell i, selected at
random from all n, true presence cells, happens to be grid cell i:

q,=Pr(i=i,|b _=1) (3)

This definition gives the vector Q of generative MaxEnt model estimates for the N grid cells
the property of a discrete probability distribution, i.e., that X q,= 1. The q/s are functions of
m + 1 mode parameters 0 = [90, (e C Gm]T and the EVs Z] as represented by the m DVs,
conditioned on Z',-Vq,. =1:

q,=9, (Z)=9,X) 4)

where g’ is the MaxEnt model expressed as a function of the ‘raw’ EVs and the parameter vector
©, and g, is the model expressed as a function of the DVs and 0. Because the DVs and not the
EVs themselves are used in generative MaxEnt modelling, model estimates g, are expectations
of the relationship between the response variable C and X,. Relationships between € and Z are
obtained by inserting (2) in (3):

q=Pr(i=i|b =1;0,X)=Pr(i=i,|b, =1;6,h, (Z) (5)
0 0

Because the property modelled by generative MaxEnt models is not the response variable ¥
itself, but the derived property of the response variable given by expression (3), the notation
II= [7'[1, ooy Ty oy nN]T is used instead of Y for the true discrete probability distribution estimated
by Q. Each 7, expresses the probability that a randomly selected presence grid cell i: ¢, = 1,
is cell .

The predictions g, from a MaxEnt model Q, expressed in terms of X, by (4), can be back-
transformed to a function of Z by use of (2):

q,=9, (Z)=g, (h* (X)) (6)

This ‘core’ of the modelling process comprises the model specification step (Step 7,ii) and Steps
(8,i-iii) of the modelling of the overall ecological response (Step 8). These steps are addressed
en suite in this paper because in MaxEnt pre-selected methods for internal model performance
assessment (Step 8,ii) are used in a tightly integrated process of model selection (Step 8,i) and
model parameterisation (Step 8,iii).

‘Other important aspects of the MaxEnt statistical model’ comprises three steps that may
be carried out after a model Q has been obtained, i.e., a posteriori, with the purpose of enhancing
the practical value of modelling results:

1. Interpretation and transformation of model predictions (Step 8,iv). The ‘raw’ MaxEnt
estimates can be transformed into several ‘output formats’ (Phillips et al. 2006) which
fit different modelling purposes, partly because they address relationships in different
conceptual spaces. Vectors C, Z, and Q all contain values for N discrete points in geo-
graphical space [see Halvorsen (2012) for definitions of conceptual spaces]. However,
the geographical space in which MaxEnt operates is an abstract geographical space
because the georeference of observation units is not explicitly used in the modelling.
Because MaxEnt makes use of the EV data matrix Z, modelling can with equal right
be considered as taking place in a discrete environmental variables space, i.e., with Z],
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as axes. MaxEnt models can also be used for estimation or prediction in continuous
environmental variables space, i.e., for a combination of EVs without reference to a
specific raster.

2. Model calibration (Step 10). Many practical purposes require ‘upgrading’ of generative
MaxEnt modelling results from RPPP estimates to PPP estimates by an a posteriori
model calibration step accomplished by use of independently collected P/A data (Step
9).

3. Model evaluation (Step 11). The tendency for PO-data to be burdened with strong
sampling bias (Araujo & Guisan 2006, Hortal et al. 2008, Loiselle et al. 2008, Robertson
etal. 2010, Wolmarans et al. 2010, McCarthy et al. 2011) makes model evaluation by
use of a set of P/A data collected independently of the data used to parameterise the
model an essential step in the DM process (Aragjo et al. 2005, Austin 2007, Raes & ter
Steege 2007, Veloz 2009, Edvardsen et al. 2011, Halvorsen 2012).

Only the first two of these steps, which make use of procedures specific to each DM method,
are specifically dealt with in this paper.

TRANSFORMATION OF EXPLANATORY VARIABLES INTO DERIVED VARIABLES (STEP 5,iii)

One or more derived variables (DVs) X, can be derived from explanatory variables (EVs) Z by
transformation. There are no inherent restrictions in the MaxEnt method with respect to cat-
egories of transformation functions h that can be used to derive DVs from EVs: in principle, all
kinds of continuous and discontinuous transformations (‘smoothers’) available for GLM (Phillips
etal. 2006) and GAM (e.g., see Wood 2006) can be used for MaxEnt.

Five types of transformation functions are available in the Maxent software for continu-
ous EVs (Phillips & Dudik 2008, Elith et al. 2011). These can be sorted into three main types:
two types of continuous variables; two types of discontinuous spline variables; and one type of
interaction variables which combines two or more EVs into one DV. Categorical EVs make up
a main category on its own. This set of six main types of transformation functions is, however,
not exhaustive. Additional variable types of obvious relevance to DM are therefore proposed in
this paper, giving a total of nine types of variables in four main types (see Table 2):

1. Continuous derived variables

a. The linear (L) type, i.e., the untransformed EV itself

b. The monotonous (M) type, i.e., any strictly monotonous transformation of the
continuous variable Z. The quadratic (Q) variable of Phillips & Dudik (2008),
Le,Z squared, is one example of an M-type DV. By including M-type variables,
nonlinear relationships between the modelled target’s response and major
complex-gradients are explicitly taken into account in the DM process.

c. The deviation (D) type, expressing the deviation of Z from the mean value of
Z over the m observed presence sites, denoted Z].*. D-type variables can be ex-
pressed on the general form (z, - Z")* where a is a scalar [expression (7) in Table
2]. The ‘variance’ (V) variable, which was proposed for use in DM by Gastéon &
Garcia-Vifias (2011), corresponds to a = 2. The V variable is analogous with a
variance because it is based upon squared deviations. By including D variables,
the tolerance of a modelled target with unimodal ecological response to a major
complex-gradient is explicitly taken into account in the DM process.
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2. Spline variables, which make use of knots, values for the EV below and above which
values are transformed by different functions (e.g., Zuur et al. 2007).

a. The hinge (H) type, i.e., a piecewise linear spline transformation of order two,
i.e.,, with one knot. The knot separates a portion of the EV with linear response
from a portion with x,=0,1le, from which the modelled target is expected to
be absent. Two subtypes of H-type DVs can be recognised: ‘forward hinge’ (HF)
with x, = 0 for z, >z, the value of the knot [expression (8) in Table 2], and
‘reverse hinge’ (HR) with x, =0 for Z;<%, [expression (9) in Table 2]. Hinge-type
DVs account for the situation where the modelled target reaches a tolerance
limit with respect to a major complex-gradient within the range of variation
encountered in the study area.

b. The threshold (T) type, i.e., a piecewise linear spline transformation of order
two by which a knot separates two portions of the EV with constant response
(presence, x, = 1, in one and absence, x, = 0, in the other). T-type DVs [expres-
sion (10) in Table 2] account for situations with threshold response (Halvorsen
(2012), i.e., abrupt changes in the modelled target’s overall ecological response
to a major complex-gradient.

c. The complex spline transformation (X) type, i.e., transformations into piecewise
linear functions of order three or higher. X-type variables open for modelling
complex discontinuous overall ecological responses to a major complex-gradi-
ent.

3. Interaction variables

a. The product (P) type, i.e., the product of two EVs, or, equivalently, two L-type
DVs [expression (11) in Table 2].

b. The covariance (0) type, which is the parallel to the V variable of the D type, is
defined as the product of two continuous EVs Zjand Z, centred on the respec-
tive means for observed presence sites [expression (12) in Table 2]. This DV
resembles a covariance by its multiplication of deviations from a mean. By in-
cluding an O variable, interactions between responses to two complex-gradients
is explicitly taken into account in the DM process. In principle, the O type can
been defined more generally, opening for more complex relationships between
two or more EVs in line with interactions of higher order than two.

4. Sets of binary variables (C), one set derived from each categorical EV. An EV with u
factor levels is represented by u binary DVs [expression (13) in Table 2]

These types of transformations of continuous EVs are not clearly separated. For instance, the
linear variable (L) can be considered as a special case of a monotonous (M) variable or as a for-
ward hinge (HF) variable in which the knot is placed at the lower extreme (Elith et al. 2011).

While only one L-type, one Q and one V variable can be derived from each EV, many DVs
of the H, T, M and D types that can be derived from each EV. The number of unique threshold-
type variables that can be obtained from a continuous EV is bound above by N - 1 (Dudik et al.
2007), while there is no a priori upper bound on the number of hinge-type variables that can
be derived. By including in the model many DVs of the threshold (T) and/or hinge (H) types
from each of the continuous explanatory variables, and by moving the position z, of the knot,
response curves of almost all shapes and complexities can be modelled.

The transformation procedure by which DVs are obtained from EVs consists of two
steps:
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1. Transformation into ‘raw’ derived variables (rDVs), X, = [x,,, .., X, , ., X,, ]", as outlined
above and operationalised by transformation formulae given in the rightmost column
of Table 2.

2. Ranging into derived variables (DVs), by linear rescaling (ranging; @kland 1990) of
each rDV into a new variable with values in the range [0,1], by

-X
X, = ,— (14)

where x, denotes the DV and x, denotes the rDV, and x, . “andx,__ 'denote the minimum
and maximum values of the latter.

rDVs of the HR, HE, T and C types are transformed directly into ranged DVs by the transforma-
tion functions given in Table 2. Ranging makes all DVs comparable by bringing them onto the
same scale. By Maxent software, all DVs are ranged of is performed as an integrated part of Step
8 in the DM process.

Examples of DVs derived from the two EVs in example 1" are shown in Table 3.

MODEL SPECIFICATION AND MODELLING OF THE OVERALL ECOLOGICAL RESPONSE (STEPS
7,11 AND 8,i-iii)

A maximum likelihood explanation of MaxEnt for distribution modelling

According to the maximum likelihood principle, the set parameter vector @ of a generative
model Q, that maximises the likelihood of obtaining the vector II of true, underlying values T,
of the modelled target is the best among all possible models (Hastie et al. 2009). Accordingly,
a maximum likelihood solution to modelling of the overall ecological response implies finding
the set of parameters © that maximises Pr, (IT | Z); the probability of IT given the environmental
conditions Z. Note that most statistical analyses rest on the assumption that observations of
the response variable are independent and identically distributed, drawn from the population

Table 3. Values for derived variables (DVs) of different types, derived from explanatory variables
(EVs) Z, and Z, in example data set 1" (see Table 2 for explanation of types of DVs). Note that
the DVs are ranged to a [0, 1] scale.

DV Knot Value for EV Z Value for EV Z,
type

1 2 3 4 5 6 7 8 1 2 3 4 5

- 0.000 0.143 0.286 0.429 0.571 0.714 0.857 1.000 0.000 0.250 0.500 0.750 1.000
- 0.000 0.020 0.082 0.184 0.327 0.510 0.735 1.000 0.000 0.063 0.250 0.563 1.000
- 0.028 0.000 0.028 0.111 0.250 0.444 0.694 1.000 0.429 0.036 0.000 0.321 1.000
0.500 0.000 0.000 0.000 0.000 0.143 0.429 0.714 1.000 0.000 0.000 0.000 0.500 1.000
0.500 1.000 1.000 1.000 1.000 0.857 0.571 0.286 0.000 1.000 1.000 1.000 0.500 0.000
0.500 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000

o om <o
% =
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of all possible observations. In the context of distribution modelling by MaxEnt, this implies
that (1), the probability that one particular presence cell i, selected at random from all pres-
ence cells, is a specific grid cell i, is independent of (2), the probability that the cell i  is i,, for
all pairs of grid cells i and i,

When PO data are used for distribution modelling, we do not know if the modelled target
is really present or absent (i.e., whether b= 1 or b,= 0) in uninformed background (¢, = 0) cells
but, under the assumption that misidentifications and other errors are not present in the data,
we can assume that the modelled target is present (b, = 1) in the n presence cells (¢, = 1). The
machine-learning explanation of MaxEnt emphasises that only reliable information shall be
used to estimate IT. The reliable information about sites where the modelled target is present
consists of grid cells with observed presence (c, = 1); ¢,= 1 & b,= 1. Thus, from the machine-
learning perspective, best fit to reliable PO data is obtained by the model Q_which approximates
II = [1'[1, S nN]T with the discrete probability distribution vector Q.= [ql, Y qN]T, the
elements of which are:

1 .
ﬁforz—l,...,n

g, = : (15)
Ofori>n

The vector Q_is an important reference distribution for MaxEnt modelling. From a machine-
learning perspective, Q_is the model with best fit to reliable information about the modelled
target because it separates the n presence cells from the N - n uninformed background cells.
From a maximum likelihood estimation perspective, the model Q.is the saturated model, i.e., the
model that accounts for all variation in the response variable, conditioned on the uninformed
background grid cells being treated as pseudo-absence observations, i.e., as surrogates for
real absence observations. Another important reference model is the null model Qy the model
for which the available explanatory variables are of no use, or are not used, for predicting the
presence observations. The null model attributes to all grid cells the same probability of being
a randomly selected presence grid cell i;. With N grid cells, the null model is the model with
elements q,, = 117 for all i.

Abasic principle in statistical modelling is to seek for the most parsimonious model], i.e.,
the model which best combines simplicity (in terms of m, the number of model parameters)
and predictive ability (Hastie etal. 2009). The saturated model is usually very complex in terms
of numbers of model parameters. Models that fit the data closely tend not to express general
relationships between response and derived variables; they are overfitted and poorly suited
for prediction (Halvorsen 2012). In our example data set 1" neither of explanatory variables
Z, or Z, predict observed presences perfectly; perfect prediction is only possible by specifying
the 10 combinations of Z, and Z, that correspond to observed presence (¢, = 1) while absence
is specified for the 30 uninformed background grid cells.

With PO data, we do not know which among uninformed background cells i, i > n, that
are presences and which are absences. However, we do know with absolute certainty that the
modelled target is present in observed presence cells, i.e, cellsin the set D, (c,;=1=b,=1).In
MaxEnt, restriction to use of reliable information is accomplished by maximising the likelihood
of the presence cells only, i.e., to use IT = I, with elements 7y, = g, given by expression (4), as
the reference with which all models are compared. MaxEnt shall thus maximise the likelihood
for Q, given that the true probability distribution is 1, and Q shall be a vector of maximum
likelihood estimates:

Q=fl s q=1 (16)
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For a set of independent observations, the likelihood of obtaining one particular vector @, = [q,,
e Gy wen qN]T, i.e., one specific parameterisation of the model, is the product of the likelihoods
for the N g, values (in example 1", N = 40). The definition of g, gives

Pr(q)="Pr(i=i |b,=1,X,0)=q, (17)

Since the model estimates @, by definition is a probability distribution, the likelihood L, of
Q, is therefore obtained as the product of likelihoods for each observation i. By using (3), we
obtain:

L@ = I’\'/=1 4q;
=II% Pr(i=i,|b,=1,X,0)
=[1L Pr(i=i | b,=1,X,0) - [1L.. Pr(i=i,| b, =1, X, 6)
= Hlll q;- H1¥=n+1 q,
=Lo. " Lo (19)

In accordance with the maximum likelihood principle we seek the model @, that maximises the
fit of the data to I,ie, the model that maximises

Lo=I10, Pr(m=1%6)-TI\,., Pr(r,=0|X,6) (20)

Expression (20) is obtained by inserting (15) in (18).

The fundamental principle of generative MaxEnt modelling (Jaynes 1957a, 1957b, Dudik
etal. 2007, Dudik & Phillips 2009, Shipley 2010), to maximise L, instead of L, implies that the
model @, that maximises the likelihood of the n presence sites is searched for rather than the
model that maximises the likelihood of all N sites. This is a fundamental difference between
MaxEnt and, e.g, GLM (Shipley 2010). The model that optimises L, is, however, likely to be
close to the model that optimises L, because improving L, by increasing the likelihood g, for
a presence grid cell i (¢, = 1; i < n) towards % necessarily implies lowering of g, for at least one
uninformed background cell and, hence, improvement of Pr (7, = O | X, @) and the likelihood
L, for uninformed background cells (c, = 0; i = n).

Because a > b implies that In a > In b, the model parameter vector @ that maximises L,
also maximises In L, given by

InL,, = 2. InPr (m, =%| X, 0)
22:’:1 In q, -

This expression is the Kullback-Leibler divergence (Kullback 1959), an information theoretic
measure of the extent to which two vectors IT" = [r,, . ,m]"and Q" = [q,, ..., q,, - q,]"
=Pr (m, ——| X, 0 )differ (Phillips et al. 2004, Dudik et al 2007 Shlpley 2010, Elith et al. 2011).

Slnce all estimated probabilities g, are < 1 by definition, In g, < 0 for all i and hence In
L,.<0.Maximising (21) is therefore equivalent to minimising -In L, . By convention, the quantity
minimised in Maxent software is not -In L__but this quantity divided by n, which we denote
In L, or, equivalently, In L, (for model t), depending on the context:

1
InLy=-5-InL,, (22)

By inserting (21) in (22), and using (4), we obtain:
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InL,=1X5 (-Ing) (23)
=15 (g, (X))

It has been proved (Della Pietra et al. 1997) that the MaxEnt distribution [the distribution that
minimises (23)] is a Gibbs distribution:

q,= gy (X)) = eh 5 O (24)

where 6 is a ‘normalising constant’ that ensures that the set of N g, values satisfies the condi-
tion of summing to 1. Accordingly, the MaxEnt distribution is defined by the set of parameters
O which minimises the negative normalised log-likelihood (Dudik et al. 2007). Combining
expressions (23) and (24) gives:

InLy=-% 30 In (€% 50 0%). (25)

This quantity is often termed (the empirical) log loss (Phillips et al. 2006, Dudik et al. 2007,
Phillips & Dudik 2008).

The demand on 6, that the N g, values shall sum to unity makes 6, dependent on the other
parameters 0, as follows:

N
21‘:1 q,= 1
N m
Zi=1 e T O = 1

Z:Xl e 82121 Oy =1 (2 6)

Solving for (26) for e% gives
1
0 = — __ ~
¢ lezl 62121 O Xix (2 7)

from which is follows that the constant 6, is given by
6,=-In (X e:%u). (28)
The expression for log loss given by (25) can be simplified as follows:

In LB = %21":1 (—ln 690) - % ?:1 In 82121 0%,
= % n -Ig— 60) - %lel mZ:ll ekxik
=In (Zi:l e% %) -2 0, (%21'1:1 X,)
=In (Z’]Zl ez;ﬂ:l O _Z:]:l ek ) )?k* (29)

where X," is the mean of derived variable X, in the n observed presence cells (¢, = 1; i < n).
Parameters © = [00, 61, - Gk, . Hm]T of the best model are found as the solutions of the
m equations:

dlnlL,

m =0;k= 1, ey M (30)

Differentiating (18) with respect to 6, gives:
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dinlL,

gme, =0

a [In (T e %)~ XL, 6, - %,’] _

a0 0

k

dln (B e%u) OB 6, K,

26, a6 0

k

dln (T, et %)
a6, _ze0
N m_ o x. Kk
Yit1 e k=1 %k

9 (%1 %)

96, 5 * =
N _ym - X = 0
Vi1 e k=10

N
Zi:l

m
T x0Tk O
i

Zgl € ke1 Okt k

m
i X, %=1 i
1 -_—

SN e ik k

*

;Zlg X etk-10kk = x * (31)
SN e ik =1 ik k

Inserting (27) in (31) gives:

N m )

e%- Zizlxike Zk=1 Otik = X
N

ZmXik e% e Zk=1 91k = X

N
Zi:lxik €%+ Zk=1 Opik = X, (32)

*

* =

Finally, inserting (24) in (32) gives

Yix, qi=x (33)

Expression (33) provides the set of conditions that have to be satisfied for a model Q,, to be the
maximum likelihood MaxEnt model: for all derived variables X,, the weighted sum of derived
variable values x, over all N grid cells using g, as weights, which we denote X,, shall equal the
average of X, over the n observed presence cells (c, = 1), x,".

%=% (34)

Because the g, sum to unity, X, is the weighted average of X,, using q, as weights.

The condition that )?k shall be equal to X, i.e., the mean oka in observed presence cells,
applies to all derived variables regardless of type. The ‘mean of X,” has different meanings for
different variable types (Table 2): with linear (L) variables it is simply the mean of the ranged
explanatory variable over observed presence cells; with quadratic (Q) variables it is the mean of
the squared variable over observed presence cells; with variance (V) variables it is the average
mean squared deviation from the mean over observed presence cells; with hinge (H) variables
itis the mean of X, over observed presence cells in the subset of grid cells in which X, is linearly
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related to Z ; and with threshold (T) and categorical (C) variables it is the mean of the binary

variables X, in observed presence cells, i.e., the proportion, or frequency, of presence cells for

which x, = 1. Mean values over the 10 observed presence grid cells, x,’, for each the six variables

derlved from explanatoryvarlableZ inexample 1" are: X, =0.1429, x Q =0,0408, Xy “=0,0278,
X ups = 0,X s = land X, = 0 (compare Figs 2a and 2b with Table 3).

In the original implementation of MaxEnt for distribution modelling by Phillips et al.
(2004, 2006), explained by adopting a machine-learning perspective, the target distribution
Q,, is defined as the probability distribution @ of maximum entropy, subject to the constraint
that the mean of each derived variable X, weighted by ¢, i.e, X,, equals the empirical mean x,"
in the subset of presence cells. This corresponds exactly to the condition given by (34), which
was derived from the maximum likelihood principle. Furthermore, the machine-learning ex-
planation of MaxEnt (Phillips et al. 2004, 2006) uses the maximum entropy principle to define
as best the model which satisfies the constraints given by (34) and at the same time maximises
the relative entropy given by:

=-Y"q,-Ing, (35)

Dudik et al. (2007) show that finding the solution of maximum relative entropy under the con-
straints given in (34) is equivalent to minimising the log loss given by (29).

The standard method for internal assessment of the performance of a model Q, ( e.g., Hastie
et al. 2009) is to compare Q, with the standard reference models, the saturated model Q that
explains all variation in the data and fits the data perfectly, and the null model @, that explains
no variation and does not at all make use of explanatory data. The saturated MaxEnt model is
defined above as the model which satisfies the condition that Q"= [q,, .., g, ..,q,]"equals IT" = [m,,
vy 77,-' -, ,]". In accordance with (15), this is the model which predicts a value of ¢, = 7, = -~ for
alli= , 1 and, since the gs sum to 1, a value of g, =7,= 0 for alli=n+1,.., N. Accordingly,
the log loss of a saturated model, In L, is obtained by 1nsert1ng L for q,in (2 3)

lanz%Z;(—lnqi)- Z,l(ln—) =.n-lnn=Inn (36)

Furthermore, the null model is the model with all parameters 6,=0 (k=1, .., m). The logloss
of the null model, In L, is obtained by inserting 6, = 0 into (29):

InL,=In (X e¥1%i)-Y" 6,-X =InN (37)

Expressions (36) and (37) show that the log loss of the saturated model and the null model
depend on the number of observed presences, n, and the total number of grid cells used for
modelling, N, respectively, but that both are independent of the supplied environmental infor-
mation Z and the variables X derived from the explanatory variables. For example 1" the log
loss of the saturated MaxEnt model Q; is In L; = In 10 = 2.3036 while the null model @, has In
=1n 40 = 3.6889.

Inserting 6, = 0 in (27) and then inserting for e% in (24) shows that the values of g, under

the null model are all equal to %, as desired:
1 1 1 1

1
0 — — — — — p0.,+0 — 50, —
e = = = = = = 1= =¢ =e% = 38
0 Ei’il e %kt O Ziﬂil ety 0 ¥ N qo, 0 0 N ( )

The MaxEnt null model @, thus predicts equal probability for a particular presence cell i, se
lected at random from all presence cells, to be cell i, for alli =1, .., N. Because N > n,In N > In n.
All MaxEnt models Q, therefore have log loss values bounded below by In n and above by In N.
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The maximum likelihood MaxEnt model for a specific set X of derived variables is the model
Q,, with lowest log loss. The difference between In N and In n is a measure of the total variation
in the response variable. This is an expression of the total variation possible to account for by a
model. This measure is analogous with, but does not directly correspond to, the total deviance
of GLM models. Furthermore, the strict maximum likelihood explanation of MaxEnt provides
measures of variation accounted for, and not accounted for, by each specific MaxEnt model Q,
defined in terms of the average log loss of observed presence grid cells. Three important statis-
tics analogous with the explained deviance, the residual deviance and the fraction of explained
deviance in GLM can be derived from (29), (36) and (37): the variation accounted for (VA) by
model ¢, v, the residual variation of model t, wt,and the fraction of total variation accounted for
(FTVA) by model ¢, V;:

v,=InL -InLv,=InL -InL, (39)

w=InL -InL-w,=InL -InL,-(InL,~InL)=InL,-InL (40)
InL -InL,

V= InL -InL (41)

The MaxEnt model @, , for example data set 1" (Fig. 2) with the L variable derived from explana-
tory variable 1 as the only derived variable (see Table 3) has parameters 6, = -2.3160 and
6, = -4.7286. Inserting for 6 and 6, in (12) we obtain:

q.= 2%+ Zk=1 O)ik = -2-3160-4.7286:x;, (42)

Predictions from the one-variable MaxEnt model Q, (with X, as the only derived variable) are
q(0.000) =0.0987,q(0.143) = 0.0502, q(0.286) = 0.0256, (0.429) = 0.0130, ¢(0.571) = 0.0066,
q(0.714) = 0.0034, ¢(0.857) = 0.0017 and ¢(1.000) = 0.0009. The g, values sum to 1 over the 40
grid cells in D. Log loss for the model is In L, = 2.9916. From (39), (40) and (41) we obtain

v,=InL,-InL, =3.6889 - 2.9916 = 0.6973
w,=InL,-In L =2.9913 - 2.3036 = 0.6877
_InL -InL, 3.6889 - 2.9916 0.6973

“ Tl —InL - 36889-23036 _ 13853 ~ 00034

V1

V, = 0.5034 means that 50.34 % of the total variation is accounted for by the model Q,.

The MaxEnt model with the L variable derived from explanatory variable 2 as the only
derived variable (see Table 3) has parameters 6 = 3.3228 andf, = -0.8142.

Log loss for the model @, (with X, as the only derived variable) is L, = 3.6485, which cor-
responds to v, =0.0404, w, = 1.3449 and V,=0.0300.

Model selection (Step 8,i)

Model selection strategies

Finding the most parsimonious model, i.e., the model which best combines simplicity in terms
of low number of parameters in the model and high possible predictive ability, and that cir-
cumvents overfitting, is a fundamental challenge of statistical modelling, distribution modelling
included (Halvorsen 2012; also see ‘Introduction’ chapter). This task is accomplished by Step
8,i in the DM process, model selection, in which specific procedures are used to choose among
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alternative models. Note that a clear distinction is made here between model selection, which
makes use of one and only one set of response variable data (the ‘training data’) together with
explanatory data to find the parameterisation that, according to a set of criteria, is the best, and
model evaluation, which implies assessment of model performance by use of data not directly
used to parameterise the model. Thus, model selection is internal while model evaluation is
external model performance assessment (Halvorsen 2012).

Hastie et al. (2009) recognise to two principally different model selection strategies:

1. Subset selection methods by which a discrete subset of derived variables is selected
and the rest discarded, typically by omission of derived variables that do not con-
tribute significantly to the predictive performance of the model. Model comparisons,
i.e., assessment of the relative performance of two nested models, is central in subset
selection. Two models are nested when the simpler model @, is a submodel of the
more complex model Q, i.e., that Q_only includes derived variables also included in
Q. Subset selection is typically accomplished as a sequence of model comparisons;
in each step applying a pre-selected method for internal model performance assess-
ment and pre-selected model improvement criterion.

2. Shrinkage methods, by which the model coefficients 6, are shrunk by imposing a
penalty on their magnitude.

Both strategies make use of an optimisation criterion (OC), a performance index that penalises
models for lack of fit to the data (bias) and model complexity. The general expression for a model
optimisation criterion [Reikeking & Schroder (2006), expression (1)] is:

0C = (model lack-of-fit) + A-(model complexity) (43)

where A is a user-defined regularisation parameter which determines the balance between
model performance and model complexity. The better model is the one with the lowest OC
value. Reineking & Schroder (2006) characterise A as follows: ‘One can think of this parameter
as the exchange rate between the two ‘currencies’ of model lack-of-fit and model complexity.’
The term regularisation is used here in the widest sense, for approaches that assist the trade-
off between the fit of the model to data (reduction of bias) and model complexity (increase of
prediction error) (cf. Reikeking & Schroder 2006). Subset selection methods penalise models
for complexity by applying a function of the number of parameters while shrinkage methods
trade complexity for bias by allowing more parameters, each of which with lower absolute value.
Both approaches to model selection are captured by an alternative expression to (43) for the
model optimisation criterion,

0C = (model lack-of-fit) +1- Y, |6, (44)

where the parameter { determines the kind of model selection approach (Reineking & Schroder
2006). Subset selection corresponds to ¢ = 0; model complexity then only depends on the number
of nonzero parameters in the model and the regularisation parameter A. With ¢ > 0, models
are penalised for high absolute values of parameters in addition to being penalised for high
number of parameters. The penalty for large absolute values of the parameters increases with
increasing value of ¢. Shrinkage methods represent a more continuous way to avoid overfitting
because parameters 6, associated with the derived variables X, are shrunk ( i.e., their absolute
value reduced) rather than the derived variable as such omitted.
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Subset selection

By subset selection, a subset of all variables derived from supplied explanatory variables by
transformation, is selected. Subset selection can be carried out in many different ways, of which
the theoretically optimal but in most cases undoable is the best subset method by which all
possible combinations of subsets are compared. Several alternative methods exist for ‘seeking
a good path through’ the innumerable combinations of derived variables (Hastie et al. 2009),
but none come with a guarantee that the best subset is found. The choice among alternative
subset selection methods therefore by and large remains a matter of personal preference. The
two main pathways for subset selection are forward stepwise selection and backward stepwise
elimination (e.g., Hastie et al. 2009). Forward selection starts with fitting the null model M , i.e.,
the model with the intercept 6, as the only model parameter. Thereafter, derived variables are
added sequentially until a more complex model that performs relatively better than the best
model found so far cannot be obtained. Backward elimination starts with the full model and
sequentially leave out derived variables until no more derived variables can be omitted without
reducing model performance. Backward elimination is impractical for DM unless the number of
explanatory variables and, most notably, the number of variables derived from these variables,
is low, but has been used in some studies ( e.g., Lahoz-Monfort et al. 2007, Lamb et al. 2008,
Parolo et al. 2008). A compromise between the two stepwise selection methods is the forward-
backward procedure by which removal of derived variables is considered at the end of each step
in the forward selection procedure. Forward-backward selection of variables has been used in
several DM studies (e.g., van Niel & Austin 2007, Barbosa et al. 2009, Varela et al. 2009).

Opening for sets of variables to be derived from each explanatory variable adds consider-
able complexity to the subset selection procedure because a two-step procedure is required:
(1) selection among variables derived from each explanatory variable, and (2) selection among
explanatory variables, each represented by the set of derived variables resulting from (1).

A manual procedure for forward stepwise selection of derived variables and explanatory
variables in MaxEnt is outlined in Table 4. Four main steps are recognised: (1) initial steps in
which DVs are derived from EVs by transformation and methods and approaches for internal
model performance assessment are specified: (2) analysis of single DVs; (3) selection of parsi-
monious sets of DVs for each EV; and (4) selection of MaxEnt model.

Shrinkage methods

Several shrinkage methods have been proposed, corresponding to different values for ¢ in ex-
pression (44) (Reineking & Schréder 2006, Hastie et al. 2009). Choice of shrinkage method for
MaxEnt is discussed by Dudik et al. (2007). Here I will restrict my attention to the shrinkage
method implemented in the latest version 3.3.3k of the Maxent software (Phillips & Dudik 2008,
Phillips et al. 2011), £ -regularisation, or lasso penalty (Tibshirani 1996), which corresponds
to¢=1.

In the context of MaxEnt modelling, £ -regularisation implies that model coefficients
6, are found by minimising the penalised log loss, In A, given by expression (45), instead of log
loss, In L, given by (29):

InA,=InLt+Y A -16,|=In(X e¥1%) - 6, % +X A6, (45)

A, are regularisation parameters, i.e., constants set a priori, separately for each derived
variable or type of derived variables. The model complexity penalty term 2,_ A - | 6, | in expres-
sion (45) is zero if all regularisation parameters A, = 0, which corresponds to regularisation being
disabled, orifall 6, = 0, which implies that the model is reduced to the null model. Accordingly,
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Table 4. Outline of a manual procedure for forward stepwise selection of derived variables (DVs)
and explanatory variables (EVs) in MaxEnt (interaction DVs not specifically taken into account).
ISDV = individually significant DV.

Step Term Description
1 Initial steps
la Specification of Select a method for comparing two nested MaxEnt models ( e.g., the randomisation
method for or F-ratio test, or AAUC), including a threshold (model improvement criterion;
internal model e.g., a significance level o or a AAUC value) to be used to decide if a more
performance complex Maxent model is better than a simpler model
assessment
1b Construction of Transform each EV into continuous DVs, i.e., DVs of the L, M, and D types
continuous DVs
1c Construction of Transform each EV into variables of the spline type (HF, HR, T, and X). Because
spline DVs (almost) infinitely many DVs of each type can be constructed by shifting the
position of the knot, a method for limiting the number of DVs is required.
2 Analysis of single DVs
2a Single-variable For each DV, make a one-variable MaxEnt model without regularisation
modelling step
2b Single-variable Compare each single-variable model with the MaxEnt null model by use of the
test step method and the criterion specified in Step 1a
2c Single-variable Select all ISDVs, i.e., DVs that satisfy the criterion specified in Step 1a, for use in
selection step Step 3, and leave out all other DVs and EVs for which no ISDVs could be obtained.
3 Selection of parsimonious sets of DVs for each EV
3a Finding the best  For each set of ISDVs derived from the same EV, select the ISDV that performs best
DV in each set in the single-variable test of Step 2b. For sets with only one ISDV, this ISDV makes
up the parsimonious set of DVs for this EV. For all other EVs, proceed to step 3b.
3b Model For each additional ISDV in each set, make a two-variable MaxEnt model by
improvement adding this ISDV to the best ISDV in the set. Use the criterion specified in Step 1a
test step to compare each two-variable model with the one-variable model for the best
ISDV in the set.
3c Set expansion step Consider the following three cases: (i) If no ISDV is found in Step 3b that satisfies
the criterion specified in Step 1a, the parsimonious set of DVs consists of the best
ISDV only. (ii) If one ISDV satisfies the criterion, the parsimonious set consists
of this ISDV and the best ISDV. (iii) If more than one DV satisfies the criterion,
select the one which performs best in the two-variable test of Step 3b and repeat
Step 3b by comparing three-variable models with the best two-variable model.
Repeat the process until no more ISDVs can be added to the set.
4 Selection of MaxEnt model
4a EV test step Compare MaxEnt models for each EV represented by a parsimonious set of ISDVs
with the MaxEnt null model. Select the best EV according to the criterion specified
in Step 1a.
4b Model Similar to Step 3b, but applied to EVs represented by parsimonious sets of DVs
improvement instead of single DVs
test step
4c Model expansion  Similar to Step 3c, but applied to EVs represented by parsimonious sets of DVs
step instead of single DVs. Optionally, interactions among already selected EVs can
be considered for inclusion in the model together with the remaining EVs.
4d Termination step  The best MaxEnt model is found when neither more EVs represented by

parsimonious sets of DVs nor interactions among already selected EVs improve
the model, as judged by the criterion specified in Step 1a, can be found
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InA,>InL ifnotallA, =0or6 =0.

Phillips et al. (2006) explain £ -regularisation as a relaxation of (34), the condition
that has to be satisfied by all MaxEnt models, that )?k = )‘(k* for all derived variables k: the best
£ -regularised model has the lowest penalised log loss within the bounds on X, given by

%, - %] <A, (for all k). (46)

Equivalence of conditions (45) and (46) can be deduced from (46). Let us consider two cases,
(i) that the mean of derived variable X for presence grid cells, X,”, is lower than the mean of X,
for all cells, X, , and (ii) the converse. In case (i) we obtain:

X <X =X <X =|x -X'|=%-X (47)

Inserting for (47) in (46) gives

~

X -X | <A, ©X-X <A X <x +A (48)
Similarly, for case (ii) we obtain:
2 -X <A, e-X-X)<AeX <x -1, (49)

Maximal shrinkage allowed under £ -regularisation corresponds to the situation by which
o ek =
g = | BCHAIRT<X, (50)
k X*-Aifx*>x, "’

The property to be minimised under regularisation can be obtained from (29) by inserting (50)
and using that 6, is negative when X, * <X, and positive otherwise. Accordingly,

{ 1n(2 e k=10 - 3" 6,
InA = k=
In (Zmezk-lgk"lk) Zk=1 6,

X, +A)ifx <X
x -2

Jifx >Xx,

- _{ In(Y e¥1%i)-Y" 0, X -2 60,4if% <X,

P (Y ey - X 0%+ Y 0, AifX > F,
In (X e¥1 0w 0, X'+ 10|11 ifx <X,

M:{ (Z, )ZM_ 3,16, -
In (X eoa) - X7 0, % + X, 16,]-,ifF; >%,

which equals (45).
In the Maxent software, the regularisation parameters A, are determined by
A=A, 4 YA e) (52)

n

where A is a ‘tuning parameter’ specific to each category of derived variables (‘feature type’) and
var(X,") is the variance of derived variable X, over the n presence cells. Taking the square root of
the variance and dividing by the square root of n makes the radical take the form of a standard
error (Elith etal. 2011). The regularisation parameter A, therefore corresponds to a confidence
interval, the width of which is determined by the variable-type specific constants 2, .

A conservative attitude to model selection is implicit in regularisation by parameter
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shrinkage because the full potential offered by the data for predicting high g values in pres-
ence points is not utilised. The degree of regularisation imposed by standard settings for
£ -regularisation in Maxent software is intermediate between a fully discrete and a fully con-
tinuous subset selection approach because derived variables are omitted (parameters = 0) if
initial parameter estimates are very low. Because the absolute value of parameters is reduced,
predictions g, from the best MaxEnt model with £ -regularisation are always more conservative,
i.e, closer to predictions by the null model, which are g, = L for all i, than predictions from a
corresponding model without regularisation. Accordingly, %, for the best model with regulari-
sation is closer to the overall mean of X, over all cells, X, , than the corresponding value for the
model without regularisation, for which X =Xx . Shrinkage methods thus reduce prediction error
compared to subset selection methods by accepting higher bias (Reineking & Schréder 2006,
Hastie et al. 2009).

Internal model performance assessment (Step 8,ii)

Internal model performance assessment in GLM and other maximum likelihood modelling
methods is typically based on variation measures such as the sum of squares or deviance, or
penalised versions thereof, such as penalised information statistics like AIC and BIC (cf. Hastie
etal. 2009). When applied to modelling with binary response variables, these measures are used
under the assumption that the data are of P/A type. Use with PO data therefore either implicitly
implies that uninformed background observations are treated as pseudo-absences or that only
observed presence observations are used in the calculations, as suggested for likelihoods by
Warren et al. (2010). Although Phillips & Dudik (2008) and Warren et al. (2010) suggest that
penalised information statistics for model comparison based upon measures of variation such
as sums of squares or deviance, can be developed for P/A data. This has, however, hitherto not
been done for MaxEnt. Phillips et al. (2006) describe MaxEnt as a ‘[less] mature a statistical
method as GLM or GAM [with] fewer methods for estimating the amount of error in a prediction’.
In this chapter [ review standard methods and approaches for internal performance assessment
of maximum likelihood models, and discuss their applicability to DM by MaxEnt.

The likelihood-ratio test

The strict maximum likelihood explanation of MaxEnt opens for model comparison by the
likelihood-ratio test (e.g., Hastie et al. 2009). Let ¢, and @, denote nested MaxEnt models; Q,_
being a submodel of @, This means that all derived variables in Q,_ are also included in @, and
that @, contains one or more derived variables not included in @, . The likelihood functions for
observed presence observations for Q_and Q,, L, , and L, are combined into the likelihood
ratio, LRH, as follows:

LR, = - (53)

By use of the chi-squared approximation of the log-likelihood ratio (e.g., Hastie et al. 2009) and
inserting (22) for the likelihood functions in (53), we obtain:

2-InLR_, Nszfm[_

L
bt 42
2-In X

-+
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2(nL,-InL_)~x

mg=my_

2(-nInL,~(-nInL)) ~x

mg=mg_

2n(InL,_-InL)~ ) (54)

mg=mg_
where y*  denotes the chi-square (x?) distribution with m, - m_ degrees of freedom. m, and
m,_ denote tf1e number of parameters in the respective models (the intercept 6, 1ncluded) In
terms of variation accounted for, given by (39), we obtain

2n((InLy-v,)-(nL -v))~x*

mt—mt,
2n(v,-v,) ~X2mt_mt—; (55)

i.e,, that 2n multiplied with the difference in variation accounted for by the two models ap-
proximates a chi-square distribution with degrees of freedom equal to the difference in number
of parameters between the two models. In terms of residual variation of the models, given by
(40), we obtain from (54)

2n((w,_-InL) - (w,-InL,)) ~X2mt'mt—

2n ((w,_-w,) ~X2m:-mt7 (56)
The sequential F-ratio test

The likelihood-ratio test can be applied to all pairs of nested models, including the saturated
and null models. Using expression (56) for comparison of @, with the saturated model Q,, and
the fact the residual variation w, of the latter is 0, we obtain

2n (wt-wS) ~ x?

memg_

2nwt ~ x? (57)

n-me-1
where 1 denotes the appropriate degrees of freedom for the saturated model, i.e., the effective
number of independent observations of the response variable. The term ‘-1’ results from the
definition of m, is including the intercept 6. The ratio of two x*-squared distributions, normal-
ised by the appropriate degrees of freedom, is F distributed (Myers et al. 2002). Accordingly, we
obtain from (56) and (57) the F statistic for comparison of nested MaxEnt models Q,_and Q..

(w,-w,)
_ (m-m) _ (w-w)-(n-m-1)
memy_,n-m=1 w, - w, (m,-m,_) (58)
(n-m-1)

This statistic follows the F distribution with m,-m,_and n-m, - m, degrees of freedom. Accord-
ingly, the F-ratio test for comparison of nested models, typically used to compare nested GLM
models (e.g., Sokal & Rohlf 1995, Zuur et al. 2007), also applies to MaxEnt models. The F-ratio
test is used, most often with a pre-selected significance level «, to evaluate the null hypothesis
that the more complex model @,does not explain, or account for, significantly more variation
than the simpler model.

At least three realistic alternatives exist for the appropriate value of the important
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parameter 7 in (58):

1. n = n; the number of observed presence observations. A priori arguments in favor
of n = n are: (i) that the most important parameter in the expression for variation
accounted for (39), the model’s log loss given by expression (29), is x,’, the mean of
derived variable X, over the n presence sites; and (ii) that, in accordance with the
opinion of several authors ( e.g.,, Phillips et al. 2006, Elith et al. 2011) that MaxEnt
is a presence-only rather than a presence-pseudo-absence modelling method, the
values of the derived variable(s) for the observed presence observations (relative to
a static background) are the basic determinants of the model.

2. n=N;the total number of observed presence + uninformed background observations.
Arguments in favour of n = N are: (i) that a model’s log loss given by expression (29)
is not only determined by the term X, , 6, x," and hence, by the values of the derived
variable(s) in observed presence cells, but also by the value of X, in all N grid cells
used in the analysis; and (ii) that the null model against which model performance
is evaluated is the model which predicts equal probability of presence in all N grid
cells. Argument (i) is motivated by the contribution of x,, for all N grid cells i to the
model parameter 6, given by expression (28).

3. n=N-n;the total number of uninformed background observations. The argument in
favour of n = N - n is that the scale on which log loss for a given model is expressed,
is bounded above by In N and below by In n, so that the total variation possible to
account for is In N - In n [expressions (36) and (37)]. n = N - n thus accords with a
view that the n observed presence grid cells serve as a ‘given’ reference with which
the uninformed background cells are compared.

In the ‘Worked examples’ chapter I show, by comparing results of F-tests with different alterna-
tives for n with Maxent runs on randomised data sets, that y = N - n is likely to be the appropriate
degrees of freedom for the residuals in the MaxEnt null model, in accordance with alternative
(3). Inserting for n in expression (58) gives:

(w,-w.)
_ (m,-m,_) _ w-w ) -(N-n-m-1)
mgmy_ ,N-n-my-1 - w, - w, (ml_ mti) (59)
(N-n-m,-1)

The degrees of freedom are given by the number of parameters 6, in the respective models. Each
derived variable of the spline types is associated with one and not with two degrees of freedom
because all values x,, of a ranged spline derived variable (DV) are uniquely determined from z,,
once the position of the knot is fixed.

In terms of parameter values for the optimisation criterion given by (44), Reineking &
Schréoder (2006) show that the A of the F-ratio test corresponds to the (1 - a)-quantile of the y?
distribution with 1 degree of freedom. This follows from (54): the difference in log likelihood
between two models differing in one parameter only is asymptotically y*-distributed with one
degree of freedom, under the null hypothesis that the value of that parameter is zero . Thus, a
= 0.01 corresponds to A = 6.635, a = 0.05 corresponds to A = 3.841, a = 0.1 corresponds to A =
2.706 and a = 0.25 corresponds to A = 1.383.

Sequential F-ratio tests can be used to evaluate the contribution of: (1) one single DV
(see Table 2); (2) one DV or a group of DVs, added to a model with other DVs derived from the
same EV; (3) a set of DVs derived from the one EV; (4) a set of DVs derived from the same EV,
added to sets of DVs derived from other EVs; and (5) one interaction DV between two or more
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EVs already represented in the model, added to a model.
Penalised information statistics

The maximum likelihood explanation for MaxEnt opens for use of regularisation approaches
based upon model optimisation criteria (OC) which use statistics of the penalised likelihood
(PL) type, of the general form given by:

PL = -2 - (log-likelihood) + A- (m +1) (60)

where m is the number of parameters in the model. Penalised information statistics for model
optimisation use the deviance [minus 2 x (the difference in log-likelihood between a model and
the corresponding saturated model)] as a measure of model performance and the number of
model parameters (plus one) to measure model complexity. With A = 2, expression (60) becomes
the AIC (Akaike’s information criterion; Akaike 1973) as given by (cf. Crawley 2007: 353):

AIC =-2-AIC=-2 - (log-likelihood) + 2(m + 1). (61)

With A = In n (where 1 is number of independent observations of the response variable; here
tentatively set to N - n; see above), expression (60) becomes BIC (the Bayesian information
criterion; Schwarz 1978), which penalises model complexity stronger than AIC for larger data
sets (A> 2 forn = 8).

The expression for AIC given by (61) is adapted to MaxEnt models Q, by inserting (22)
and (40) in (61):

AIC,=-2-n-(InL,-InL)+2(m+1)=-2-n-w +2(m+1) (62)

AIC, with A = 2, corresponds to @ = 0.157 in a sequential F-ratio test.
For BIC, the following expression is obtained:

BIC,=-2-n-w +In(N-n)(m+1) (63)
Randomisation tests

Ifrealistic null models can be generated, e.g., by randomisation of the training data, a null-model
approach to model comparison may be advantageous compared to the F-ratio test or penalised
likelihoods because randomisation (permutation, or Monte Carlo) tests have fewer implicit
assumptions. Randomisation tests imply that models @, and Q,are compared by randomising
the targeted EV Z (i.e, the EV that is represented by DVs in @, but not in Q,_) U times, for each
randomisation deriving the appropriate new DVs from the randomised EVs, and finding the
MaxEnt model that corresponds to these DVs. For each of the U + 1 MaxEnt models, Q, and U
models for randomisations of the relevant subset Oij' Qau, a test statistic such as the difference
in variation accounted for by the model, v.orv,, and the variation accounted for by model Qv
is recorded. A p-value for the randomisation test is obtained by counting the number of times,
U,a randomised model performs better than the reference model Q;
+
p= % . (64)

Because all DVs derived from the same explanatory variable make up a dependent variable set,
the randomisation test cannot be applied to individual DVs derived from the EVs. Thus, (direct)
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randomisation tests are available for cases (1), (3) and (5) listed in the chapter ‘“The sequential
F-test’, but not for cases (2) and (5).

The area under the receiver operating curve (AUC)

Receiver operating characteristic (ROC) curve analysis is by far the most extensively used tool
for assessment of the performance of distribution models, now encountered in almost every
DM study (cf. Franklin 2009). ROC curve analysis was developed during World War II as a tool
in signal processing, and is now used in many branches of science. Standard references for ROC
curve analysis are Metz (1978), Hanley & McNeil (1982), Murphy & Winkler (1987), Fielding &
Bell (1997) and Pearce & Ferrier (2000b); also see Phillips et al. (2006).

ROC curve analysis was originally devised to assess the performance of a model Q, the fitted
values of which predicting the real probability of presence of a phenomenon for all instances of
relevance to the study, by use of an independently collected evaluation data set D.. In this original
form, ROC curve analysis therefore applies to the model evaluation Step 11 in the 12-step DM
process of Halvorsen (2012). However, ROC curve analysis can also be adapted to internal model
performance assessment (Phillips et al. 2006). In this chapter, I first explain the basic principles
of ROC curve analysis for model evaluation. Thereafter, | explain how ROC curve analysis can be
adapted to internal model performance assessment of generative MaxEnt models.

Collection of an independent data set D, of P/A observations of the modelled target, to
be used for calibration and evaluation, is described as a separate Step 9 in the DM process
(Halvorsen 2012). The set D, can be described as follows: The ‘instances of relevance’ are sites
d. of unit size, i.e., grid cells. The set D, contains N, grid cells, selected to be representative for
(but not necessarily a random sample of) all possible sites within the area of interest, which
can be the study area or another area into which model predictions are to be transferred (PPM;
Halvorsen 2012). For each site d, values for the observed presence or absence (OPA) vector B
for the P/A data set are obtained; b= 1 means presence and b,= 0 means absence. Note that the
OPA vector B contains N, elements, and that N, is typically different from the number of grid
cells, N, used for model parameterisation.

ROC curve analysis uses B together with model predictions g, for the N, observations
in D . Any output format for MaxEnt model predictions that is monotonously related to the
‘raw output’, i.e,, all five MaxEnt output formats described in the sections ‘Output formats’ and
‘Model calibration and the probability-of-presence output format §’, can be used for ROC curve
analysis because this is a non-parametric statistical method. Only the ranks of the g, are used
in the computations.

The ROC curve is derived from confusion matrices, one for each unique value of q. The
confusion matrices are obtained by a four-step process:

1. For each of the maximally N, - 1 threshold values q,, one in each interval between
consecutively ordered Values of g, (q; < q, < q,,,), transform predictions from the
continuous output scale (g, or other output formats) to binary predictions Q =(q,

- qN ). Presence (g, = 1) is predicted for g, 2 g, and absence (g, = 0) is prealcted
for q,<4q,

2. Foreach threshold value q, and each observation in the evaluation data set D, make a
decision matrix to record the appropriate combination of observed (b)) and predicted
(@,) presence or absence [outcomes (a), (b), (c) and (d) in Fig. 3a].

3. For each threshold value g, construct a confusion matrix by counting the number of
decision matrices with each of the four outcomes (a), (b), (c) and (d) in Fig. 3a; n , n,,
n_andn,

4. From each confusion matrix ( i.e, for each threshold value g ), calculate the four
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(a) Observed presence or absence (OPA), b;
Present (b;=1) Absent (b= 0)
correctly predicted  incorrectly predicted
Predicted Present (§; = 1) presence = true presence = false
presence, positive (@) positive ()
binary model incorrectly predicted  correctly predicted
(RPPP), §; Absent (§; =0) absence = false absence = true
negative (¢) negative(d)
(») Observed presence or absence (OPA), b;
Presences (bi=1) Absences (b= 0)
. N . ng o o n
Predicted Presences (§; = 1) sensitivity vy commission -
presences,
bi del ~ el nc i ng
(II{I;)?)?’)“;I? ¢l Absences (§; = 0) omission S specificity ——

Fig. 3. Receiver operating characteristic (ROC) curve analysis by use of an independent pres-
ence/absence (P/A) evaluation data set D, with N observations. (a) Decision matrix, showing
the four possible combinations of observed (b, and predicted (g,) presence or absence. Deci-
sion matrices are made for each combination of threshold value g, and observation i in D, as
an initial step in ROC curve analysis. A confusion matrix similar in shape to the decision matrix
in (@) is obtained for each threshold value g, by counting the number of decision matrices with
each of the four outcomes, n,n,n, and n - (b) Performance statistics derived from the confu-
sion matrix: fractions of cells with given observed presence status (observed presence, n +n,
or observed absence, n, +n; corresponding to the columns in the matrix as separated by the
thick red line) that are correctly (red fonts) and incorrectly (blue fonts) predicted. Note that
the two performance statistics in the same column sum to 1.

performance statistics (Fig. 3b):

sensitivity = true positive rate = " n+“n. (65)
omission error = false positive rate = " i”n =1 - specificity (66)
commission error = false negative rate = - rf:n =1 - sensitivity (67)
specificity = true negative rate = “ (68)

nb+nd

The ROC plot shows corresponding values for omission error (horizontal axis) and sensitivity
(vertical axes), one point for each unique threshold value. The ROC curve is the (broken) line
that joins these points in order of increasing value for the threshold The sensitivity and the
omission error are independent of each other in the sense that the former indicates the model’s
ability to predict presence correctly while the latter expresses the model’s tendency to predict
presence incorrectly. The model with maximum possible predictive performance predicts pres-
ence and absence correctly for all sites in the evaluation data set. For this model, there exists a
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Fig. 4. Examples of ROC plots; FPR = false positive rate (omission error), TPR = true positive rate
(sensitivity). (a) Typical ROC curve resulting from a model with ‘fair’ predictive ability (AUC =
0.781). The ROC curve starts in the upper right corner of the graph and joins points in order
of increasing predicted value g, (the red numbers are values of g, x 100). The dotted red line
from the upper right corner via the upper left corner to the lower left corner is the ROC curve
for a model with maximal predictive power (AUC = 1.000). The continuous red line along the
diagonal is the ROC curve for a random model (AUC = 0.500). (b) ROC curves for models with
maximal predictive power, evaluated with P/A data (left curve; AUC = 1.000) and with PO data
(right/lower curve; AUC = 0.900), respectively. The curve for PO data corresponds to a data set
in which 20 % of the observations are observed presences.

threshold value (or a range of threshold values) g, for which g, 2 g, = b,= 1 (observed presence)
and g, < q, = b, = 0 (observed absence). In the case exemplified by Fig. 3, the ROC curve runs
from the upper right corner in the ROC plot via the upper left corner to the lower left corner
(Fig. 4a). The ROC curve for a model that randomly assigns presence or absence to observations
in the evaluation data set will tend to follow the diagonal (Fig. 4a) while models with predictive
power between these extremes will have ROC curves somewhere in between. The area under
the ROC curve, AUC, is therefore a measure of the predictive power of a model, judged over the
entire range of possible threshold values. AUC can be calculated by the ‘trapezoid method’ (e.g.,
Pearce & Ferrier 2000b) by which the areas of all trapezoids under the ROC curve along the
horizontal axis are summarised.

AUC values are often used for qualitative characterisation of distribution models. Perhaps
the most frequently cited among such qualitative scales is a three-grade scale often referred
back to Swets (1988). According to this scale, models are characterised as ‘useful’ if 0.7 < AUC
< 0.9 and as ‘good’ or ‘excellent’ if AUC > 0.9 ( e.g., Kharouba et al. 2009, N6brega & de Marco
2011, Reside etal. 2011). However, in his original paper Swets (1988) advocates a more cautious
and context-dependent interpretation of AUC values: 0.5 < AUC < 0.7 as ‘rather low accuracy’;
0.7 < AUC < 0.9 as ‘useful for some purposes’; and AUC > 0.9 as ‘rather high accuracy’. A more
explicit proposal of 0.7 and 0.9 as separating points on a three-grade scale was proposed by
Pearce & Ferrier (2000b) who use the terms ‘poor’, ‘reasonable’, and ‘very good’. Aradjo et al.
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(2005) expanded this scale to a five-grade scale on which 0.5 < AUC < 0.6 is termed ‘fail’; 0.6 <
AUC < 0.7 ‘poor’; 0.7 < AUC < 0.8 ‘fair’; 0.8 < AUC < 0.9 ‘good’; and AUC > 0.9 ‘excellent’. Many
modified versions of these scales exist, and many authors have defined their own two-grade
scale by defining a threshold AUC value to distinguish between ‘random’ and ‘good’ models;
e.g., 0.6 (Trivedi etal. 2008, Parisien & Moritz 2011), 0.7 (Cordellier & Pfenninger 2009, Reside
etal. 2011), 0.75 (Elith et al. 2006, Stachura-Skierczynska et al. 2008), and 0.85 (Brown et al.
2008); see Merckx et al. (2011) for review.

Translations of AUC values into qualitative characterisations of model performance lack
theoretical foundation (cf. Raes & ter Steege 2007, Nobrega & de Marco 2011): what is a good
and what is a poor model depends on data properties, the modelling purpose and, notably, the
costs of erroneous predictions (Swets 1988). Furthermore, AUC is affected by data properties,
e.g., sampling bias in the evaluation data (Raes & ter Steege 2007). The assumption that AUC is
fully independent of the prevalence of the modelled target (e.g., Vaughan & Ormerod 2005, Raes
& ter Steege 2007, Franklin 2009, Mouton et al. 2010) does not seem in general to hold true. In a
recent study, Santika (2011) used simulated data to demonstrate that the relationship between
AUC and prevalence is context dependent, influenced by the strength of the relationship between
the modelled target and the dominant explanatory variable, the shape of the overall response
curve with respect to this variable, and the degree to which the response is adequately modelled.
Other studies in which relationships between AUC and prevalence have been addressed, include
Luoto et al. (2005), Franklin et al. (2009), and Marmion et al. (2009).

When applied to P/A evaluation data, AUC expresses the probability that, if one pres-
ence cell and one absence cell are drawn at random from the pools of all presence and absence
cells, respectively, the model will predict a higher RPPP value for the presence cell than for the
absence cell (Hanley & McNeil 1982). The AUC is closely related to the Gini coefficient of size
inequality (Gini 1912) and the non-parametric Wilcoxon-Mann-Whitney statistic (Phillips et
al. 2006). More specifically, the area under an empirical ROC curve, calculated by the trapezoid
method, is equal to the Wilcoxon-Mann-Whitney two-sample statistic applied to the two samples
of presence and absence observations, respectively (DeLong et al. 1988). In case of ties (two
or more evaluation grid cells with equal value of g, of which some are presences and some are
absences), the AUC value will depend on the way ties are handled, i.e., the ordering of tied pres-
ence and absence observations, in the following way: AUC is lower if absence observations are
placed before presence observations in the ordered list and vice versa. AUC values provided by
Maxent software provides a balanced treatment of presences and absences in case of ties (cf.
Phillips et al. 2006).

With PO data, e.g., the data used for parameterisation of a generative MaxEnt model, AUC
can be calculated by replacing omission error with the probability that presence is predicted for
an uninformed background cell picked at random. However, real presence cells are also likely
to be included among uninformed background observations (Phillips et al. 2006). While with
P/A data AUC is interpreted as the probability that the model predicts a higher RPPP value for
a random presence grid cell than for a random absence cell, AUC with PO data is interpreted
as the probability that the model predicts a higher RPPP value for an observed presence grid
cell picked at random than for a randomly picked uninformed background cell (Phillips et al.
2006, 2009). The maximum achievable AUC value for PO data is not 1 but 1 - C/2, where C
is the frequency of observed presence of the modelled target in the set D of grid cells used
for the study (Phillips et al. 2006). The explanation for this is that a fraction C of uninformed
background cells, drawn randomly for comparison with observed presence cells, is expected
to be real presence cells and that, by chance, one half of these cells is expected to have higher
and one half is expected to have lower RPPP values than a random presence cell (cf. Fig. 4b).
Similarly, the minimum achievable AUC value for a PO data set is not 0 but /2. PO-based AUC
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values (AUC,,) calculated by the trapezoid method therefore have to be ‘scale-corrected’ to be
comparable to AUC values for presence/absence data (‘AUC,,’):

C
AUC,, -
AUCCOrr = —1-c (69)
Although AUC_values are calibrated to a linear relationship with 'AUCPA', cases can be con-

corr

structed for which AUC__will exceed 1 (or be negative). The theoretically maximal value for
AUC__ is obtained by inserting 1 for AUC, in (69):

1-C
AUCcorr,max - 1- C_ - 2(1 — E) (70)

The difference in AUC between nested models t and t , the latter being a submodel of the former,
can be used for internal model performance assessment:

AAUC,,, = AUC, - AUC, , (71)

The extent to which the areas under two ROC curves differ can, in principle, be tested by use
of the general theory of Wilcoxon-Mann-Whitney U-statistics ( e.g., DeLong et al. 1988), which
allows the standard deviation of AUC values to be estimated [also see Hanley & McNeil (1982)
and Pearce & Ferrier (2000b)]. However, confidence intervals constructed from these estimates
are broad because the comparison between ROC curves relies on the implicit assumption that
the two curves represent two random models rather than two nested models. Accordingly, this
test is extremely conservative, with strong preference given to the simpler of the two nested
models. Randomisation tests, by which (the) extra variable(s) of the more complex model is
randomised U times and the number of times a randomised model has higher AUC than the
model with the extra derived variable itself is counted, may be a good alternative, as suggested
by Raes & ter Steege (2007) and applied by Reside et al. (2011). Such tests do, however, rely
on the assumption that the same sampling bias is present in data used for evaluation and for
parameterisation of the model. A p value for the test that the extra derived variable does not
add significantly to the performance of the model, can obtained by expression (64).

Even though uncritical use of AUC has been rightfully criticised (e.g., Lobo et al. 2008),
AUC has retained its position as a good overall indicator of model performance ( e.g., Elith et
al. 2006, Wisz et al. 2008).

Variable contribution to model (Step 8,iii)

Quantitative information about the relative contributions of single EVs, sets of DVs derived from
one EV, or single DVs, to multi-variable MaxEnt models, are important properties of the param-
eterised model that results from Step 8,iii in the 12-step DM process. Variable contribution can
be quantified in several ways. Four variable contribution measures are described here:

1. Byrandomisation procedures, i.e., by re-running the full model several times, each time
randomising the variable the contribution of which is to be quantified. Performance
reduction compared to the model in which variable is not randomised is recorded for
each run. Performance reduction can be quantified by use of any statistic or approach
outlined in the chapter ‘Internal model performance assessment’, e.g., the variation
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accounted for, vV, the fraction of total variation accounted for, V., or the AUC. The
relative contribution of a variable is obtained as the ratio of the mean performance
reduction resulting from randomisation of the variable in question and the sum of
contributions of all variables. Contributions by interaction variables are distributed
equally on the contributing variables. The term ‘permutation importance’ is used for
this procedure as implemented in Maxent software with AUC reduction as perfor-
mance statistic (Phillips 2011).

2. Byresampling of variables, as exemplified by the procedure referred to as ‘jackknifing’
by Phillips (2011), by which the full model is re-run several times, each time leaving
outone variable (an EV, a set of DVs derived from one EV, or a single DV). Performance
reduction is recorded for each variable and the relative contribution calcutated as in
(1). This procedure, with variation accounted for as performance statistic, is imple-
mented in Maxent software as a graphical tool for assessment of variable contribu-
tions. The use of the term ‘jackknifing’ for this ‘leave-one-variable-out’ procedure is
at odds with the normal use of the term, for ‘leave-one-observation-out’ resampling
procedures (Sokal & Rohlf 1995).

3. Bynull-model comparisons,i.e., comparisons between single-variable MaxEnt models
for all variables included in the full model with the null model. Examples of relevant
performance statistics are the AAUC relative to the null model and the fraction of
total variation accounted for (V,) by single-variable models. A variable contribution
statistic is obtained as the ratio of the contribution from the variable in question and
the sum of contributions from all variables.

4. By heuristic methods, e.g., by recording for each step in the iteration process by which
parameters of the final MaxEnt model are estimated [see Dudik et al. (2007) for ex-
planation], the change, positive or negative, in variation accounted for resulting from
changing the value of a model parameter 6,. A relative measure of the contribution
of each derived variable is obtained as the ratio of the sum of changes in variation
accounted for by each DV, X, and the total variation accounted for by the full model.
This measure, which is implemented in Maxent software as ‘percent contribution’,
is dependent on the path to the final model and is therefore regarded by Phillips
(2011) as unreliable.

INTERPRETATION AND TRANSFORMATION OF MODEL PREDICTIONS (STEP 8,iv)

In this chapter [ address interpretation of MaxEnt model predictions in geographical, environ-
mental variables and ecological conceptual spaces. Three output formats, i.e., transformations
of the raw output g, are described, of which two, the cumulative output and the logistic output,
are implemented in the most recent version (3.3.3k) of the Maxent software (Phillips 2011).

Transferring predictions from discrete observation units in geographical and environmental vari-
ables spaces to continuous response functions

Generative MaxEnt distribution models are obtained by use of a datasetD ={d,, .., d, .., d,},
consisting of N observation units (grid cells) in abstract geographical space. Predictions Q =
[9,) - q,, - q,]" from this model are estimates of the relative probability of presence (RPPP) of
the modelled target in each observation unit d. The vector Q can be represented as N points in



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,... 44

discrete environmental variables space, the space in which points d, are placed by their envi-
ronmental characteristics vectors Z along axes defined by the explanatory variables Z.Step 8
in the 12-step distribution modelling process, modelling of the overall ecological response, is
completed when predictions for the N points are used to model a continuous response function,
i.e,, the overall ecological response in continuous environmental variables space. The transla-
tion from abstract geographical space via points in discrete environmental variables space to
response curves in continuous environmental variables space is most easily explained by use
of Bayesian statistical concepts (Phillips & Dudik 2008). In the chapter ‘Outline of the MaxEnt
statistical model’, the quantity modelled by generative MaxEntis denoted Pr (i=1i | b,= 1), while
Pr (b, = 1| i =1i)), the real probability that the modelled target is present in a specific cell i, is
characterised as the ideal output from distribution models. Recall at this point that Pr (b, = 1|
i = i,) cannot be confidently estimated if the prevalence of the modelled target is not known
(Phillips et al. 2006, Ward et al. 2009).

Applying Bayes’ rule to Pr (b, = 1| i = i), the relationship between this quantity and Max-
Ent model ‘raw output’ Pr (i =i | b, = 1) is given as (Phillips & Dudik 2008):

Pr(i=i | b,=1)-Pr(b,=1)
Pr(i=i,)

Pr(b=1]i=i)= (72)

Here Pr (i =i | b, = 1) is the vector of MaxEnt estimates Q = [q,, .., q,, .., q,,]"; Pr (i = i) is the
probability of picking grid cell iy at random from the set of all N grid cells in the study area, which
is L forall i; and Pr (b, = 1) is the prevalence of the modelled target, defined as the mean b of
the P/A vector B. Expression (72) can be simplified as follows:

5
Pr(b=1|i=i)= " =N.q b (73)

==

Solving (73) for q, we obtain

Pr(b=1]i=i,)

q, T3 (74)

Expression (74) shows that the probability distribution Q estimated by MaxEnt is proportional
to Pr (b, = 1] i = i ), the real probability that the modelled target is present in a specific cell i;
(Phillips & Dudik 2008), with ﬁ as proportionality factor.

The MaxEnt prediction g, for any grid cell d in D is obtained by inserting values for the
explanatory variables Z or, if derived variables X have been obtained from ZJ by transformation,
the values X_for these derived variables obtained by the transformation function h using expres-
sion (2), into the parameterised Gibbs function applied in the MaxEnt model. This motivates
for interpretation of the predictions q(X) or, equivalently, g(h(Z)), as ‘relative suitabilities’ in
environmental variables space, at least for all sites Z, (or X)) with environmental characteristics
within the environmental range spanned by observations d. Almost all practical use of MaxEnt
results for spatial prediction (Step 12 in the 12-step distribution modelling process) rests on
such interpretation being valid.

The transfer from the MaxEnt distribution Q in abstract geographical space, expressed
by (72), to environmental variables space occurs in two steps:
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1. ‘Translation’ of predictions g, for discrete points (observation units, grid cells) in
abstract geographical space to points (grid cells) in discrete environmental variables
space by use of the explanatory variable vectors Z or X, for each of the N grid cells in
D and the fact that g, = q(Z).

2. Generalisation from predictions for discrete points, g(Z) to predictions for any site,
q(Z), in a subspace, a hypervolume, of the continuous environmental variables space
[see Halvorsen (2012) for definition of conceptual spaces]. The subspace of interest
is defined by the purpose of the DM study:.

Calibration of MaxEnt models can be considered as a third step in the process by which raw
predictions are ‘transferred’ into to estimates for Pr (b, = 1| i = i ), the real probability that the
modelled target is present in a specific cell 7.

Step (1) starts with replacing 7 = i, one specific grid cell in D, with the set of environ-
mental characteristics of this cell, X, in expression (72):

Pr(X=X,|b=1)-Pr(b=1) Pr(X=X|b=1)
Pr(X,=X,) S Prix=x,)

Pr(b=1|X=X)= -Pr(b,=1) (75)

The focus is thereby shifted from grid cells d, as such to the environmental characteristics of
these grid cells, expressed by the vector X: The probabilities on the right-hand side of (75) are
interpreted as follows (Elith et al. 2011): Pr (b, = 1| X, = X,)) is the probability that the mod-
elled target is present in a grid cell with environmental characteristics given by the vector X,
of values for the m DVs; Pr (X.= X, | b, = 1) is the conditional probability that a presence grid
cell has environmental characteristics given by the vector X ; and Pr (X, = X, ) is the uncondi-
tional probability that a grid cell has environmental characteristics X, . Pr (X,= X, | b, = 1) can
be estimated from PO data while Pr (X, = X)) can be estimated from the set of all N grid cells
in D. As pointed out above, estimating the prevalence Pr (b, = 1) requires access to P/A data.
Accordingly, access to P/A data allows Pr (b, = 1| X;= X)) to be modelled, as desired, while PO
data supplied with environmental information for all grid cells allows modelling of ¢ x Pr (b, =
1] X,= X)) where c is a scalar.

The next small step towards generalisation of predictions is the step from cell-specific
probabilities given by (75) to probabilities for sets of grid cells with equal or similar environ-
mental characteristics. Let X, denote specifications for the vector of values for the m derived
variables, and let n.denote the number of grid cells in D with specifications complying with X..
The elements X, of Xf can be scalars or intervals. Furthermore, let Xm denote one specific grid
cell that complies with the specifications ofo. Applying Bayes’ rule to the set of grid cells with
environmental characteristics complying with X [, we obtain from (75):

Pr(X=X|b=1)-Pr(b=1) _ Pr(X=X|b=1)

Pr(b=11X=X)= Pr(X,=X)) TP =x) Prib=1) (76)
Because, in general, Pr (AU B)=Pr A+ PrB,
Pr(b,=1]X, =Xf) = Ei:X,—EXf Pr (X, =X/n |b=1)= n,: Pr (X, =X/U |b,=1) (77)

Pr(X,=X)= Zi:X,-EXf Pr(X,=X,)=n,Pr(X=X,) (78)
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Solving (77) and (78) for n, shows that the right sides of (75) and (76) are equal. Expression
Pr(X,=X,|b,=1)
Pr(X=X,)
tions q are invariant of which environmental categories X are addressed:

(73) shows that the relatlonshlps between the quotients and the MaxEnt predic-

PriX=X,lb=1) _ PriX=X,h=1 _ _ Pr(X=X|bh=1) 79
Prix=x,) Pr(x=x, X < q(X) = N-Pr(X,=X) (79)

Rewriting expression (73), we obtain

Pr (b, )=Pr (b, =11X=X)=N-q(X)-b (80)

IXEX | IXEX IXEX

Expression (77) applies to all subsets D. of grid cells in D, regardless if the subset contains
one single grid cell d, several grid cells with exactly the same environmental characteristics
vector X;, or many grid cells within a hypercube in environmental variables space. The quo-
tient % given by expression (79), is termed the presence-to-background frequency
ratio, is the ratio of the probability of encountering grid cells with environmental characteristics
X_in the subset of presence grid cells to the probability of encountering X.in the set of all grid
cells.

Pr (X = Xf], Pr (X = X, | b, = 1), and the presence-to-background frequency ratio can be
illustrated by the L-type DV X, in example data set 1" (Fig. 2, Table 3). It can be shown that a Max-
Ent model for Sp with X, as the only DV provides uniform predictions g for each level of X, that
are q(0)=0.0987, q(0.143) = 0.0502, g(0.286) = 0.0256, q(0.429) = 0.0130, q(0.571) = 0.0066,
q(0.714) = 0.0034, ¢(0.857) = 0.0017, and q(1) = 0.0009 (Table 5). Levels of X, are uniform in
number, thus Pr (X, = Xf) == for each of the eight discrete values observed for the DV over the
N =40 grid cells. Of the n = 10 presence grid cells, four have x, = 0, three have x, = 0.143, two
have x, = 0.286, one have x, = 0.429 while none have x,=0. 571 0.714, 0.857, or 1 Accordingly,
Pr(X 0|b =1)= - 1 Pr(X 0.143|b,=1) =15 10 Pr(X 0.286 | b,=1) = 15, Pr (X, = 0.429 |

=1)= 10, and Pr (X, = (0.571Vv 0.714 v 0.857 v 1.000) | b, = 1) = 0. According to expression

Table 5. Predictions from a MaxEnt model for the simulated target species Sp in example data
set 1", using the L-type derived variable (DV), X,, derived from explanatory variable (EV) Z,
in Table 3 as the only DV. Four different output formats for the predictions are given: q = raw
output; g = probability-ratio output; § = cumulative output; § = logistic output, with two values
for the logistic output parameter 7. Log loss of this MaxEnt model is 2.9915, which corresponds
to a value of variation accounted for of v = 0.6973 and a fraction of variation accounted for of
V'=0.5030.

Output  tvalue X1 value
format

0.0000 0.1429  0.2857 0.4286 0.5714 0.7143 0.8571  1.0000

- 0.0987 0.0502  0.0256  0.0130 0.0066  0.0034 0.0017  0.0009
- 3.9460 2.0070  1.0235 0.5197 0.2639  0.1359 0.0680  0.0360
0.4933 0.7441  0.8721 09370 0.9700 0.9870  0.9955  1.0000
0.25 0.3957 0.2499  0.1452 0.0794 0.0420 0.0221 0.0112  0.0059
0.50 0.6627 0.4998 03376  0.2056  0.1161  0.0634 0.0327 0.0176

Qi Q Q: Q- Q
|
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(79), presence-to-background frequency ratios are N - q(X) both for individual grid cells d, and
for groups of grid cells with the same value for the derived variable so that, e.g., 40-0.0987 =
3.948 for x, = 0.000 and 40-0.0256 = 1.024 for x, = 0.286.

Step (2) generalises the interpretation of g, as discrete probabilities q(Xf) [or q(Z )] for
single grid cells or grid-cell groups in discrete environmental variables space to an interpreta-
tion of q(X) [or q(Z)] as a continuous response function, defined for all vectors X, (or Z) in a
hypervolume in the environmental variables space. Note the difference between vectors with
subscripts i, f, and [ here: the first refers to grid cells in abstract geographical space, the second
to grid cells or grid-cell groups in discrete environmental variables space, and the third to points
in continuous environmental variables space. The q(X)) and q(Xf) differ fundamentally from the
q(X). While q(X) can be interpreted as (X.= X, | b,= 1) and q(Xf) can be interpreted as n:Pr (X,
= Xf| b,.:XiGX = 1), q(X) at the outset lacks a specific meaning in environmental variables space
because the constant N is a property of the data model, determined by the conceptualisation of
the study area as a rasterised geographical space with N discrete grid cells, in Step 4 of the 12-
step DM process. Secondly, note that for arbitrary points i in discrete environmental variables
space, the probabilities which appear in expression (75), Pr (b, = 1| X, =X, ), Pr (X.= X, | b, = 1),
and Pr (X, = X, ), and the corresponding probabilities subscripted fin expression (79) become
probability density functions rather than discrete probabilities. Let Pr (b, = 1| X, = X)) denote
the probability (density) that the modelled target is present at a site [ (of unit size, equal to
the size of grid cells d)) with environmental conditions given by the vector X, of values for the
derived variables. The site | may correspond to a grid cell i in D or not. Let Pr (X, = X, | b, = 1)
denote the conditional probability density that a presence site has environmental conditions
given by the vector X, [ f,(X,) in the terminology of Elith et al. (2011); see Appendix 1], and let
Pr (X, = X,) denote the unconditional probability density that an arbitrary site has environmen-
tal conditions given by the vector X, [ f(X,) in the terminology of Elith et al. (2011)]. Applying
Bayes’ rule to sets of grid cells with similar environmental characteristics, we obtain (81) as a
parallel to (75) and (76):

~ . Pr(X=X|b=1)-Pr(h=1) Pr(X=X|b=1)
Pr(b=1[X=X)= Pr (X =X) = T hrex)
Prx=x1b=1) 5

Pr(X,=X,)

-Pr(b=1)=

(81)

Expression (79) shows that the presence-to-background frequency ratio is modelled by N-q
for all points that represent a subset D, of grid cells X in environmental variables space. The
continuous function of best fit to the N discrete values of N-q = f(x')) is obtained as the (smooth)
hypersurface N-q(X)) passing through the centroids of all grid-cell subsets. Thus, the quantity
N-q(X)) estimates the presence-to-background frequency ratio for all sites [ [of unit (grid-cell)

size] in the environmental variables space with values X, for DVs X;:

Pr(X=X|b=1) _ Pr(X=X|b=1)
‘b
Pr(X=X) Pr (X, =X,)

Pr(b=1|X=X)= =N-q(X)) (82)

Transferability of MaxEnt output from the set of N grid cells used to obtain the model to all
grid cells of relevance for the purpose of the study is the reason why MaxEnt modelling can be
performed by use of a restricted set of background observations (D instead of D,) without loss
of generality of the results.
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Elith etal. (2011) provide a different but equivalent explanation why MaxEnt predictions,
given as presence-to-background frequency ratios, can be interpreted as a continuous response
function in environmental variables space. From a machine-learning perspective, maximising the
entropy of @, as defined in abstract geographical space, is equivalent to minimising the relative
entropy of f,(X)/ f (X), i.e., the Kullback-Leibler divergence (Elith et al. 2011: Appendix S2).
From this perspective, MaxEnt searches for the estimate of f,(X) = Pr (X, = X, | b,= 1), the prob-
ability density for the vector of derived variable values conditioned on presence of the modelled
target, which best fits the presence data and which is (overall) as close to f (X)) as possible. In
the terminology of Elith et al. (2011) referred to above, expression (81) becomes

£,(X) RGO
fx) Fx)

The property of MaxEnt that its ‘raw’ output Q can be generalised from a discrete probability
distribution in geographical space to relative predicted probabilities of presence in discrete
environmental variables space and further to an overall ecological response in continuous
environmental variables space by multiplication with N opens for the possibility that MaxEnt
results may potentially be useful for ecological response modelling (ERM), in addition to spatial
prediction modelling (SPM) and projective distribution modelling (PPM). In case of PPM, Max-
Ent can be used both for projection into environmental and spatiotemporal scenarios different
from the study area. In all relevant contexts, the fitted values q(X,) or q(h(Z,)) from a MaxEnt
model can be interpreted in environmental variables space as relative predicted probabilities
of presence (RPPP) in a site of unit size with environmental characteristics vector Z,.

Pr(b=1|X=X)= (83)

.Pr (b,= 1)

Output formats

Raw output (q)

The term ‘raw output’, which is inherited from the Maxent software implementation of Max-
Ent (Phillips et al. 2004, 2006, Phillips & Dudik 2008, Elith et al. 2011), is used for the model
estimates q(X)) as such. The q(X)) are meaningful estimates of the relative predicted probability
of presence (RPPP) of the modelled target in all sites [ of unit size. However, because the sum of
raw output values q(X) over the N grid cells in D is 1, the average of q(X) is g = % and q(X) is
therefore inversely proportional with the number N of background grid cells used in the model-
ling [expression (82)]. This context-dependence of the raw output restricts its direct relevance
to situations where predictions are to be made for the specific set D of background grid cells
d.. In such cases q, are estimates of the probability that a specific presence cell i, selected at
random from all presence cells, is grid cell i; Pr(i =i, | b, = 1). When a MaxEnt model is used to
predict the RPPP in other observation units in D, not included among background observa-
tions (the SPM purpose), or at sites outside the study area or under other scenarios (the PPM
purpose), other output formats are therefore required. These other output formats may also
be advantageous for prediction to D if they express properties of the modelled target that are
more directly relevant to the purpose of the study than the raw output g. Values of g for the
MaxEnt model for Sp with X, as the only DV are given in Table 5.

Probability-ratio output (¢)

In the previous chapter, the presence-to-background frequency ratio was defined by expression
(75) for the N grid cells in D and by expression (79) for subsets fof D with similar environmental
characteristics. Both of these expressions show that g depends on N. A simple transformation
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from g to g by using expression (82), gives

G=Pr(b=11X=x)= TUEAE < N-q(x) (84)
The output format g removes the dependence of MaxEnt raw output g on the number N of
background cells used in the modelling. ¢ given by expression (84) can be interpreted as the
‘presence-to-background frequency ratio’, i.e., the ratio of the probability of encountering grid
cells with environmental characteristics given by X, in the subset of observed presence grid cells
to the probability of encountering X, in the set of all background %I‘ld cells. Elith etal. (2011) use
the term ‘relative sultablllty of one place vs. another’ for g, A in their terminology), and
add that this quantity is ‘giving insight about what features are 1mportant Hirzel et al. (2006)
use the term ‘predicted-to-expected ratio’ for g,; also see Zielinski et al. (2010).

Values of g for the MaxEnt model for Sp with X, as the only DV, given in Table 5, show
that the presence-to-background frequency ratio predicted by MaxEnt varies from about 4 for
X, =0,via2 for X, = 0.1429, t0 0.0360 for X =1 Values ole about 0.29 are predicted to have
‘average suitability’.

g,= 1 means that the probability of presence of the modelled target in site / is estimated
to be equal to the modelled target’s probability of presence in a site chosen at random from the
entire set of background cells. A benchmark for g, is the probability ratio for presence sites in
the saturated MaxEnt model, q,, which is obtained by inserting q, = % into (84):

. 1 N
qi,szN'qi,s=N'7=7

(85)
As will be demonstrated in the ‘Worked examples’ chapter, the ratio % is, however, not an absolute
maximum value for q,; neither for grid cells in D nor for sites with environmental characteristics
outside the range of environmental variation spanned by background grid cells.

Elith et al. (2011: 46) state that the ‘raw’ output from Maxent software, i.e., q, are esti-
R
(84) shows that is not the case and that, in order to be interpreted as a probability ratio, the
raw output g, has to be transformed to ¢, by multiplication with N.

The interpretation of g as the ratio of probabilities of presence vs probabilities of encoun-
tering sites with a specific environmental characterisation has important implications for our
understanding of sampling bias in the context of MaxEnt modelling. Phillips et al. (2009) point
out that MaxEnt estimates q (and hence g) are susceptible to sampling bias in the presence data.
Let us assume that the grid cells in D provide accurate information about the unconditional
probability Pr (X, = X)) of encountering sites with a specific environmental characterisation.
This assumption will be met when all grid cells in the study area, or a random sample of these,
are used as background cells [but see Lahoz-Monfort et al. (2007)]. The q(X)) will be unbiased
estimates of the relative suitability of a site X, in environmental variables space if and only if the
observed presence observations make up an unbiased sample from the population of all presence
observations in the study area (or, more precisely, all grid cells in which the modelled target is
present). Almost all PO data sets used for DM are, however, strongly biased (Kodric-Brown &
Brown 1993, Vaughan & Ormerod 2003, Kadmon et al. 2004, Edwards et al. 2006, Hortal et al.
2008, Lobo 2008, Robertson et al. 2010, Wolmarans et al. 2010, McCarthy et al. 2011).

Sampling bias can be divided into geographical bias, i.e., overrepresentation of some,
and underrepresentation of other parts of the study area in the data set compared to the areas
occupied by these parts, and environmental bias, i.e., overrepresentation of some, and under-
representation of other parts of the environmental variables space in the data set compared
to their frequency in their study area (Wolmarans et al. 2010). The reliability of g as estimates

mates of the ratio , i.e., of the presence-to-background frequency ratio. Expression
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of relative suitabilities rests on the extent to which the bias in the observed presence data D,
is ‘outweighed’ by similar sampling bias in the set D_of uninformed background cells used in
the modelling (Raes & ter Steege 2007, Elith et al. 2011). Subsets of uninformed background
observations sampled to match the bias in presence observations, are referred to as ‘target
background’ by Elith & Leathwich (2007); also see Phillips & Dudik (2008), Phillips et al.
(2009) and Elith et al. (2011). Most experiments carried out so far indicate that target-group
background observations improve the predictive power of MaxEnt models compared to models
with random background observations (Phillips & Dudik 2008, Yates et al. 2010, Merckx et al.
2011; but see Loiselle et al. 2008).

Cumulative output (§)

The cumulative probability distribution corresponding to the raw output Q = {q} is defined
by

§=X,. 4, (86)

The cumulative output format is available in Maxent software (Phillips et al. 2006) as 100-g
(Phillips & Dudik 2008). Cumulative output expresses the probability that a specific presence
cell i, selected at random from all presence cells, has a raw output value lower than g, The
value g, thus acts as a threshold value in the predictive context, separating the N grid cells into
predicted presence cells (g, > ) and predicted absence cells (g, < q). Then, g(q) gives the prob-
ability that absence is erroneously predicted for a randomly chosen observed presence cell. This
quantity is the probability of erroneously predicting absence for an observed presence cell, i.e.,
the false negative rate, or omission rate [see the chapter ‘ The area under the receiver operat-
ing curve (AUC)’]. Assignment of cumulative output values to sites I that are not grid cells in D
rests on the assumption that the set of background grid cells is a representative sample from a
hypervolume in environmental variables space that comprises site L.
Values of g for the MaxEnt model for Sp with X, as the only DV are given in Table 5.

Logistic output (§)

The raw output g, the probability-ratio output g and the cumulative output ¢ all express rela-
tive suitabilities in environmental variables space (cf. Elith et al. 2011), i.e.,, RPPP values or
transformations thereof. Phillips & Dudik (2008) provide an output format (also see Dudik &
Phillips 2009, Elith et al. 2011) claimed by them to be more intuitively interpretable: the logistic
output §. The term refers to the ‘logistic format’ of g, i.e., that § maps q onto a [0, 1] scale and
thus resembles probabilities of presence, i.e., PPP values:

quel" L

q(z) = (87)

The logistic output parameter 7, which is to be chosen by the user, fixes the value §(X")for a site
with average values for all derived variables x, over the n presence grid cells in D, X" = (X', ...,
X, .. X ). Elith etal. (2011) refer to X" as ‘an average presence site’. This interpretation of 7 is
confirmed by first inserting for X" in (24) to obtain g(X"), followed by obtaining In L from (29),
multiplication of q(X") with In L, simplification of the product by use of the definition of 6, given
by (28) and, finally, by inserting in (87):
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q.= €%+ L1 Oik &> q(X) = 2% + 21 0%
1
N m m
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g(X) ent=eboto=1

_ q(X)emt T _
q(X*)_1—r+rq(X”)e‘"L _1—r+1—_T (88)

Logistic output is the default output format in recent versions of the Maxent software, among
others recommended by Phillips & Dudik (2008), Elith et al. (2011) and Phillips (2011). This
recommendation is motivated by the use of a probability (0-1) scale and by interpretability in
terms of ‘suitability’ compared to an ‘average presence site’. The resemblance of § to real prob-
abilities of presence, Pr (b, = 1| X) is, however, only superficial because the ‘logistic output at
an average presence site’, given by the logistic output parameter 7, does not correspond to the
prevalence b. With presence-only data, the choice of T will by necessity be more or less arbitrary.
In the absence of good reasons for choosing another value, Phillips & Dudik (2008) suggest 7 =
0.5, which brings § onto a 0-1 scale on which the value for an ‘average presence site’ is 0.5.

Values of G ,. and §, i.e,, logistic output for values of 7 of 0.25 and 0.5, respectively, for
the MaxEnt model for Sp with X as the only DV, given in Table 5, show that the logistic output
is less spread out than the raw output g. This is evident from the ratios q(0)/q(1) = 109.67,
G,,5(0)/4,,;(1) = 66.66, and §,.(0)/§,.(1) = 37.65. For both values of the parameter 7, the
‘average presence site’ is found to correspond to X, = 0.143.

MODEL CALIBRATION AND THE PROBABILITY-OF-PRESENCE OUTPUT FORMAT ¢ (STEP 10)

The logistic format § brings MaxEnt output onto a probability-type of scale, resembling prob-
abilities of presence (PPP), Pr (b, = 1| X, = X)). This resemblance is, however, only superficial:
unbiased estimates of Pr (b, = 1| X, = X)) require explicit knowledge of the prevalence b of the
modelled target in the study area or access to a P/A data set that can be used to estimate b. Nev-
ertheless, the recommendation of the logistic format by Phillips and co-workers demonstrates
the importance of well-calibrated models for practical use of DM results, as also emphasised,
among others, by Pearce & Boyce (2006), Reikeking & Schroder (2006) and Gaston & Garcia-
Vifas (2010). The extent to which a model is well calibrated can be inspected on a calibration
plot (e.g., Pearce & Ferrier 2000b: Fig. 3, Edwards et al. 2005: Fig. 3, Edvardsen et al. 2011: Fig.
3). The calibration plot is a graph with the mean or median RPPP value, g, for each class u into
which the range of predicted probabilities is divided, on the horizontal axis, and the frequency
of presence (FP), 5,,' i.e,, the frequency of presence sites in each class, calculated from the P/A
data set (Halvorsen 2012), on the vertical axis. A well-calibrated model is characterised by
corresponding values for ¢, and b, that are close to the line Eu = q, (Pearce & Ferrier 2000b). A
confidence interval for each Eu can be obtained by considering the set of N, evaluation points
in interval u as N, binomial trials, each with probability Eu (Edvardsen et al. 2011).

Insertion of (82) into (81) shows that both of the raw output format q and the probability-
ratio output format q are expected to be linearly related to the frequency of presence (FP):
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Pr(b=1|X=X)=N-qX)-b=q,-b (89)

According to expression (89), the expectation of MaxEnt output is good calibration to prob-
abilities of presence (PPP). In practice, however, this is not the case. Because N - q(X,) is not
bounded above by X, N-q(XI)- b is not bounded above by 1. Use of (89) to calibrate MaxEnt
output is therefore 1nappropr1ate for the same reason that ordinary linear regression models
(LM) are inappropriate for modelling response variables of the probability type ( e.g., Crawley
2007). In regression, this problem is resolved by customary use of GLM with logit link function
and binomial errors (logistic regression) instead of LM. This motivates for similar measures to
be taken if transformation of MaxEnt output to a probability ([0,1]) scale is required.

Pearce & Ferrier (2000b) provide a detailed review of DM calibration, among others show-
ing how estimates for PPP, here termed probability-of-presence output and denoted g, can be
obtained from RPPP on the g, or ¢, formats by use of independent evaluation data. Consider a
P/A evaluation data set B, which consists of N, observation units of similar size as grid cells in
the PO data set D. Assume that RPPP estimates from a MaxEnt model and an observed presence
or absence (OPA) vector, B, are available for all N, grid cells. If the evaluation data set is a ran-
dom sample of P/A observations of the modelled target, prevalence can be estimated directly
as the frequency of presence in the evaluation data set (Halvorsen 2012). However, any strati-
fied random sample of grid cells for which P/A data are obtained, e.g., by use of MaxEnt model
output g, and g, for stratification (Edvardsen et al. 2011), can be used for model calibration.
This makes collection of appropriate calibration and evaluation data possible also for species
and other targets of DM that are too rare for random sampling to be practically and economi-
cally feasible (e.g., Phillips & Elith 2010). Transformation of g, into g, is performed by fitting a
calibration model to the RPPP-OPA relationship. Pearce & Ferrier (2000b) show that b, can be
appropriately modelled as the response to g, (or g,) by a logit-logit relationship, which ensures
that both the RPPP values, the response b, and the fitted values of the model, qi, are expressed
on probability ([0,1]) scales:

ln— ﬁln—+ﬁ

Values for b, fitted by this model are the targeted probability-of-presence output g, for arbitrary
sites [ of unit grain size. g, is obtained by back-transformation, i.e., by solving (90) for q;:

=0 ln +B,
-~ g
qlV - eﬁ’-]n T _q’+BO
1- q,
‘.11
. eﬂllnl_—57+ﬁo
q,= e, (91
1+ eﬁ' Mg Bo

The parameters f (the slope) and 3, (the intercept) of the model given by (90) can be interpreted
as the spread and the bias, respectively, of the RPPP-OPA relationship (Pearce & Ferrier 2000b).
Methods also exist for testing the hypotheses that 8, does not deviate from the expected value
of 0 (Miller et al. 1991), and that 8 does not deviate from some scalar value.
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SOME CONSIDERATIONS FOR EVALUATION OF MAXENT MODELS (Step 11)

Since procedures for model evaluation are generally applicable to distribution models regard-
less of choice of modelling method, only a few considerations that specifically apply to MaxEnt
models will be included here. The reader is referred to Halvorsen (2012) for a full overview of
the many good reasons that exist for evaluating distribution models by independently collected
presence/absence (P/A) data

The obvious choice of performance statistic for model evaluation by independent P/A
data is the prediction error, PE (Hastie et al. 2009), obtained as the sum of (squared) PEs for
each observation in the evaluation data set. A logical choice of MaxEnt output format for cal-
culation of PE is, in my opinion, the probability-of-presence output g given by expression (91).
Alternatively, the logistic output format § may be used, for each model with the logistic output
parameter t chosen to minimise prediction error (E. Heegaard, personal communication).

The most frequently used performance statistic for assessment of the performance of
distribution models is the AUC, which is explained in the chapter ‘ The area under the receiver
operating curve (AUC)’. AUC is also applicable to the three strategies for model evaluation
recognised by Halvorsen (2012), in addition to evaluation by independent P/A data, which
use PO data: evaluation by data-splitting, evaluation by data resubstitution, and evaluation by
repeated resubstitution of data. PE is not available as performance statistic when true absence
observations are missing.

MAXENT MODELLING WITH PRESENCE/ABSENCE DATA

Use of P/A data for modelling the overall ecological response (Step 8)

P/A data, such as the independent P/A data collected for model calibration and evaluation
(Step 9 in the 12-step DM process) can also be used in Step 8 to assist modelling of the overall
ecological response of the modelled target. This is accomplished as follows: Firstly, a method
for external model performance assessment is selected as a replacement for the internal model
performance method of Step 8,ii. Prediction error (PE) and AUC on independent P/A data, which
are unavailable for generative MaxEnt modelling with PO data, are eligible. Secondly, model
selection (Step 8,ii) is performed by one of the procedures described in the chapter ‘Model
selection’, using the replacement performance assessment method.

When P/A data are used in Step 8 of the modelling process, statistical tests such as the
likelihood-ratio test, the F-ratio test, or randomisation tests, do not, at the outset, appear to
be needed because the model’s ability to balance model fit and model complexity is expressed
directly by the performance statistic. However, the probability that addition of a random vari-
able gives rise to a model with a slightly higher value for the performance statistic increases
with increasing number of EVs, or DVs derived from these EVs, to be tested. This is referred
to as the multiple testing problem by Legendre & Legendre (1998). Randomisation tests may
therefore be useful also when independent P/A data are used in Step 8, e.g., to determine a
minimum threshold value for change of the performance statistic which corresponds to a pre-set
significance level, e.g., = 0.05, in the randomisation test. As a shortcut, a pre-defined threshold
AAUC value can be used as model improvement criterion, i.e., to assess if a more complex model
is better than a simpler model. Choice of such a threshold AAUC value should be guided by
data-set properties and previous experience with other data sets or, preferably, by randomisa-
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tion tests on the data in question. Empirical evidence from worked examples will certainly be
useful. Unpublished results of . Auestad et al., (in prep.) suggest that AAUC values in the range
0.005-0.010 may be reasonable. In the absence of a AAUC value that can be reasonably argued
for, alternative models should be obtained by use of different AAUC threshold values, and the
resulting models compared.

A note on discriminative MaxEnt models

In a DM context, MaxEnt is almost exclusively used with PO data [but see Wollan et al. (2011)].
The MaxEnt method does, however, also apply to P/A data. Predictions from discriminative
MaxEnt models, i.e.,, MaxEnt models parameterised by use of a P/A response variable, have a
different interpretation than predictions from generative MaxEnt models. Furthermore, since
P/A data are usually obtained by systematic or random sampling, response data for discrimina-
tive MaxEnt modelling are likely to have low bias compared with response data for generative
MaxEnt modelling.

The response variable (Y) used in MaxEnt modelling is the same in generative and dis-
criminative MaxEnt: the probability that one specific presence cell i, selected at random from
all presence cells, is grid cell i; Pr(i = i, | b,, = 1). However, when Y is the vector B of observed
presences or absences of the modelled target rather than the observed presence (OP) vector C,
the frequency of presence grid cells is an unbiased estimate for the prevalence of the modelled
target:

b= (92)

==

The raw (q), probability ratio (¢q) and cumulative (¢) output formats have the same interpre-
tation in discriminative as in generative MaxEnt. However, insertion of (92) into expression
(89) shows that with P/A data, an unbiased estimate for the probability-of-presence output is
obtained directly as

Pr(b,=1|X,=X)=N-q-b=N-q, §=q, n. (93)

However, like in generative MaxEnt models, Pr(b, = 1|X)) given by (93) is not bounded above by
1 because g, is not bounded above by % (see the chapter ‘Probability-ratio output’). Calibra-
tion of model output to a [0, 1] scale is therefore required, This can be accomplished by fitting
of the logit-logit function given by expression (90); see the chapter ‘Model calibration and the
probability-of-presence output format ¢'.

All model selection methods and all methods and approaches for internal model
performance assessment that apply to generative MaxEnt models also apply to discriminative
MaxEnt models.
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WORKED EXAMPLES

MATERIAL: SIMULATED DATA SETS
Two simulated data sets are used for the worked examples.

Example data set 1

Example data set 1 is similar to example data set 1" except for the addition of two explanatory
variables. The study area is rasterised into 40 grid cells, arranged in 8 rows x 5 columns (Fig.
2a). The set of observation units is denoted D, ={d, , .., d, ,, .., d, ,  }. A simulated target species
‘Sp1’ (= Sp in example 17) is observed in n = 10 (25 %) of the N = 40 grid cells in D (Figs 2a, 5a).
No information is available about eventual presence or absence of Sp1 in the remaining N - n
= 30 uninformed background grid cells.

The environmental data set Z, consists of four explanatory variables, Z] G=1,.,s;
s = 4), each recorded for every grid cells inD;Z, =z a2 e 2y o Zy g 1" Z, , indexes northlng
(‘Y coordinate’) in the rasterised geographical space representation of the study area (Fig. 2b)
while Z . indexes easting (‘X coordinate’) in this space (Fig. 2c). Z, , and Z, , are obtained as
vectors of random numbers, drawn from a uniform distribution [0 1]; Z, m0d1f1ed so that
three randomly chosen presence cells were given the maximum value of 1. The convention for
sorting and indexing of grid cells described in the chapter ‘Theory: Data sets’ is adopted: the
observed presence subset D, , i = 1-10, contains observed presence grid cells, while i = 11-40
are uninformed background grid cells. Within each subset, grid cells are numbered consecutively
by columns within rows from the ‘SW’ corner. Thus, the five grid cells in the lowermost row are
indexed 1, 2, 11, 3 and 4, respectively, and the five grid cells in row 4 from below are indexed 10
and 17-20, respectively. The observed presence (OP) vector C, = [c, , .., ¢, ,, .., € ,,]" contains
information about observed presence (c,,= 1) or unknown presence or absence status (c,,=
0). Explanatory variables Z,  to Z , were ranged i.e, linearly rescaled to a [0,1] scale, to obtaln
L-type variables X, , to X1 L (see Flgs 5a-d). X, and X, , are discrete variables w1th values
that make up closed arithmetic sequences starting at 0 and ending at 1, with steps of L % and 1 =
respectively (Figs 5a-b). Pr (x 5 <£)=0.125 for all integers ¢ € [0,7] and Pr (z 2 “)=0.2
for all integers c € [0,4].

The frequency of observed presence (Halvorsen 2012) of Sp1 with respect to derived
Varlable X, ,, decreases markedly with increasing value of X,  from 0.8 atx,, =0toOatx,

(Flg 5e). The frequency of observed presence with respect to X, , varies but little, from

0 375 atx,, =0to 0.125 atx,, = 1. No clear patterns of variation in frequency of observed

presence was found with respect to X, , and X, , (Fig. 5f). Frequency of observed presence is
an important data-set property because estimates from MaxEnt, given as the probability-ratio
output format g, express as the ratio of the probability that the modelled target is presentin a site
with vector of values for explanatory variables Z, (here represented by derived variables X ) and
the probability thata site is characterised by Z (here represented by X ). Because the prevalence
of Sp1 is unknown, the frequency of observed presence calculated from PO data is expressed on

arelative scale as the probability for ¢, ;= 1 conditioned on x ie,Pr(c,=1]x

1,1L,i 1,2L,i

V)L 1,jL,i)'
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L1, for environmental variable (EV) Z, , which equals
in the 40 grid cells in the study area D,. (b) Values x,, . for EV
Z , which equals DV X , . (c) Values x, , . for EVZ ,, which equals DVX, . (d) Valuesx,, . for
EV Z , which equals DVX, , . (e) Frequency of observed presence as a measure of the aggre-
gated performance of the modelled target Splwith respect to X, and X, (f) Frequency of
observed presence of Sp1 with respectto X, , and X,  , . Observed presence of Sp1 is indicated
by orange-coloured grid cells in (a-d). Red-coloured grid cells in (c) are observed presence

cells with X3 = 1.

Fig. 5. Example data set 1. (a) Values x
the derived variable (DV) X,

AL
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Example data set 2

The study area for example data set 2 is rasterised into 256 grid cells, arranged in 16 rows x
16 columns (4 x 4 squares, each divided into 4 x 4 grid cells; Fig. 6a). The set of observation
units is denoted D, ={d, , .., d,,, ..., d, . }. A simulated target species ‘Sp2’ is observed in n = 48
(18.75 %) of the N 256 grid cells in D,. No information is available about eventual presence
or absence of Sp2 in the remaining N - n = 208 uninformed background grid cells. Observed
presence is given by the observed presence (OP) vector C, = [c, ,, ..., , , - €, 55, ]" According to
the convention for sorting and indexing of grid cells, i = 1-48 denote observed presence grid
cells, making up the observed presence subset D, , and i = 49-256 denote uninformed back-
ground grid cells.

The environmental data set Z, consists of five explanatory variables, Z, . (i 1,..,s5=5),
each recorded for every grid cell in D,; Z,= [Zzllj, s Zo o Zy 256]]T Asin example data setl,Z,,
indexes northing (‘Y coordinate’) in the rasterised geographlcal space representation of the
study area while Z, , indexes easting (‘X coordinate’) in this space (Fig. 6a). Z, , increases from
the ‘SW’ to the NE corner in each square, thus reflecting finer-scaled varlatlon (Fig. 6a). Z,,
and Z, , are obtained as vectors of random numbers, drawn from a uniform distribution [0, 1]

Z, W1th the modification that three randomly chosen presence cells were given the maximum

247

Value of 1. Explanatory variables Z, | to Z,  were ranged to obtain L-type variables X, | .. X, .
X, ., X,, and X, , are discrete varlables w1th Values that make up closed arithmetic sequences
starting at 0 and ending at 1, with steps of L TR L and 1 respectlvely (Fig. 6a) Pr (x, 15) =
Pr(x,,= ] 0.0625 for all 1nteger numbers c € [0, 15] and Pr (x =0)=:=0.0625,Pr(x,,
=%)=E_01875 Pr(x,,= 3) ——031253ndPr(x =1)= ——04375

The frequency of observed presence of Sp2 Wlth respect to derived variable X, has
a distinct maximum at z,, = 0.1875, decrease rapidly from this maximum towards X, = 0,

and levels off gradually towards X,,, = 1, resulting in a truncated, right-skewed frequency-of-
observed-presence curve (Fig. 6b). The frequency-of-observed-presence curve with respect to
X, is irregular, more or less flat-topped for x,, < 0.6, and levels off gradually towards x,, =1

(Fig. 6b). Frequency of observed presence with respectto X, ,, decreases from 0.4375 forz, ,=0

to 0.1339forz,, =1, i.e, from the ‘SW’ to the ‘NE’ corner in each square (Fig. 6b). The frequency
of observed presence with respect to X, , and X, ., varies irregularly (Fig. 6¢c).

EXPERIMENTS FOR TUNING THE F-RATIO TEST

Methods

Two small series of randomisation experiments were performed to evaluate the three alternative
values of the parameter 7, the effective number of independent observations in MaxEnt models
(see the chapter ‘The sequential F-ratio test’). ny is required for determination of the appropri-
ate degrees of freedom to be used in the F-ratio test. For each of the two example data sets 1
and 2 (D, and D,), 100 random derived variables X, ,and X, (] =1,..,100) of the L type were
obtained as sets of 40 and 256 random numbers between 0 and 1. One MaxEnt model without
regularisation, @, ., where u =1, 2 denotes the example data set, was obtained for each of the 2
x 100 random derived variables by use of customised Excel spreadsheets. For each model, the
variation accounted for, v, the fraction of total variation accounted for, VW., and the residual
variation, w, , were obtained by expressions (39), (40) and (41), respectively.
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originally recorded on an ordinal scale from 1 to 4, are shown in each cell. Observed pres-
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which equals the derived variable
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ence of the target species Sp2 is indicated by orange-coloured cells. (b) Frequency of observed

X

presence of Sp2 with respect to X, ,

with respectto X, , and X, ..

X,, and X, .. (c) Frequency of observed presence of Sp2
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The appropriate value of the parameter 7 has to satisfy the following three conditions:

1. Vu = 1 pecause one random derived variable, on average, ‘explains’ 1 5f the total
variation (the residual variation after fitting the null model) in a data set.

2. The number of F-ratio tests for comparison of models @, . with null models @, for a
given value of u that are significant at a given level a is close to 100-a.

3. The two sets of 100 p-values obtained in F-ratio tests for comparison of models Q, ;
with null models @, are uniformly distributed over the interval [0,1]. This is motlvated
by the expectation that for the correct value of 1, the sets of p-values corresponding
to the sets of F values are random samples of numbers from [0, 1].

The extent to which alternative values for 7 satisfied conditions (1) and (2) was evaluated
separately for each combination of three n-values and two series of experiments u. Condition
(1) was tested by the one-sample t-test ( e.g., Crawley 2007): the hypothesis 17" =1 was tested
against the two-sided alternative hypothesis. The combining probabilities test (Fisher 1954,
Sokal & Rohlf 1995) was used to combine the results of the two tests for each value of n (u =1, 2).
Condition (2) was evaluated by calculating the p value for each F-ratio test, counting the number
of F-ratio tests significant at the a = 0.05 level, and testing this number for deviation from the
expected number by an exact binomial test (against the two-sided alternative hypothesis).

For each series of experiments u, the value of n that best satisfied conditions (1) and (2)
was tested for consistency with condition (3) by a three-step procedure, using the Kolmogorov-
Smirnov (K-S) one-sample test (Sokal & Rohlf 1995): (i) One hundred vectors, each with 100
elements randomly drawn from the uniform distribution [0,1], were obtained. (ii) The vector
with 100 p-values obtained in the 100 F-ratio tests of models Q as compared with the null
model quo, was compared for distributional similarity with each of the 100 random vectors.
Since there were 100 random vectors, 100 K-S tests were made. (iii) The number of K-S tests
significant at the a = 0.05 level was tested for deviation from the expected number of 5 by an
exact binomial test (against the one-sided alternative hypothesis, ‘greater than’).

All statistical analyses other than MaxEnt modelling were performed in R, version 2.11.1
(Anonymous 2010).

Results

The mean fraction of total variation accounted for by the sets of random explanatory variables
were V, = 0.0327 + 0.0042 (SE of the mean) and V, = 0.00495 + 0.00076, respectively. These
values corresponded closely to the expected values for V derived from condition (1) forn=N-n
(p=0.8793 and 0.8453, cf. Table 6). The test of the hypothe51s V = ﬁ for n = N was indicatively
significant (p = 0.0713) for example data set 1 and not 51gn1f1cant (p = 0.1692) for example
data set 2. The combining probabilities test for n = N was indicatively significant (x*, = 8.8551,
p =0.0654).

The number of significant F-ratio tests out of 100 tests for each combination of data
set and value for 1 was close to the expected value of 5 for n = N - n (Table 7). For n = 0, no
significant tests were obtained for any of the data sets, while for n = N 11 and 7 significant tests
were obtained for the two data sets, respectively. Applying the exact binomial test to the results
of all 200 F-tests showed that the observed number of significant tests deviated significantly
from the expected number, both for = 0 and for n = N (Table 7). For n = N - n, the observed
number was equal to the expected number, 10.

Frequency distributions for p values obtained in F-ratio tests with n = N - n were close



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,... 60

Table 6. One-sample t-tests of the null hypothesis l7u = %} (against the two-tailed alternative
hypothesis) for the three alternative choices of 1 in the expression for the F-ratio. The null hy-
pothesis corresponds to condition (1) for appropriate specification of . u = example data set,
Vu = mean fraction of total variation accounted for in MaxEnt models obtained for 100 random
derived variables.

Value for u=1(V =0.0327 £ 0.0042) u=2 (V. =0.00495 + 0.00076)
4 t value p value 4 t value p value
expected expected
n 0.1000 -16.026 <0.0001 0.0208 -20.948 <0.0001
N 0.0250 1.823 0.0713 0.0039 1.385 0.1692
N-n 0.0333 0.152 0.8793 0.0048 0.1957 0.8453

Table 7. Exact binomial tests (against the two-tailed alternative hypothesis) of the null hypoth-
esis that the number of F-ratio tests for the given value for the parameter n that are significant
at the a = 0.05 level equals 5. Tests were made separately for each example data set u and for
the two data sets together.

Value for n u=1 u=2 u=1+2
# of p value # of p value # of p value
significant significant significant
tests tests tests
n 0 0.0118 0 0.0118 0 <0.0001
N 11 0.0085 7 0.2559 18 0.0116
N-n 6 0.4680 4 0.8719 10 0.8339

to uniform (Fig. 7). For both example data sets, the lowest p value obtained for any of the 100
single Kolmogorov-Smirnov tests by which the vector of p values from F-ratio tests was com-
pared with vectors of 100 random numbers was p = 0.0541, giving a p-value of 1.0000 for the
one-sided exact binomial tests.

n =N - n satisfied conditions (1), (2) and (3) for both example data sets, and is therefore
most likely to be the appropriate value for 7.
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Fig. 7. Frequency distributions (counts) for p values obtained in F-ratio tests (with n =N - n)
for comparison of MaxEnt models Q, for 100 random environmental variables with null models
Q,, (a) Example data set 1. (b) Example data set 2.

MAXENT MODELLING OF SIMULATED DATA SETS

Methods

Obtaining derived variables by transformation of explanatory variables

Continuous DVs, i.e., DVs of the linear (L), monotonous (M), and deviation (D) types, were obtained
for each of the four explanatory variables (EVs) Z, (j=1,..,4) for example data set 1 and for
each of the five EVs ZZJ. (j=1,.., 5) for example data set 2. One DV of each type was derived; the
M and D types were represented by the quadratic (Q) and variance (V) valuables, respectively
(see Table 2 for transformation functions).

Spline variables, i.e., DVs of the forward hinge (HF), reverse hinge (HR) and threshold (T)
types, were constructed only for EVs for which at least one of the MaxEnt models for derived
variables of the L, Q, or V types were associated with MaxEnt models that were significantly
better than the null model, judged by the F-ratio tests. The significance level a = 0.05 was used
as model improvement criterion in all F-ratio tests. Spline DVs were selected by the following
procedure: For each of the HE, HR and T variable types, a series of one-variable Maxent models
Q, were obtained without regularisation for knot positions in the open interval (0, 1). The frac-
tion of total variation accounted for, V,was calculated for each model in each series by expres-
sion (41). A graph of V, as a function of knot position (referred to as V,-knot graph) was used
to identify eventual local maxima for V, in the open interval (0,1). HE, HR and T variables were
constructed for all knot positions that corresponded to a distinct local maximum value for V. A
local maximum was considered as distinct if it was the maximum of V, in an interval of breadth
0.2 units, centered on the position of the knot. If no distinct local maximum was found, no spline
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variable of that type was derived from the explanatory variable in question.
Interaction variables, i.e., DVs of the product (P) and covariance (O) types, were only consid-
ered for pairs of EVs that were both represented in the Maxent model (cf. Step 4c in Table 4).

MaxEnt modelling

For each example data set, five MaxEnt models were obtained by standardised procedures as
follows:

(1) By manual forward stepwise selection of DVs and EVs, following the procedure outlined
in Table 4. The following issues were considered in particular detail: (i) comparison of model
improvement criteria (Step 1a); (ii) construction of DVs of the spline type (Step 1c); (iii) com-
parison of frequency-of-observed-presence curves with respect to DVs of different types; and
(iv) comparison of predictive performance among DVs of different types (Step 2b).

The sequential F-ratio test, given by expression (64), i.e.,, with n = N - n, was used as the
main model improvement criterion in all comparisons between nested MaxEnt models. Par-
simonious sets of DVs for each EV (Step 3) and multi-variable MaxEnt models (Step 4) were
obtained by using o = 0.05 as criterion for an individually significant contribution to the model.
This corresponds to a subset selection regularisation parameter of A = 3.841; see the chapter
‘Model selection strategies’. In addition, randomisation tests by which each DV was randomised
99999 times, were used to compare all single-variable models with the null model. The dif-
ference in AUC_ _ between nested models (AAUC_ ) was used descriptively for comparison
of nested MaxEnt models, i.e., without a statistical test; see the chapter ‘The area under the
receiver operating curve (AUC)'.

(2,3) By the ‘standard Maxent procedure’, using automated selection of DVs and ¢,-
regularisation, without crossvalidation. Two models were obtained by the Maxent software,
using default options and settings: (2) with L-type variables derived from all EVs; and (3) with
all DVs derived from all EVs.

(4,5) By the ‘standard Maxent procedure’, using automated selection of DVs and ¢,-
regularisation, with 5-fold crossvalidation. Two models parallel to (2) and (3) were obtained
by the Maxent software with default options and settings, but with response data (observed
presences for the modelled target) divided into five subsets; for D, with 2 observations each
and for D, with 9,9, 9, 10 and 10 observations each. Each subset was sequentially left out from
the data used to parameterise five MaxEnt submodels; the final MaxEnt model Q was obtained
by averaging predictions from the five submodels.

The five MaxEnt models were compared with respect to: (1) the number and identity of
DVs included; (2) the fraction of total variation accounted for, V; (3) AUC_, , for crossvalidated
models 4 and 5 calculated both for training and test data; (4) variable contributions (VC). Four
VC measures, one obtained by each of the four procedures outlined in the chapter ‘Variable
contribution to model’, were calculated for each single EV, for sets of DVs derived from one EV,
or for single DVs (whichever appropriate): (i) ‘Permutation importance’ (Phillips 2011), VC,,
was obtained as the relative reduction in training-data AUC resulting from randomisation of
the variable in question, using AUC of the model with this variable as reference. This is the
only AUC-based variable contribution measure that was comparable among models with and
without crossvalidation. This measure is obtained by a randomisation procedure. (b) ‘Percent
contribution’ (Phillips 2011), VC,, obtained by a heuristic method by which the contribution
of each variable k to the total variation accounted for by the model is obtained as the sum of
changes in variation accounted for (delta log loss) over all steps in the iteration process towards
the final model in which the value of the model parameter 6, was changed; (c) single-variable
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AUC contribution, VC,, and (d) single-variable contribution to the total variation accounted for,
VC,,,» both which is obtained by comparison with the appropriate null model. Single-variable
contributions were calculated from separate MaxEnt models for each DV in the full model as
the ratio of the DV’s contribution and the sum of contributions from all DVs. Contributions of
EVs were calculated as the sum of contributions from DVs derived from the EV in question. For
models obtained by averaging of several submodels, variable contributions were obtained by
averaging all contributions calculated for the five contributing submodels. Plots of ‘jackknife
variation accounted for’ or ‘training gain’ (Phillips 2011), which are results of resampling pro-
cedures provided by the Maxent software, were included for illustration purposes.

MaxEnt modelling was performed partly by use of Maxent software (Phillips et al. 2006,
Phillips & Dudik 2008, Phillips 2011), versions 3.3.3e (example data set 1) and 3.3.3k (example
data set 2), partly by use of customised Excel spreadsheets. Apart from a couple of noticeable
exceptions, results obtained by Maxent software and customised Excel spreadsheets were equal
except for rounding errors. Predictions from MaxEnt models are reported in probability-ratio
output format, g, given by expression (84). All statistical analyses other than MaxEnt modelling
were performed in R, version 2.11.1 (Anonymous 2010).

Results: example data set 1

MaxEnt reference models

With a total number of N = 40 grid cells, of which n = 10 are presence cells, log loss values for
MaxEnt reference models for example data set 1 were:

The saturated model Q, ; (expression 36):In L, =Inn=1In10 = 2.3026
The null model @, ; (expression 37):In L, =In N =1n 40 = 3.6889

The probability ratio (g,) for presence sites as predicted by the saturated MaxEnt model using
expression (85) was:

. N _
4,s= 7 =4,

which corresponded to a maximum value of the raw output g, of 110

Construction of derived variables of the spline types

Z, , was the only EV for which DVs of the L, Q or V types resulted in single-variable MaxEnt models
significantly better than the null model, judged by the F-ratio test. V-knot graphs with at least
one distinct local maximum in the interval (0, 1) were obtained for DVs of the HF and T types.
The V-knot graph for HF-type variables had three local maxima, for knot posmons 0.126,0.240,
and 0 420 (Fig. 8). This graph was discontinuous at knot positions %, - Sand & (Fig. 8), at
which values of the transformed DV changed abruptly from a positive value to 0 for all grid cells
with x, , values of 2,4 5 and & respectlvely For T-type variables the V -knot graph followed
a stepW1se curve wfucil was dlscontmuous at knot positions %, %, i, i, s and 6 (figure not
shown) and which had a distinct maximum for knot positions in the interval ( - 7) for which

all observed presence grid cells obtained a transformed variable value of 0.
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Fig. 8. V-knot graph: fraction of total variation explained by single derived variables (DVs) as
function of knot position for DVs of the forward-hinge (HF) type, derived from environmental
variable Z, |: example data set 1. Distinct local maxima are indicated by red dots.
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Fig. 9. Frequency-of-observed-presence curves for target species Sp1with respect to derived
variables (DVs) of four different types, derived from environmental variable Z| : example data
set 1. The DV of type HF is x Le, the DV with knotatx,  =0.240.
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Frequency-of-observed-presence curves for derived variables of different types

Frequency-of-observed-presence curves for the modelled target Sp1 with respect to the three
continuous DVs derived from Z, | resembled each other (Fig. 9). Compared to the curve for the
L variable, the frequency-of-observed-presence curve for the Q variable decreased more rap-
idly from the maximum at (x, , 0= =0). The curve for the V variable decreased even more rapidly
with increasing value of the variable and therefore reached a value of 0 closer to X, =0.The
frequency-of-observed-presence curve for the HF ...,  variable first declined strongly and
thereafter (forx, ..., > 0.1) levelled off more gradually. The four curves in Fig. 9 differed with
respect to the value of the variable above which no presences were observed, in the order V
< Q < HF < L. The T-type variable for a knot in the neighbourhood of x, , = 0.500 ( e.g,, 0.450)
had frequency of observed presence = 0.5 for x =0and frequency of observed presence
=0 forx =1.

1,1T450

1,1T450

Single-variable models and comparison between model improvement criteria

MaxEnt models for DVs derived from explanatory variable Z, , accounted for between 49 %
and 56 % of the total variation in example data set 1 (Table 8) The highest fraction of total
variation accounted for, V, = 0.5557, was obtained for the Q variable. Models for all seven vari-
ables derived from Z, accounted for significantly more variation than expected by a random
DV, judged by both tests (Table 8). The DVs, L, Q and HE.126, obtained the highest AUC_ value,
AUC_ = 0.916. Ranked model performance was only weakly correlated (Kendall’s T = 0.1588,
p =0.6338, n = 7) between V, and F (which were monotonously related to each other) on one
hand and AUC _  on the other hand. The highest maximum probability-ratio-output value was
obtained for the L variable.

None of the MaxEnt models for continuous DVs derived from EVs Z, ¥ (j=2,..,4) accounted
for significantly more variation than expected by a random DV, judged by any test (Table 8).
AUC_ values for these models ranged from 0.476 for the V variable derived from Z , to 0.636
for the L and Q variables derived from Z .. The corresponding p values in F-ratio and randoml-

sation tests were 0.18 < p < 0.29.
MaxEnt models parameterised by manual forward stepwise selection

No DV derived from Z , accounted for variation that was individually significant when added
to the single best DV, X1 1o All two-variable models had AUC_ = 0.916. The highest fraction of
total variation accounted for by any two-variable model was observed for X, ., (V, = 0.5667,
AV,=0.0110, F,,, = 0.662, pF = 0.2822). Based on the model improvement criterion applied,
only one parsimonious set of DVs was obtained for example data set 1: the set with the single
variable X, | derived from Z, ,. Accordingly, the final MaxEnt model obtained by manual forward
stepwise selectlon was the model with X, | as the only DV.

Two-variable MaxEnt models parameterlsed by adding the variables with highest V,
derived fromZ ,and Z , (X, , and X, ,,, respectively) to X, did, however, reveal that DVs can
improve multi- varlable models significantly even if their 1nd1v1dual contribution to explaining
variation is not significant according to the single-variable F-ratio test. This was found to be the
case for X, , whenadded to X, ,, (F-ratio test: p = 0.0476; Table 9). The fraction of total variation
accounted for by the more complex model with both of X,  and X, as DVs was V, = 0.6190, a
larger value than the sum of variations accounted for by the models with X, | and X, 5 as the
only derived variables (V, = 0.5557 and V, = 0.0479, respectively, which sum to 0. 6036) This
shows that fractions of total variation accounted for do not obey the triangular inequality. The
variables X, | and X, ,, were uncorrelated (Kendall’s 7 = 0.0434, p = 0.7067, n = 40).

The probablllty ratio value ¢, = 4 predicted for presence sites by the saturated MaxEnt
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Table 8. Example data set 1: properties of MaxEnt models for single derived variables (DVs),
derived from explanatory variables (EVs) Z, (j=1, .. 4). DVs are coded by type and identity
of the EV from which they were derived in accordance with Table 2; for DVs of the spline type
the position of the knot is added to the code. V.= fraction of total variation accounted for; AUC-
wn = AUC value, corrected for use with PO data; Fdfl'dfz, pF = F statistic and associated p-value,
respectively, for F-ratio tests for comparison of models with the null model; df1 and df2 denote
the numbers of degrees of freedom for the numerator and the denominator, respectively, which
are 1 and 27 in all tests; pRand = p-value for randomisation tests for comparison of models
with the null model (u = 99999 permutations); g, = maximum probability-ratio output value

predicted by the model.

EV DV Vt AUCcorr Fdfl,dfz pF pRand qmax
zZ, X, 05030 0916 27324  <0.0001  <0.0001  3.947
X1 0.5557 0.916 33.771 <0.0001 <0.0001 3.221
X 0.5306 0.884 30.521 <0.0001 <0.0001 3.028
b S 05258 0916 29939  <0.0001  <0.0001  3.182
b S, 05419 0908 31943  <0.0001  <0.0001  2.787
X, s 05525  0.884 33331  <0.0001 <0.0001  2.400
X, 1o 04943  0.833 26394  <0.0001  <0.0001  2.000
zZ, X, 00291  0.607 0.810 03761 02546  1.442
120 0.0286 0.607 0.794 0.3808 0.3161 1.307
v 0.0095 0.527 0.259 0.6149 0.5868 1.168
Z, X, 0.0422 0.636 1.189 0.2852 0.2305 1.521
130 0.0479 0.636 1.358 0.2551 0.1885 1.678
L3 0.0058 0.476 0.158 0.6941 0.6967 1.117
z, X . 0.0025  0.533 0.068 07963 07753  1.139
X4 0.0014 0.533 0.039 0.8449 0.8174 1.132
X 0.0039 0.540 0.105 0.7484 0.7520 1.106

model was exceeded by both two-variable models (Table 9). Both of these models had larger
AUC_ values than the best one-variable model; the largest value (AUCCorr =0.937, AAUC =
0.021) was observed for the model with Xi1q and X, (Table 9).

1,3Q

MaxEnt models parameterised by automated variable selection and € -regularisation

Maxent auto models without crossvalidation, parameterised by use of L-type variables and by
all variables, respectively, contained 2 and 3 derived variables and the fractions of total varia-
tion were V, = 0.5064 and V, = 0.5482, respectively. The regularised fractions of total variation
accounted for (i.e., the fraction of total variation accounted for, calculated from penalised log
loss, In /4, instead of log loss In L ) were V[ =0.3619 and Vt = 0.5056, respectively. Both of these
models had AUC_ = 0.933. The corresponding models obtained by crossvalidation accounted
for less variation that the respective models without crossvalidation despite AUC values were
larger; AUC_=0.937 and 0.946, respectively (Table 10).

corr
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Table 9. Example data set 1: properties of two-variable MaxEnt models. Derived variables
(DVs) are coded by type and identity of the explanatory variable (EV) from which they were
derived in accordance with Table 2. V, = fraction of total variation accounted for by two-variable
model; AV = fraction of total variation accounted for contributed by the added DV; AUC__=AUC
value, corrected for use with presence-only data; F,, .., pF = F statistic and associated p- Value
respectively, for F-ratio tests for comparison of models with the reference model with X 2
the only DV; df1 and df2 denote the number of degrees of freedom for the numerator and the
denominator, respectively, which are 1 and 26 in both tests; and ¢,___= maximum probability

ratio output value predicted by the model.

DV in DV Vt AVL‘ AUCcorr Fdfl,de pF qmax

reference added

model

Xl,lQ X, 0.5849 0.0291 0.924 1.825 0.1884 4.645
X 0.6190 0.0633 0.937 4.323 0.0476 4.830

1,1Q 1,3Q

Comparison of final MaxEnt models

The final (Man) model obtained by manual forward stepwise selection with a = 0.05 in sequen-
tial F-ratio tests as model improvement criterion only contained one DV. One additional DV
was added to this model if the model improvement criterion was slightly relaxed. The resulting
two-variable model is denoted Man+. Models built by the ‘standard Maxent procedure’ with
default options and settings including ¢ -regularisation contained 2-3 DVs when built with-
out crossvalidation (Auto|L and Auto|All) and 4-11 DVs when built with crossvalidation (the
Auto|L|Xval and Auto|All|Xval models in Table 11).

The fractions of the total variation accounted for by the two Man models, both obtained
without £ -regularisation, and by the four Auto models, all obtained with ¢ -regularisation,
were of comparable magnitudes; 0.50 < V, < 0.62 (Table 11). The highest V, value was obtained
for the two-variable Man+ model. AUC_ values for four of the six models were closely similar
(AUC_, =0.933-0.937) while the 11-variable crossvalidated model parameterised by use of all
DVs (Auto|All|Xval) had AUC_ = 0.946 and the manual one-variable model (Man) had AUC
=0.916.

Predictions from the six models were strongly correlated; all vectors Q of MaxEnt output
had pair-wise Kendall’s correlation coefficients > 0.88 (Fig. 10). All models distinguished clearly
between grid cells with x, , > 0.5 for which no presences were recorded and grid cells with x;
< 0.5 (Fig. 11). The Auto|A11|Xva1 model (Fig. 11d) and the Man+ model (Fig. 11b) stood out
from the other models by having vectors of predictions that were very strongly correlated (Fig.
10) and by slightly lower pair-wise correlation coefficients with vectors of predictions from the
other models. Predictions from the Man+ model (Fig. 11b), partly also the Auto|All|Xval model
(Fig. 11d), varied considerably more among neighbouring grid cells than predictions from the
other models, which mainly reflected variation along Z, ,. Man+ was the only final model for
which predictions for some grid cells exceeded the probablhty ratio for presence sites in the
saturated MaxEnt model given by expression (85), which for example data set 1 was g, = % =4
(see Fig. 11b).

Results obtained by the four variable contribution measures were partly inconsistent

corr



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,... 68

Table 10. Example data set 1: properties of final MaxEnt models, parameterised by the ‘standard
Maxent procedure’, i.e,, automated selection of derived variables (DVs) and £, -regularisation
with default settings. Model char. = Model characteristics: Auto = model parameterised by the
‘standard Maxent procedure’ with default options and settings, including ¢ -regularisation; L =
model parameterised by use of L-type DVs, derived from the four explanatory variables (EVs);
All = model parameterised by use of all DVs derived from all EVs by transformations outlined in
Table 2 (only one of the HF variables from Z, , X, ..., was used); Xval = final model obtained
by averaging five models obtained by 5-fold crossvalidation; DV # = number of DVs included
in model, the identity of these DVs, coded by type and identity of the EV from which they were
derived, is given in a footnote, for models obtained by crossvalidation the number of DVs in single
models is given in brackets; Vt and V, = regularised and unregularised fraction of total variation
accounted for in a model; AUC__=AUC value, corrected for use with PO data; F‘mclfz and pF are
the value of the F statistic and the associated pF value, respectively, for an F-ratio test by which
a MaxEnt model is compared with the null model, df1 and df2 denote the number of degrees of
freedom for the numerator and the denominator, respectively; g__ is the maximum predicted

value, as given by the probability-ratio output format.

Model char. DV# V. v, Auc_ dft,df2 F, . pF q..
Auto|L 2! 03619 05064 0933 2,26 13337 0.0001 3.532
Auto|All 32 05056 05482 0933 3,25 10.111 0.0002 2.388
Auto|L|Xval ~ 4°(1-4) 03098 05342 0937 - - - 3.377
Auto|All|Xval ~11¢(2-5) 04610 05986 0946 - - - 2.468
DVs: 1Xl,lL + X1,3L; 2Xl,lQ + Xl,lT.450 + X1,3Q; 3X1,1L + Xl,ZL + X1,3L+ X1,4L;

4‘Xl,lL +X +X +X +X + Xl,ZQ + X1,3L+ X1,3Q +X1,3V + Xl,4-L +X

1,1Q 1,1v 1,HE240 1,1T450 1,4V

Man

(08825 Man+

09479 109331 ____] AutolL

(09667 109148 " 109806 ____| AutoAll

(09473 © 7109016 _ 109660 109616 ___] AutolL|Xval

0.8978 1 0.8972 1 0.8936 ; 0.9021  0.9175 | Auto|All[Xval

Fig. 10. Matrix of Kendall’s rank correlation coefficients T between vectors of predictions from
the six Final MaxEnt models for example data set 1 (n = 40). Model characteristics are given in
Table 9. All T correspond to p values < 107°.
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Table 11. Example data set 1: comparison of final MaxEnt models. Model char. = Model charac-
teristics: Man = model parameterised by the manual procedure for forward stepwise selection
of derived variables (DVs) and explanatory variables (EVs) outlined in Table 4, using the F-ratio
test with significance level a = 0.05 as model improvement criterion; Man+ = two-variable model
obtained from Man by including the marginally significant DV X, ., in addition to X, .; Auto =
model parameterised by the ‘standard Maxent procedure’ with default options and settings,
including ¢ -regularisation; L = model parameterised by use of L-type DVs derived from the
four EVs; All = model parameterised by use of all DVs derived from all EVs by transformations
outlined in Table 2; (only one of the HF-type variables from Z1 " X1 1p240 WAS used); Xval = final
model obtained by averaging five models obtained by 5-fold crossvalidation]; DV # = number
of DVs included in model, the identity of these DVs, coded by type and identity of the EV from
which they were derived, is given in a footnote, for models obtained by crossvalidation the
number of DVs in single models is given in brackets; V, = (unregularised) fraction of total vari-
ation accounted for by a model; AUC_ =AUC value, corrected for use with PO data; VC,, VC,,,

C,,cand VC,, = variable contributions calculated for each EV by four different measures (see

text for explanation), expressed as fractions of the sum of contributions by all EVs.

Model char. DV # vV AUC

ey
<

VC VC VC VC

t corr PI PC AUC FVA
Man 1t 0.5557 0916 1 1.000 1.000 1.000 1.000
1,2 - - - -
1,3 - - - -
1,4 - - - -
Man+ 22 0.6190 0.937 1 1.000 0.902 0.746 0.921
1,2 - - - -
13 0.000 0.098 0.254 0.079
1,4 - - - -
Auto|L 23 0.5064 0.933 1 0.317 0.987 0.754 0.879
12 0.683 0.012 - 0.045
13 0.000 0.001 0.246 0.076
Auto|All 3* 0.5482 0.933 0.936 1.000 0.846 0.956

[y
i

0.064 0.000 0.154 0.044

2o e
B W

0.318 0960 0.601 0931
0.214 0.003 0.155 0.022
0.282 0.013 0.197 0.047
0.186 0.025 0.048 0.001
0.878 0982 0906 0978
0.030 0.011 0.024 0.005
0.055 0.006 0.055 0.017
0.037 0.001 0.015 0.001

Auto|L|Xval 45 (1-4) 0.5342  0.937

L
B W N =

Auto|All|Xval  11°(2-5) 0.5986  0.946

LN
W =

NN NNNNNNNNNNNNNNNNNNNNNN

=
=

DVs: X 102X 10+ Xisg XK+ X s "X o+ X + X o X X XXX X

1 1Q’ 1 1 3Q’ 1,1L 1, 3L’ 1,1Q 1,1T450 1 3Q’ 1,1 1,2L 1,3L 1, 4L’ 1,1Q

X +X +X +X +X FX X +X +X,

1,HF.240 1,1T.450 1,2Q 1,3Q 1,3V
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(a) (b)

(d)

>4
2.82-4

2-2.82
1.41-2
1-141
0.5-1
0.25-0.5
0.125-0.25

0.063-0.125
0.031-0.063
<0.031

Fig. 11. Map representation of predictions for the modelled target Sp1 in example data set 1,
given in probability-ratio output format ¢. (a) The Man model, parameterized by the manual
procedure for forward stepwise selection of derived variables (DVs) and explanatory variables
(EVs) outlined in Table 4, using the F-ratio test with significance level o = 0.05 as model im-
provement criterion. (b) The Man+ model, a two-variable model obtained from the Man model
by including the marginally significant DV X, ,  in addition to X , . (c) The Auto|All model, pa-
rameterized by the ‘standard Maxent procedure with default optlons and settings, including
¢ -regularisation, by use of all DVs derived from all EVs by transformations outlined in Table 2.
(d) The Auto|All|Xval model, which is similar to the Auto|All model except for being built with
5-fold crossvalidation.

(Table 11). Permutation importance (VC,) deviated most strongly from the others, by its esti-
mated contribution of only ca. 0.3 from Z_ , to the Auto|L and Auto|L|Xval models. In contrast,

the contribution from Z, | was larger than 0 8 according to the two measures based upon fraction
of total variation accounted for (VC,,,and VC, ). According to the AUC-based measure (VC, ),

contributions from Z, , were intermediate between these extremes (VC, . > 0.6). This was in
accordance with the relatlvely much higher AAUC_ (compared with the null model AUC_ of
0.5) than V,values for DVs derived from EVs Z Z 13 and Z, ,than from Z, | (Table 8).

1,2’

Results: example data set 2

MaxEnt reference models

With a total number of N = 256 grid cells, of which n = 48 are presence cells, log loss values for
MaxEnt reference models for example data set 2 were:

The saturated model Q, ; (expression 36):In L, =Inn=1In 48 = 3.8712
The null model @, (expresswn 37):InL,=In N =1n 256 = 5.5452

The probability ratio (¢,) for presence sites as predicted by the saturated MaxEnt model
using expression (85) was:

. N
d,,s= > =5333,

n

which corresponded to a maximum value of the raw output g, of ﬁ .
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Construction of derived variables of the spline types

Single-variable MaxEnt models that were significantly better than the null model, judged by
the F-ratio test, were obtained for continuous DVs, i.e., DVs of the L, Q or V types, derived from
the three EVs Z, , Z, , and Z, ,. V-knot graphs with one distinct local maximum in the interval
(0, 1) were obtalned for HF HR and T variables derived from Z, , (Fig. 12a) and for HF and T
variables derived from Z,, (Fig. 12b). Additional, indistinct local minima could be observed on
some V -knot graphs. V- knot graphs for HF-type variables derived both from Z,, and Z, , were
dlscontmuous at knot posmon = 12 (Fig. 12). For T-type varlables the V- knot graph followed
a stepwise curve which was discontinuous at knot positions 1—6 where u =1, .., 15 (not shown
in Fig. 12). The T-type variable derived from Z, , had two distinct local maxima, of which the
lesser (for knot position ~ 0.1) coincided with the (global) maximum for the HR-type variable
and the greater (for knot position = 0.650) coincided with the maximum for the HF-type vari-
able. The T-type variable derived from Z, , had one distinct maximum only, for a position of the
knot close to the position of the maximum for the HF-type variable. No distinct maximum within
(0,1) was found for the HR-type variable.

One spline variable (of the HR type) derived from explanatory variable Z, , had a distinct
local maximum in (0, 1).

Frequency-of-observed-presence curves for derived variables of different types

Frequency-of-observed-presence curves for the modelled target Sp2 with respect to the three
continuous variables derived from Z, resembled each other (Fig. 13a); all had one distinct
mode. This mode was displaced towards lower values for the derived variable from the L via
the Q to the V variable. Frequency-of-observed-presence curves with respect to DVs of the HR
and HF types with knots atx, | =0.150 and x, ,, = 0.600, respectively, were also closely similar;
frequency maxima (> 0.2) were found for the value 0 of the respective DVs from which the
frequency of observed presence gradually decreased. For values of the derived variables =
frequencies < 0.1 were observed. The X, , . variable maximised the difference in frequency of
observed presence between grid cells with x =1,%,,, =0.0729 and grid cells with x
=0;0.2562.

Frequency-of-observed-presence curves with respect to the three continuous variables
derived from Z, , also resembled each other closely (Fig. 13b); frequencies of observed presence
around the maximum value of ca. 0.25 were observed for low values of the DVs while the fre-
quencies gradually decreased with increasing DV values. The broadest interval with frequency
of observed presence around the maximum was observed for the L variable (0-0.65) while
the narrowest interval was observed for the V variable (0-0.30). The frequency-of-observed-
presence curve with respect to X levelled off more gradually than the corresponding

2,2HE.612
curves for continuous DVs (Fig. 13b). The X, ., variable maximised the difference in frequency
=1,%,,, = 0.05, and grid cells with x

2,1T.650 2,1T.650

of observed presence between grid cells with x
=0;0.25.

2,2T.700 2,2T.700

Single-variable models and comparison between model improvement criteria

MaxEnt models for DVs derived from EV Z, | accounted for between 2 % and 13 % of the total
variation in example data set 2 (Table 12). The strong gradient in fraction of total variation ac-
counted for from V,, =0.0216 viaV,,,=0.0511to V, , = 0.1262 coincided with the displace-
ment of frequency-of-observed-presence maxima from x,,, = 0.267 viax,,, = 0.040 to x, , =
0.026 (Fig. 13a). The peak of the frequency-of-observed-presence curves was less sharp (and
the curve closer to monotonous) for X, ,, due to higher frequency of observed presence forx,

=0thanforx,  =x,,,=0.X,,  performed the bestamong DVs derived from Z, , judged by all
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(a)

knot = 0.600
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Fig. 12. V-knot graphs: fraction of total variation explained by single derived variables (DVs)
as function of knot position for DVs of the spline main type, i.e., DVs of the reverse hinge (HR),
forward hinge (HF) and threshold (T) types, derived from environmental variables (EVs):
example data set 2. (a) DVs derived from EV Z, . (b) DVs derived from EV Z, . Distinct local
maxima are indicated by red dots.
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Fig. 13. Frequency-of-observed-presence curves for target species Sp2 with respect to derived
variables (DVs) of different types derived from environmental variables (EVs): example data
set 2. (a) EV Z, . DVs of types HR and HF are x and x respectively. (b) EV Z, ,. The

, 2,1HR.150 2,1HE600’
DV of type HF is x, ... ..
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Table 12. Example data set 2: properties of Maxent models for single derived variables (DVs),
derived from explanatory variables (EVs) Z, (j=1, .. 5). DVs are coded by type and identity
of the EV from which they were derived in accordance with Table 2; for DVs of the spline type
the position of the knot is added to the code. V= fraction of total variation accounted for;
AUC_ =AUC value, corrected for use with PO data; F - pF = F statistic and associated p-value,
respectively, for F-ratio tests for comparison of models with the null model; df1 and df2 denote
the number of degrees of freedom for the numerator and the denominator, respectively, which
are 1 and 205 in all tests; pRand = p-value for randomisation tests for comparison of models
with the null model (u = 99999 permutations); g, = maximum probability-ratio output value
predicted by the model.

EV I\% 4 AUC_ Fy e pF pRand V.
z,, X, 0.0216 0.596 4.528 0.0345 0.0370 1.500
X, 10 0.0511 0.596 11.047 0.0011 0.0015 1.510
X, 0.1262 0.708 29.598 <0.0001 <0.0001 1.880
X, iriso 0.0225 0.554 4,723 0.0309 0.0409 1.100
D, G 0.0836 0.650 18.692 <0.0001  <0.0001 1.340
X, 1650 0.0764 0.642 16.955 <0.0001  <0.0001 1.365
z, X, 0.0614 0.660 13.410 0.0003 0.0005 1.924
X2 0.0811 0.660 18.104 <0.0001  <0.0001 1.667
X, 0.0774 0.645 17.195 <0.0001 0.0001 1.590
D, S 0.0989 0.655 22.488  <0.0001 <0.0001 1.364
X, 11700 0.0908 0.642 20.470 <0.0001  <0.0001 1.365
z,, X, 0.0312 0.602 6.595 0.0109 0.0129 1.911
X, 30 0.0260 0.602 5.475 0.0203 0.0230 1.523
X, 0.0048 0.504 0.982 0.3229 0.3139 1.388
X, sirads 0.0287 0.573 6.049 0.0147 0.0102 2.321
z, X, 0 0.0004 0.511 0.088 0.7670 0.7557 1.070
X 10 0.0007 0.511 0.140 0.7087 0.7061 1.057
X, 0.0005 0.511 0.100 0.7522 0.7458 1.044
Z,, X, 0.0090 0.566 1.853 0.1749 0.1780 1.329
X, 5o 0.0087 0.566 1.791 0.1823 0.1808 1.425
X 0.0006 0.485 0.130 0.7188 0.7119 1.049

2,5V

performance statistics (V, ,, = 0.1262; AUC_ = 0.708 which was 0.058 AUC__units higher than
the value observed for the second best DV, XZJHEGOO; Table 12). Models for all six DVs derived from
Z, , did, however, explain significantly more variation than expected by a random DV, judged by
both tests (although tests for X, and X, .. .., were only marginally significant; Table 12). The
broad patterns of ranked model performance given by V,and F on one hand and by AUC on the
other hand were quite similar although X2,1L and X2,1HR.150’ which had similar v, values, differed
with respect to AUC_ by 0.042 units, and the 2.5-fold increase in variation accounted for from
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X, toX,  wasnot reflected in AUC

Thzelslarlatlon accounted for byctclrlre five DVs derived from Z, , varied between narrow limits
(from V,, =0.0614to V,, ..., = 0.0989), as expected from thelr highly similar frequency-of-
observed-presence curves (Fig. 13b). All DVs derived from Z, , accounted for significantly more
variation than expected by a random DV, judged both by the F ratio test and the randomisation
test (p < 0.001; Table 12). No correspondence was observed between V,and AUC.

The linear variable X, , accounted for most variation (V,, =0.0312) among DVs derived
from Z, ., and was judged best by the F-ratio testand by AUC_| and second best by the randomi-
sation test (Table 12). While X, , , X, 5 and X, ., .5 Were SImllar with respect to all performance

measures, X, ,, accounted for a negligible fraction of variation, not significantly more than

expected by a random DV (Table 12).

None of the MaxEnt models for continuous DVs derived from EVs Z, , and Z, ; accounted
for significantly more variation than expected by a random DV, judged by any test (Table 12).
The AUC of these models ranged from 0.485 for X, ., to 0.566 for X, ; and X, .

For the entire set of 21 single-variable models for example data set 2, p values of the F-
ratio and randomisation tests were very closely similar (Table 12), both in terms of numerical
values (Pearson’s product-moment correlation coefficient r=0.99992, p < 107!, n = 14; models
with atleast one p value < 0.0001 notincluded) and rank order (Kendall’s rank correlation coef-
ficient t=0.9560, p < 10°%, n = 14). The fraction of total variation accounted for (V) and AUC_
were nonlinearly related (Fig. 14); AUC_ increased by ca. 0.1 units, from 0.5 to 0.6 and from
0.6 to 0.7, respectively, in response to increase of V, from 0 to 0.03 and from 0.03 to ca. 0.12,
respectively. Nevertheless, V, and AUC__ were 51gn1f1cantly correlated (Kendall's t=0.7671, p
=2-10% n=21).

MaxEnt models parameterised by manual forward stepwise selection

DVs with individually significant contributions to variation accounted for were derived from the

three EVs Z2 " Zz »Z, . No DV gave an individually significant contribution to variation accounted

for when added to the single best DV derived from the same EV (all pF > 0.4, A AUC__ < 0.008;
Table 13). The parsimonious sets of DVs derived from Z, , Z, , and Z, , therefore con51sted of
one DV each.

Two-variable MaxEnt models parameterised by adding one parsimonious set of DVs de-

rived from Z, , or Z2 » consisting of one derived variable each, to the best one-variable model, i.e.,

the model Wlth X, ,,as the only derived variable, both accounted for significantly more variation

than expected of models obtained by adding a random DV, judged by the F-ratio test (Table 14).

EVs Z, and Z, , from which variables X, ,, and X, ..., were derived, were orthogonal (r = 0).

The i 1ncrease in fraction of total variation accounted for resulting from adding X,, ..., to X, .,

AV,=0.0989, was therefore equal to the variation accounted for by the single-variable model
Wlth X (compare Tables 12 and 14). EVs Z,  and Z, , were weakly correlated (r = 0.1462,

2,2HF.612

p = 0.0192, n = 256), and the increase in AV resultlng from adding X, to X, ., AV,= 0.0293,

was slightly lower than the variation accounted for by the single- Varlal;lgé modzellvw1th X, (Vo
= 0.0312). The increase in AUC_ resulting from adding X, ,..., and X, , , respectively, to the
model, were 0.080, and 0.039, respectlvely (Table 14). P- and O-type variables obtained from
Z, and Z,, did not significantly improve the best two-variable model (Table 14).

The fmal MaxEnt model obtained by manual forward stepwise selection was the model
with the three DVs X, . X, ..., and X, , (Table 14). Adding X, , to the best two-variable model
increased the fraction of total variation accounted for by AV,= 0.0185, AUC_ _increased by 0.020
units, and the F-ratio test was significant at the p < 0.05 level (Table 14). P- and O-type variables
obtained from Z,, and Z2 » O fromZ,, and Z2 p were unlikely to improve the best three-variable
model SIgnlflcantly, and were not tested
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Fig. 14. Example data set 2: relationship between AUC_ _, i.e,, AUC corrected for use with PO
data, and fraction of total variation explained, v, for single-variable MaxEnt models for the 21
derived variables of different types derived from the five environmental variables. The trendline
is a lowess smoother.

The maximum probability-ratio (q,) output value predicted by the models increased with
increasing model complexity, but remained below the value predicted for observed presence
sites by the saturated MaxEnt model (5.333) for all models (Table 14).

MaxEnt models parameterised by automated variable selection and { -regularisation

Maxent auto models parameterised by use of L-type variables, without and with crossvalidation,
respectively, were closely similar with respect to fractions of the total variation accounted for
(V,=0.268-0.275) and AUC (AUC_ = 0.720-0.725). Furthermore, vectors of predictions from
these two models were closely similar (Kendall’s 7> 0.999, n = 256; Fig. 15). Maxent auto models
parameterised by use of all 21 DVs derived from the five EVs, without and with crossvalidation,
respectively, were also similar with respectto V, (0.26-0.30), AUC_ _ (0.81-0.83) and vectors of
model predictions (Kendall’s > 0.998, n = 256; Fig. 15) (Table 15). The model obtained without
crossvalidation had nonzero coefficients for 11 DVs while all 21 DVs had nonzero coefficients
in a least one of the five single models that contributed to the crossvalidated model.

Comparison of final MaxEnt models

Because models with and without crossvalidation in the two pairs (L and All models) were closely
similar (Fig. 15), only models without crossvalidation (Auto|L and Auto|All) were compared with
models obtained by manual forward stepwise selection. Also the model Man2, which is similar
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Table 13. Example data set 2: selection of parsimonious sets of derived variables (DVs) for each
explanatory variable (EV): properties of two-variable MaxEnt models. DVs are coded by type
and identity of the EV from which they were derived in accordance with Table 2. V, = fraction of
total variation accounted for by the model; AV, = fraction of total variation accounted for by the
added DV; AUC_ =AUC value, corrected for use with PO data; A AUC = difference in AUC_
between the two-variable model and the one-variable model used as reference; Fdfl,df2’ pF=F
statistic and associated p-value, respectively, for F-ratio tests for comparison of models with a
reference model with only one DV; df1 and df2 denote the number of degrees of freedom for
the numerator and the denominator, respectively, which are 1 and 204 in all tests; qmax = maxi-
mum probability-ratio output value predicted by the model. Properties of the best one-variable
reference model are shown on gray background.

DVinref. DVadded v, AV, AUC_ . AAUC_ Fy . pF G
model
X, v none 01262 - 0.708 - - - 1.880
X, v X, r0o 0.1262 0 0.708 0 0.001 09748 1.878
X, v X, 11650 0.1291  0.0030 0.708 0 0.693 0.4061 1.874
) X, 10 0.1270  0.0008  0.708 0 0.194 0.6601 1.876
X, v X, iR 150 0.1276  0.0014  0.710 0.002 0.327 0.5681 1.870
) X, 0.1270  0.0008  0.708 0 0.187 0.6659 1.876
X, ourerz none 0.0989 - 0.655 - - - 1.364
X, purer2 X0 0.0989  0.0001  0.660 0.005 0.016  0.8995 1.394
D, - X, 0.0989  0.0001  0.662 0.007 0.014 09059 1.411
D, - X, 1700 0.0993  0.0005  0.655 0 0.108  0.7428 1.365
X, ourerz X, 0.0990 0.0002  0.660 0.005 0.043 0.8359 1.423
X, none 0.0312 - 0.602 - - - 1.911
X, X, 3R ass 0.0328 0.0016  0.602 0 0.343 0.5588 2.185

. 230 0.0316  0.0004  0.602 0 0.083  0.7736 2.037

Man2
04338 105357 AutolL

Autol|All

Auto|L|Xval
1 0.5649

0.9550 0.5638 Auto|All|Xval

Fig. 15. Matrix of Kendall’s rank correlation coefficients 7 between vectors of predictions from
the six Final MaxEnt models for example data set 2 (n = 256). Model characteristics are given
in Table 14. All T correspond to p values < 1071,
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Table 14. Example data set 2: selection of MaxEnt models by the manual procedure for forward
stepwise selection of parsimonious sets of derived variables (DVs) for each explanatory vari-
able (EV), as outlined in Table 4, using the F-ratio test with significance level a = 0.05 as model
improvement criterion. DVs are coded by type and identity of the EV from which they were
derived in accordance with Table 2. V.= fraction of total variation accounted for by the model;
AV, = fraction of total variation accounted for by the added DV; AUC__=AUC value, corrected
for use with PO data; F,, .., pF = F statistic and associated p-value, respectively, for F-ratio tests
for comparison of models with a reference model; df1 and df2 denote the number of degrees of
freedom for the numerator and the denominator, respectively, which are 1 and 204 with one-
variable reference models and 1 and 203 with two-variable reference models; c']max = maximum
probability-ratio output value predicted by the model. Properties of the best one-variable refer-
ence model are shown on gray background.

DV in reference DV v, AV, AUC_ Fy aer pF G
model added

X,y none 0.1262 - 0.708 - - 1.889
X, v X, ez 02250 0.0989 0.788 26.022  <0.0001 2.564
X, v X, 0.1555 0.0293 0.747 7.082 0.0084 3.125
X, ot X werr Xoan 0.2435 0.0185 0.808 3.761 0.0249 3.700
X, ot X puwers Xoio 0.2256 0.0006 0.788 0.125 0.7240 2.691
X, ot X wers Xo1a0 0.2278 0.0027 0.790 0.558 0.4559 2.600

to the Man model except for not including variable X, , , is included in the comparison. The final
(Man) model obtained by manual forward selection contained three DVs while four DVs were
included in the Auto|L model and 11 DVs were included in the Auto|All model (Table 16).

The Man and Auto|All models were similar with respect to fractions of total variation

accounted for and AUC_ values; Viian = 0.2435 and VAuto|A]l =0.2688 and AUCCOmMan =0.808 and
AUC = 0.814, respectively (Table 16). Considerably lower fractions of total variation ac-

corr,Auto|All
counted for as well as AUC were observed for models with L variables as input than for models

with all variables as input. Vectors of model predictions were more similar between the Man
and Auto|All models (Kendall’s T = 0.958, n = 256) than between the Man and Man2 models
(Kendall's T = 0.929, n = 256; Fig. 15).

Predictions from the Auto|L models, which did notinclude the X, |, variable or any another
variable that might open for modelling of a unimodal ecological response, differed strongly from
predictions from all other models (Kendall’s t < 0.6 in all pairwise comparisons, n = 256; Fig.
15). This was reflected in different shapes of modelled ecological response curves for Sp2 with
respect to the EV Z, | (Figs 16, 17a): by the Auto|L model, in which Z, | was represented by the
L variable X , a linear response was modelled (Fig. 16¢, 17a), while by the three models that

2,117

included X, 1;,, a truncated unimodel (‘plateau-shaped’) response was modelled (Figs 16a,b,d,

17a). Ecological response curves obtained by use of the Man2 model, with respect to both EVs
Z, and Z,,, differed from response curves obtained by all other models by being smooth (Fig.
16a, 17). Ecological response curves obtained by all other models, which included the X,

variable, had characteristic, ‘saw-toothed’ appearance due to systematic co-variation between
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Table 15. Example data set 2: properties of final Maxent models, parameterised by the ‘standard
Maxent procedure’, i.e,, automated selection of derived variables (DVs) and £, -regularisation
with default settings. Model char. = Model characteristics: Auto = model parameterised by the
‘standard Maxent procedure’ with default options and settings, including ¢, -regularisation; L
= model parameterised by use of all L-type DVs, derived from the five explanatory variables
(EVs); All = model parameterised by use of all DVs derived from all EVs by transformation
outlined in Table 2; Xval = final model obtained by averaging five models obtained by 5-fold
crossvalidation; DV # = number of DVs included in model, the identity of these DVs, coded by
type and identity of the EV from which they were derived, is given in a footnote, for models
obtained by crossvalidation the number of DVs in single models is given in brackets; V[ and V,
= regularised and unregularised fraction of total variation accounted for in model; AUC =
AUC value, corrected for use with PO data; Fdfl,de and pF are the value of the F statistic and the
associated pF value, respectively, for an F-ratio test by which a MaxEnt model is compared with
the null model, df1 and df2 denote the number of degrees of freedom for the numerator and
the denominator, respectively; q__ is the maximum predicted value, as given by the probability-
ratio output format.

Model char. DV # v, V. AUC  dft,df2 F ., pF V.
Auto|L 41 0.0964 0.1087 0.720 4,201 6.128 0.0001 3.573
Auto|All 112 0.2460 0.2688 0.814 11,194 6.483 <0.0001 4.960
Auto|L|Xval 53 (5) 0.0856 0.1096 0.725 - - - 3.474
Auto|All|Xval 21*(9-15) 0.2320 0.2950 0.831 - - - 4.995
DVS: 1‘X2,1L + XZ,ZL + X2,3L + XZ,SL: 2X2,1Q + X2,1V+ X2,1HR.150 + XZ,lHF.600 +X2,1T.650 + XZ,ZHF.612 +X2,3Q + X2,3HR.44-5

+ X, +X  +X ;X +X +X _+X  +X

2,4Q 2,4V 2,517 2,1L 2,2L 2,3L 2,4L 2,517

4
X2,1L + X2,1Q + X2,1V+ X2,1HR.150 + XZ,lHF.600 +X2,1T.650 + XZ,ZL + XZ,ZQ + X2,2V+ XZ,ZHF.612 +X2,2T.700 + X2,3L +X2,3Q
+ X2,3V +X2,3HR.445 + X2,4L + X2,4Q + XZA-V + XZ,SL + XZ,SQ + XZ,SV

Z,,and both of Z, and Z, . Variation among neighbouring grid cells increased with increasing
number of variables in the respective models, from the two-variable model Man2 (Fig. 16a) via
the three-variable model Man (Fig. 16b) to the two Auto models (Figs 16c-d). Both Auto models
included at least one of the random variables Z, , and Z, .

None of the six compared models gave rise to predictions that exceeded the probability
ratio for presence sites in the saturated MaxEnt model of g, = % =5.333, but values of ¢,> 5.333
were obtained for some grid cells in some of the single models that contributed to the cross-
validated model (results not shown).

Results obtained by the four variable contribution measures were in good accordance
(Table 16), expect for permutation importance (VC, ) which in some cases deviated considerably
from the other measures. This is exemplified by EVs Z,  and Z, , for the Auto|All model and for
Z,,and Z, , for the Auto|L model. The tendency in example data set 1 for the AUC-based measure
(VC,,) to put higher emphasis on contributions from individually less strongly significant vari-
ables was also observed for example data set 2. This accorded with the relatively much higher
AAUC_  compared with the null model, than observed for V,values for DVs derived from EVs
Z,,Z,,and Z,_ than from Z, and Z,, (Table 12).

Results of manual forward stepwise model selection (Tables 12-14) and variation ac-
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Table 16. Example data set 2: comparison of final MaxEnt models. Model char. = Model char-
acteristics; Man2 = two-variable model parameterised by the manual procedure for forward
stepwise selection of derived variables (DVs) and explanatory variables (EVs) outlined in Table
4, using the F-ratio test with significance level a = 0.05 as model improvement criterion; Man =
final model with three DVs parameterised by manual forward stepwise selection; Auto = model
parameterised by the ‘standard Maxent procedure’ with default options and settings, including
¢ -regularisation; L = model parameterised by use of L-type DVs derived from the five EVs; All =
model parameterised by use of all DVs derived from all EVs by the procedure outlined in Table
2; Xval = final model obtained by averaging five models obtained by 5-fold crossvalidation;
DV # = number of derived variables included in model, the identity of these derived variables,
coded by type and identity of the EV from which they were derived, is given in a footnote, for
models obtained by crossvalidation the number of EVs in single models is given in brackets;
v, = (unregularised) fraction of total variation accounted for by model; AUC_ = AUC value,
corrected for use with PO data; VC,, VC,., VC, ;. and VC,, = variable contributions calculated
for each EV by four different measures (see text for explanation), expressed as fractions of the
sum of contributions by all variables.

Model char. DV # A AUC_ EV VC, VC,, VC, e VG,
Man2 2! 0.2250 0.788 ZL1 0.506 0.560 0.573 0.561
Zz,z 0.494 0.440 0.427 0.439
Zz,3 - - - -
Zz,4 - - - -
Zz,s - - - -
Man 32 0.2435 0.808 ZL1 0.509 0.520 0.447 0.492
Zz,z 0.475 0.402 0.333 0.386
Zz,3 0.016 0.078 0.219 0.122
Zz,4 - - - -
Zz,s - - - -
Auto|L 43 0.1087 0.720 ZL1 0.101 0.172 0.226 0.175
Zz,z 0.744 0.570 0.377 0.497
Zz,3 0.056 0.185 0.241 0.252
Zz,4 - R - -
ZL5 0.099 0.073 0.157 0.073
Auto|All 114 0.2688 0.814 ZL1 0.372 0.528 0.608 0.687
Zz,z 0.548 0.383 0.145 0.189
Zz,3 0.054 0.072 0.164 0.104
ZL4 0.017 0.001 0.021 0.002
ZL5 0.009 0.015 0.062 0.017
Auto|L|Xval 55(5) 0.1096 0.725 ZL1 0.144 0.162 0.220 0.174
Zz,z 0.490 0.557 0.367 0.495
Zz,3 0.283 0.191 0.234 0.252
ZL4 0.001 0.001 0.025 0.003
ZL5 0.083 0.089 0.157 0.073
Auto|All|Xval 21°¢(9-15) 0.2950 0.831 ZL1 0.485 0.510 0.421 0.462
Zz,z 0.427 0.368 0.389 0.434
Zz,3 0.036 0.080 0.136 0.090
ZL4 0.017 0.016 0.017 0.002
ZL5 0.035 0.025 0.037 0.013
DVs: 1Xz,lv+ XZ,ZHF,GlZ’. 2Xz,w+ XZ,ZHF.612 +X2,3L; 3Xz,11, + XZ,ZL * XZ,3L+ XZ,SL; 4Xz,lQ + Xz,1v+ XZ,lHR.lSU + Xz,lHF.suo +X2,1T.65l) + Xz,anmz *
Xz,3Q + XZ,3HR.445 + Xz,4Q + Xz,4v + XZ,SL; 5Xz,u + XZ,ZL + X2,3L+ Xz,4L + XZ,SL; 6Xz,lL + XZ,lQ + Xz,1v+ XZ,lHRJSO + Xz,lHF.soo +X2,1T.650 At

X +X +X + X, +X . +X  +X +X2}4L+X2’4Q+XZI4V+XZISL+X +X

+
2,2Q XZ,ZV 2,2HE.612 2,2T.700 2,3L 2,3Q 2,3V 2,3HR.445 2,5Q 2.
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Fig. 16. Map representation of predictions for the modelled target Sp2 in example data set 2,
given in probability-ratio output format ¢. (a) The Man2 model, parameterized by the manual
procedure for forward stepwise selection of derived variables (DVs) and explanatory variables
(EVs) outlined in Table 4, using the F-ratio test with significance level o = 0.05 as model im-
provement criterion. Two DVs are included in the model. (b) The Man model, the final model
with three DVs, obtained by the manual forward selction procedure. (c) The Auto|L model,
parameterized by the ‘standard Maxent procedure’ with default options and settings, including
¢ -regularisation, by use of all L-type DVs derived from the five EVs. (d) The Auto|All model,
parameterized by the ‘standard Maxent procedure’, by use of all DVs derived from all EVs by
transformations outlined in Table 2.
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Fig. 17. Overall ecological response curves for the modelled target SP2 in example data set 2,
given in probability-ratio output format §. (a) Response to environmental variable (EV) Z, .
Which equals DV X, .. (b) Response to environmental variable (EV) Z, ,, which equals DV X, , .
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counted for (v,) by the three DVs in the Man model (blue bars in Fig. 18a; which correspond
to V, values in Table 12 multiplied with V, = 1.674) accorded well with results for ‘jackknife
variation accounted for’, obtained by leaving out the variable in question from the model (tan-
coloured bars in Fig. 18a): all three DVs added to the explanatory power of the model, in order
of decreasingimportance X, >X > X .. The corresponding results for the Auto|All model

2,1V 2,2HE612 2,3L°
(Fig. 18b) were less clearly interpreted although inclusion of X and X in the final

model was justified by these being the only DVs that accounted %é?‘k\;;orlatlonztﬁg?\z/vas not also
accounted for by other variables (slightly shorter tan bars than other derived variables in Fig.
18b) and by their larger regularised variation accounted for v, (longer blue bars; Fig. 18b). Of
the five DVs with 0.10 < v, < 0.15, only the one (X, »11650) Which accounted for the largest frac-
tion of total variation in addltlon to the best DV derived from the same EV (see Table 13) was
included in the Auto|All model. Neither single-variable variation accounted for (Table 12) nor
independent contribution to the model (Table 13) could, however, explain why the DV.X, | ...,

was included in the model, why EV Z,  was represented by four DVs in the final model, why

X, 3r 445 Was preferred over X, . , why EVs Z, ,and Z, . were included, nor why Z, , was represented
by two variables, XZ' and X2 w
DISCUSSION

CHOICE AMONG TYPES OF DERIVED VARIABLES

The results obtained for fractions of total variation accounted for by, and frequency-of-observed-
presence curves with respect to, DVs of different types derived from the same EV, exemplify two
typical properties of DVs that contribute strongly to MaxEnt models: (1) ability to concentrate
presence grid cells to a narrow interval near one end of the [0, 1] range of DV values or, equiva-
lently, to make the mean value for the DV in observed presence cells maximally different from the
mean in uninformed background cells; and (2) high maximum frequency of observed presence.
From the perspective of (1), the ideal variable, which explains all variation in the response of the
modelled target, is a threshold-type DV that separates the grid cells into one group of observed
presence cells and one group of uninformed background cells. Threshold-shaped ecological
responses, i.e., large but predictable response to small changes in an explanatory variable, are,
however, likely to be very rare (Halvorsen 2012). The gradient analytic perspective predicts
smooth overall ecological response curves to important environmental complex-gradients, that
level off gradually from a mode (optimum) towards the modelled target’s tolerance limits [see
Halvorsen (2012) and references cited therein]. The fact that this principle was used to construct
example data sets in this study explains the absence of cases where a threshold-type DV explains
more variation than the best DV of other types. The importance of property (1) is also shown
by DVs derived from EVs Z, | in example dataset1and Z,, and Z, , in example data set 2. Among
DVs derived fromZ, , X, | 1s least successful in concentrating observed presence observations
to a narrow interval, and hence explains less variation than X, ,, and X, ,, (compare Fig. 9 and
Table 8). Furthermore, among DVs derived from EV Z, , V, increases s1xfold from the L viathe Q
to the Vvariable, corresponding to stronger concentratlon of presence grid cells to low variable
values (compare Fig. 13a and Table 12). For Z, , the ability to concentrate observed presence
grid cells is accompanied by a displacement of the peak of the frequency-of-observed-presence
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Fig. 18. Example data set 2: contributions from single derived variables (DVs) to MaxEnt models,
given as ‘jackknife’ estimates from Maxent software. The performance criterion, expressed on
the horizontal axis, is variation accounted for by the model with the DV in question left out, as
shown by tan-coloured bars, and variation accounted for by the single-variable model for the
DV in question. The variation accounted for by the full model is shown by the red bar. (a) The
Man model, parameterized by the manual procedure for forward stepwise selection of derived
variables (DVs) and explanatory variables (EVs) outlined in Table 4, using the F-ratio test with
significance level a = 0.05 as model improvement criterion. Values on the horizontal axis are
unregularised variation accounted for, V.. (b) The Auto|All model, parameterized by the ‘standard
Maxent procedure’ with default options and settings, including £, -regularisation, by use of all
DVs derived from all EVs by transformations outlined in Table 2. Values on horizontal axis are
regularised variation accounted for, I'/t.
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curves towards a value of 0 for the DV, which results in an ecological response that is closer to
monotonous. For DVs derived from Z, ,, frequency-of-observed-presence patterns as well as
the increase in V, from the L via the Q to the HF variable (Fig. 13b) show that concentration of
observed presence grid cells to a narrow interval along the ranged variable is accompanied by
a more monotonous response in the range spanned by observed presence grid cells. The im-
portance of property (2) is demonstrated by the lower V, of X, |, than of X, |, and by the lower
Vt 0fXZ,1HF.600 than OfXZ,l\/'

Single-variable MaxEnt models show that choice of DV type of derived variable strongly
influences MaxEnt model performance: variation in the fraction of total variation accounted
for by a factor of up to 6 (for Z, ) is observed between DVs of different types derived from the
same EV. No DV-type performs generally best, but T-type variables are never among the best-
performing DVs: variables of the continuous or other spline types have the best predictive ability
in atleast one case; the L variable XZ'3L for Zz,3' the Q variable Xlle for ZM, the V variable X2,1v for
Z, , and the hinge-type variable X, , ..., for Z, ,. The DV that best separates observed presence
grid cells from uninformed background cells explains most variation in MaxEnt models. For
modelled targets that respond monotonously to environmental complex-gradients the shape
of the frequency-of-observed-presence curve determines which type of monotonous transfor-
mation that gives the best result. Conversely, the best-performing type of DV in each case is
to some extent predictable from frequency-of-observed-presence curves. This result suggests
that restricting oneselves to one type of DV, e.g., hinge variables, as done by, e.g., Thompson et
al. (2011), is not recommended.

The far better performance of the variance variable X, ,, than of variables of any other
type derived from Z, | clearly shows that appropriate modelling of targets with unimodal re-
sponse to important environmental gradients requires DV of the deviation (D) type, i.e., DVs
that express ‘distance from optimum’. Even if the X, ,, variable performed best among the six
transformations of Z, , in example data set 2 (Table 12), this DV was unable to concentrate ob-
served presence grid cells to values of the DV close to 0. The reason for this is that the simple
transformation into the V variable does not take into account that the modelled target’s overall
ecological response curve is truncated on one side (Fig. 6b). More variation is therefore likely to
be accounted for by a DV constructed by first estimating the target’s optimum and then using
this optimum instead of the mean value of the derived variable in observed presence cells to
construct a deviation-type variable.

The strong improvement of models resulting from transformation of L variables into the
Q variable, which is observed for Z1.1' ZZ'1 and Zz,a* suggests that cases are likely to exist in which
other monotonous transformations of EV than the arbitrarily chosen Q variable, will improve
MaxEnt models considerably. This accords with the fundamental insight from gradient analysis
that species do not necessarily respond linearly to environmental gradients scaled in physical
or chemical units ( e.g., @kland 1990, 1992), and that the scaling of environmental gradients
therefore, essentially, is arbitrary (Minchin 1989). This has the important implication for Max-
Ent modelling that, ideally, the modeller should search for the realistic, i.e., simple, monotonous
transformation of each explanatory variable that maximises the fraction of the total variation
accounted for. This can be done by procedures like the V -knot graph approach adopted in this
paper for tuning of DV of the hinge and threshold types. One family of monotonous transforma-
tion functions that may suit this purpose is the zero-skewness transformation (@kland et al.
2001, 2003), which is used to manipulate skewness in EVs prior to statistical analyses by GLM (
e.g., Bakkestuen et al. 2009, Rydgren et al. in press). The zero-skewness transformation implies
that right-skewed variables are transformed by the function In (¢ + z) and left-skewed variables
by e in both cases the value of the scalar c is determined so that the skewness is zero.

The failure of the simple V transformation of the Z,  variable to provide a monotonous
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‘distance from optimum’ function suggests that more complex D-type transformations are needed
to account for a realistic range of ecological responses of modelled targets. This accords with
recommendations in several distribution modelling studies by logistic regression, to consider
carefully which transformation is likely to optimise the model’s predictive ability (e.g. Santika &
Hutchinson 2009, Gaston & Garcia-Vifias 2011, Michel etal. 2011). Empirical evidence on ecologi-
cal response curves (Oksanen & Minchin 2002, Rydgren et al. 2003), e.g., obtained by the HOF
(Huisman-Olff-Fresco) modelling framework (Huisman et al. 1993, Oksanen & Minchin 2002),
indicates that a function with four parameters (four degrees of freedom) is generally sufficient
to capture generalisable patterns of variation in species’ aggregated performance (Halvorsen
2012) along gradients. Further research is needed to optimise construction of parsimonious sets
of derived variables for MaxEnt modelling in ways that account for unimodality, skewness and/
or platy- or leptokurtosis in frequency-of-observed-presence curves for the modelled targets.

MODEL SELECTION

The automated, standardised procedure for formation of DVs and model selection implemented
as default in Maxent software, here referred to as ‘standard Maxent practice’, fails to return
adequate models for example data set 2, both when the five EVs are represented by L variables
(the Auto|L model) and when the full set of 21 DVs manually derived from the five EVs are used
as input to the Maxent software (the Auto|All model). Poor performance of the Auto|L model is
clearly demonstrated by the low AUC_  value and the low fraction of variation accounted for by
this model, compared with other models (Tables 15-16). The Auto|L model fails on two points:
(1) itis mis-specified; and (2) it is overfitted to the data used to parameterise the model. Signs
of mis-specification are: the failure to predict the unimodal response to Z, ,, as clearly shown by
the ecological response curve (Fig. 17a) and the map representation of predictions (Fig. 16c),
and the low variable contributions attributed to Z,, (Table 16) relative to other models. Mis-
specification is a consequence of only four L variables being included in the model. Two pathways
for modelling unimodal responses are, in principle, available in Maxent software when n = 48
(Phillips et al. 2006): (1) to combine L and Q variables, a Q variable is taken into consideration
when the number of observed presences, n = 10 (Phillips et al. 2006); and (2) to combine two
or more hinge (and/or threshold) variables, hinge variables are taken into consideration when
n 2 15 (Phillips et al. 2006). None of these pathways are activated in this case. Even though the
mis-specification problem of the Auto|L model is a result of the model’s simplicity, the model
is at the same time overfitted to the data. Indications that the Auto|L model is overfitted to the
dataare: (1) That the random explanatory variable X,  isincluded in the model, and attributed
a contribution of 7.3-15.7 %, depending on the measure used to quantify variable contribution.
Model predictions (Fig. 16c) therefore reflect variation in random derived variables to a de-
gree that is visible on relevant graphs (cf. Figs 6a, 6¢). (2) That the model, despite having more
parameters than the Man model (4 vs 3), accounts for less than half of the variation accounted
for by the latter. Accordingly, the Auto|L model is likely to suffer from Type I overfitting, , as
defined by Halvorsen (2012), that a more complex model has lower predictive performance
(on independent data) than a simpler model.

Comparisons between the Auto|All and Man models indicate that also the former may
suffer from overfitting of Type II, i.e., that a more complex model is similar in predictive per-
formance than a more complex model. Indications of Type II overfitting in the Auto|All model
are: (1) considerable local variability of predictions (see prediction map in Fig. 16d); (2) similar
AUC__values and fractions of total variation accounted for by the Auto|All model with 11 DVs

corr
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and the Man model with only three DVs; and (3) that eight of the 11 DVs in the Auto|All model
do not make individually significant contributions to explaining variation in observed presence
of the modelled target in single-variable tests. However, since the simulated example data sets
1 and 2 used in this paper are of the PO type and not sampled from an underlying, known dis-
tribution of presence and absence observations, the ultimate test for overfitting, performance
on independent data, is not applicable. Type II overfitting can therefore not be conclusively
demonstrated in this case.

These results show that the best MaxEnt model is not simply the model with optimal
complexity, but instead indicate that model complexity is itself a complex matter that cannot
be represented along one linear gradient. One important aspect of model complexity is model
specification, i.e., the extent to which the modelled response to an important environmental
gradient has an appropriate curve shape. The discussion in the previous section shows that
response-curve shape is controlled by the process by which parsimonious sets of derived vari-
ables are constructed from each explanatory variable. The other, in itself very complex, issue,
is to find the optimal level of model complexity sensu stricto, i.e., the appropriate number of
DVs to be included in the model and best possible parameter estimates.

No universally ‘right’ complexity level exists, not even for a given modelled target in a given
study area: the purpose of the DM study is a main determinant of which complexity level is the
most appropriate (Barry & Elith 2006, Elith et al. 2010, Halvorsen 2012). Halvorsen (2012) ar-
gues that, from a gradient analytic perspective, modelling purposes can be divided into two main
groups according to applicability of different methods and approaches for model performance
assessment: (1) ecological response modelling (ERM) and projective distribution modelling
(PPM); and (2) spatial prediction modelling (SPM). The most appropriate distribution models
for the ERM and PPM purposes summarise relationships that are valid over most of, or the
entire, distribution area of the modelled target. Good ERM (and PPM) models should therefore
be simple in terms of number of EVs and DVs included. Because the true species-environment
relationship is an ideal which can never be modelled correctly in all details, no truth, possible
to represent by empirical data, normally exists against which ERM and PPM models can be
evaluated. SPM models, on the other hand, should be evaluated pragmatically by comparing
their predictive performance on truly independent evaluation data. I refer to Halvorsen (2012)
and references quoted therein ( e.g., Araujo & Guisan 2006, Lahoz-Monfort et al. 2007, Veloz
2009, Edrén et al. 2010, Warren & Seifert 2011) for discussions of the importance of using of
independent P/A data for evaluation of SPM models. SPM calls for a level of complexity that
matches the complexity of variation in the study area (Warren & Seifert 2011).

Because good spatial predictions are targeted in a large majority of empirical DM studies
(Franklin 2009), the following discussion mainly addresses model selection in the SPM context.
Predictive performance in the study area is also the main focus in most comparative studies of
DM methods (e.g, Elith et al. 2006), targeted in experiments for tuning of the ‘standard Maxent
procedure’ by Phillips & Dudik (2008), and addressed in most other studies in which model
selection in MaxEnt is discussed (e.g., Anderson & Gonzalez 2011, Phillips 2011, Warren &
Seifert 2011). The results obtained for example data set 2 have particular relevance for model
selection in MaxEnt, used for the SPM purpose. Both of the Auto|L and Auto|All models for
example data set 2 are overfitted because random variables are not de-selected or sufficiently
strongly downweighted by the ‘standard Maxent procedure’ or, put in other words, because the
¢,-regularisation procedure with automated settings imposes a regularisation that is too weak.
A relevant perspective on this issue is that the regulation parameters A, given by expression
(52), are < 0.15 for all 11 derived variables included in the Auto|All model (results not shown)
while the F-ratio test with @ = 0.05 corresponds to A = 3.841.

The obvious way to reduce the danger of overfitting is to apply a stronger regularisa-
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tion. This has been suggested by several authors (e.g., Phillips & Dudik 2008, Elith et al. 2010,
Anderson & Gonzalez 2011). Thus Lamb et al. (2008) use A = 2.5 ‘to account for statistical
overfitting given the relatively large number of predictors’, Naimi et al. (2011) use A = 2.5 to
obtain ‘predicted response shapes [that are] visually closest to the ones used to simulate data
sets’ and Warren & Seifert (2011) find that optimal regularisation values are generally higher
than Maxent default values. Also Anderson & Gonzalez (2011), in their study of the rare shrew
Cryptotis meridensis, find optimal regularisation values different from, and usually higher than,
Maxent default values. Anderson & Gonzalez (2011) conclude that generally applicable default
values for regularisation parameters are likely not to be found because of strong idiosyncrasies
in the properties of modelled targets, e.g., species. Instead, they advocate species-specific tuning
of regularisation parameters.

A closer look at the basis for the variable-type specific default regularisation values 4, in the
Maxent software (Phillips & Dudik 2008) reveals that these values have a weak empirical basis
despite based upon numerous parallel runs for many different data sets. Phillips & Dudik (2008:
Fig. 2,lower panel) use logloss and AUC calculated by data-splitting and five-fold crossvalidation
for internal model performance assessment. It is not clear from their paper if unregularised or
regularised logloss was used. Regularised log loss, if used, is not a measure of variation as such,
butamodel optimisation criterion of the penalised likelihood type, like AIC and BIC. Regularised
log loss is therefore not comparable between models parameterised on different n or by use
of different regularisation parameters. AUC, on the other hand, is comparable among models.
Inspection of the 43 curves in the paper by Phillips & Dudik (2008: Fig. 2), obtained for random
subsets with different n, subsampled from 12 different data sets, with AUC as performance
statistic, shows 17 curves for which AUC decreases monotonously with 4,, 10 that are nearly
flat, and 16 thatare unimodal or monotonously increasing. Monotonously decreasing curves ac-
cord with best performance withoutregularisation, i.e., for A, = 0, flat curves accord with model
performance independent of the strength of regularisation, while monotonously increasing (or
unimodal) curves indicate existence of a value A, > 0 at which model performance is better than
in models without regularisation. These disparate results show that the effect of regularisation
is strongly context-dependent and that reliance on pre-tuned regularisation parameters is likely
to give rise to suboptimal models in many cases. Similar views on regularisation by shrinkage
methods are expressed in a more general context by, e.g., Hastie et al. (2009).

Let us consider the typical situation that DM is performed for the SPM purpose, and that
models cannot be evaluated by the ultimate performance measure, predictive ability on inde-
pendent P/A data, because such data are not available. For such cases, a priori choices of model
selection strategy, internal model performance measure(s), and model improvement criterion,
have to be made. Two options are available: (1) to adopt a ‘consensus MaxEnt practice’ that
is considered as base based upon extensive comparative studies; or (2) to apply a set of rules
for tuning of MaxEnt settings and options based upon specific knowledge about properties of
the modelled target, the study area, and/or the data sets to be used in the modelling. These
rules will be referred to as ‘best specific MaxEnt practice’. Finding such a best specific MaxEnt
practice is an attractive goal from a theoretical point of view, but I agree with Anderson & Gon-
zalez (2011) that rules for data-driven tuning of MaxEnt options and settings will be hard or
perhaps impossible to find. This pessimism reflects the fact that no characteristic of modelled
targets, deducible from PO data, has so far turned up that can be linked directly to regularisa-
tion settings. If no best specific MaxEnt practice for tuning of regularisation parameters can be
found, £ -regularisation will remain burdened with strong elements of unpredictability, due to
idiosyncratic properties of the modelled target as well as of the PO data set, and subjectivity,
due to the need for reliance on pre-set regularisation parameters.

Another major problem with shrinkage methods, which has largely been neglected in
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discussions of ¢ -regularisation in MaxEnt, is that stronger regularisation does not only raise
the threshold for inclusion of derived variables in the model but at the same time increases
model bias (Reineking & Schroder 2006). The effect of increasing bias is illustrated by the ob-
servation of Warren et al. (2011) that very strong regularisation results in models with no other
parameters than the intercept: among realistic models, the null model is the maximally biased
model. Strong regularisation is therefore at odds with the fundamental principle of statistical
modelling, that estimators should be unbiased ( e.g., Sokal & Rohlf 1995). This leaves us with the
basic question: which model selection approach does, in general, result in distribution models
with best predictive performance?

The worked examples indicate that shrinkage methods do not necessarily result in dis-
tribution models with better predictive performance than subset selection methods. To the
contrary, the results indicate that careful manual forward stepward selection, first to produce
a parsimonious set of DVs from each EV, and thereafter to build a final model from these par-
simonious sets (see Table 4), may provide the control over model complexity needed to obtain
models of adequate fit. This contradicts the current paradigm in MaxEnt modelling, that £ -
regularisation is one of the major reasons why MaxEnt consistently performs among the best
DM methods. While MaxEnt has been compared with other methods in many studies (see the
introduction chapter * MaxEnt modelling of distributions’), the relative performance of MaxEnt
with different model selection methods remains incompletely explored. The tuning of MaxEnt
regularisation parameters by Phillips & Dudik (2008) was performed with obviously overfitted
models, with all regularisation parameters A = 0, as a reference.

The results of simple worked examples in this study do not give strong reasons to claim
that MaxEnt models with subset selection of derived variables will be consistently better than
models that make use of £, -regularisation [or other shrinkage methods; see Dudik et al. (2007)].
Furthermore, they definitively do not prove that the manual forward stepwise selection proce-
dure proposed in this paper (see Table 4) is optimal among subset selection methods. In fact,
results obtained for example data set 1 indicate that better models may be obtained by a more
flexible approach, such as forward-backward selection. The results do, however, show that choice
of model selection method is so crucial for the performance of modelling methods, MaxEnt
included, that the hypothesis that MaxEnt models often or in most cases perform better with
settings other than those of the ‘standard Maxent practice’ clearly needs to be further explored.
Studies with the aim of assessing the relative merits of model selection approaches should: (1)
compare a realistic range of settings for all model selection methods; (2) use independent P/A
evaluation data for assessment of the models’ relative predictive performance; and (3) make use
of study systems that differ with respect to modelled targets, ecosystems, geographical areas,
grains and extents, and explanatory variables.

Results of MaxEnt modelling with different sets of derived variables, obtained for the two
simple simulated data sets in this study, suggest that the ability of MaxEnt models to explain
variation in the distribution of a modelled target may be enhanced, without inappropriate
increase of model complexity, by manual control over the process by which explanatory vari-
ables are transformed into derived variables and the latter are selected for inclusion in the final
model. Manual pre-selection of EVs has been reported to give favourable results in many DM
studies, by MaxEnt ( e.g., Santika & Hutchinson 2009, Wollan et al. 2008) as well as by other
modelling methods ( e.g., Pearce & Ferrier 2000a, Suarez-Seoane et al. 2004, Wohlgemuth et
al. 2008, Platts et al. 2010). Furthermore, the results of this study suggest that selection of DVs
should be guided by patterns of variation in frequency of observed presence of the modelled
target with respect to the EVs in question.

This study shows that manual stepwise subset selection of DVs and EVs results in simpler
models with fewer parameters than models obtained by shrinkage methods. Simpler models
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in terms of number of parameters have the additional advantage of being more easily interpre-
table than more complex models (Buermann et al. 2008, Parolo et al. 2008, Wollan et al. 2008,
Warren & Seifert 2011) and may therefore be more useful for understanding which factors are
responsible for the observed distributions (Austin 2007, Halvorsen 2012). This opens for the
possibility that manually built MaxEnt models are more likely to express patterns that are so
general that they may serve the ERM purpose and be useful for the PPM purpose while at the
same time not compromising the demand of SPM models for high predictive performance.

METHODS AND APPROACHES FOR INTERNAL MODEL PERFORMANCE ASSESSMENT AND
CHOICE OF MODEL IMPROVEMENT CRITERION

Choice of model improvement criterion is tightly coupled with choice of method or approach
for internal model performance assessment. Two main types of model improvement criteria
are currently in use: (1) a threshold value for a performance statistic; or (2) a significance level
o for rejection of an appropriate null hypothesis which typically is that addition of a variable or
several variables to a model does not improve the model significantly more than expected of a
random variable. Typically, the statistical test by which (2) is accomplished takes the numbers
of observed presence and uninformed background observations explicitly into account while
this is not necessarily the case for threshold values for performance statistics used directly as
model improvement criterion. Threshold values can be set subjectively, as exemplified by Wol-
lan et al. (2008), who use a value of 4 for the F statistic for nested GLM models for pre-selection
of variables for MaxEnt modelling. Choice of model improvement criterion should guided by
experience and by theoretical reasoning. From a theoretical point of view, more reliable and
more flexible, statistically based, model improvement criteria should be preferred if available.
One of the most important results of this study is that the maximum likelihood explanation of
MaxEnt opens for use of standard statistical tools for comparison of nested models, such as the
likelihood-ratio test and the F-ratio test. Furthermore, the experiments carried out for tuning
the F-ratio test show that the appropriate degrees of freedom for the residuals in the MaxEnt
null model is likely to be = N - n, the number of uninformed background observations. How-
ever, given the small data sets used for these experiments, the results should be substantiated
by experiments on larger data sets.

The PO data sets used for MaxEnt modelling are often strongly biased ( e.g., Elith &
Graham 2009, Robertson et al. 2010, Wolmarans et al. 2010). From a general statistical point
of view, statistical tests with fewer in-built assumptions should then be preferred ( e.g., Sokal
& Rohlf 1995). This line of reasoning favours the randomisation test over the likelihood-ratio
and F-ratio tests. However, a disadvantage of the randomisation test is that it, at least so far,
cannot be applied to testing of two MaxEnt models of which one contains one or more extra
DVs derived from the same EV. The reason for this is that all DVs derived from the same EV are
dependent and that a realistic randomisation scheme for the extra DV(s) in the more complex
model has not yet been devised. Without such a randomisation scheme, the units subjected
to randomisation have to be the EVs themselves and not the single DVs derived from them.
Development of randomisation schemes that open for testing of the contribution of single DVs
should be encouraged. Likelihood-ratio or F-ratio tests therefore have to be used to complete
step 3 of the procedure for manual forward stepwise selection of MaxEnt models (Table 4), in
which parsimonious sets of DVs are built for each EV.

Like almost all other statistical tests, the likelihood-ratio, the F-ratio and randomisation
tests for comparison of MaxEnt models assume that the observations are independent replicates
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drawn from a homogeneous population. It is not clear how this assumption applies to distribu-
tion modelling in general and to MaxEnt modelling of distributions in particular; i.e., to which
population (set of observations) it applies; and what is really meant with independence in this
context. The result of this study, that the degrees of freedom for the residuals in a MaxEnt model
to be used in calculation of the F statistic and the associated p value is likely to be N - n, seem-
ingly indicates that it is the uninformed background observations that should be independent
replicates drawn from the population of all possible background cells. In many cases, includ-
ing the simulated example data sets in this study, all grid cells in the study area are used for
modelling: the sample then includes the entire population of uninformed background cells. An
alternative way to understand the assumption of independence in the MaxEnt modelling context
is by way of the interpretation of MaxEnt probability-ratio output (¢) in continuous explanatory
variables space as ‘the ratio of the probability of encountering grid cells with environmental
characteristics X, in the subset of presence grid cells to the probability of encountering X, in the
set of all grid cells’ or, as expressed by Elith et al. (2011), the ‘relative suitability of one place
vs. another’. This interpretation of MaxEnt output suggests that it is not bias in presence or
background grid cells as such that matters, but rather that there is similar bias in (samples of)
presence and background observations (Phillips & Dudik 2008, Elith et al. 2011). Apart from
being reasonable from a theoretical point of view, this viewpoint is supported by results of
several studies which show that better predictive performance of MaxEnt models on more or
less independent evaluation data can be obtained by use of target-group background. Target-
group background implies that the set of uninformed background cells consists of all grid cells
in which any species (or other relevant set of modelled targets) in a taxonomic or ecological
entity to which the targeted species belongs is used as background data, rather than the set of
all uninformed background cells or a random selection of these cells (Elith & Leathwick 2007,
Phillips etal. 2009, Williams et al. 2009, Mateo etal. 2010, Yates et al. 2010). Phillips et al. (2009)
show that the performance improvement due to target-group background is largest when there
is strong bias in the target-group presence observations.

The extent to which the p values in statistical tests for comparison between nested Max-
Ent models will be inflated, resulting in Type [ error, i.e., falsification of null hypotheses that
are actually true (Legendre & Legendre (1998), or otherwise affected, by dissimilar bias in
presence and background observations or by spatial autocorrelation in data, requires further
study. Such effects are suggested for distribution models by Segurado et al. (2006) and Merckx
et al. (2011), among others. Inflation of p values by spatial autocorrelation is likely to occur
from the perspective that adding uninformed background observations beyond the largest
set of spatially non-autocorrelated observations will increase N, and hence n = N - n, without
bringing with it the amounts of new, reliable information suggested by the increase in 7. This
accords with indications in several studies that it is not spatial autocorrelation in the observed
presence data and/or the explanatory variables as such that is important but spatial autocor-
relation remaining in the residuals of the model (Segurado et al. 2006, Dormann et al. 2007,
Bini etal. 2009, Franklin et al. 2009, Naimi et al. 2011). The hypothesis that the assumptions of
independence and identical distributions primarily applies to the errors (residuals) of MaxEnt
models require further study.

The maximum likelihood explanation of MaxEnt opens for calculation of residuals for each
grid cell in data sets used for model parameterisation and data sets used for model evaluation,
which can then be used to analyse the spatial structure by geostatistical methods as suggested,
among others, by Austin (2007) and Dormann (2011). Furthermore, the possibility for incorpo-
rating spatial autoregressive terms in MaxEnt models should be further explored. Generalised
linear mixed models with autoregressive terms have been shown to improve the performance
of other regression-type modelling methods substantially [ e.g., Maggini et al. (2006), Diggle &
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Ribeiro (2007), Bini et al. (2009), Santika & Hutchinson (2009), Hengl et al. (2009), Carroll et
al. (2010); but see Tingley & Herman (2009)].

Potential problems caused by failure of MaxEnt models to fulfill basic assumptions of
independence required by standard statistical methods motivate for use of model comparison
tests with care. However, even though the p values resulting from these tests may turn out to
be influenced by bias in data, they are likely to be comparable among models parameterised by
use of the same data set. This motivates for parallel use of more than one model improvement
criterion (significance level @) when MaxEnt models are built by subset selection methods.

Finally, it should be stressed that the only way to avoid potential problems with lack of
comparability of distribution model improvement criteria is to evaluate SPM models by use of
P/A data collected independently of data used to parameterise the model. Observations in the
evaluation data set should be situated farther apart than the range of the spatial variation of
presence observations (cf. Phillips etal. 2009, Veloz 2009, Edvardsen et al. 2011). Evaluation by
applying resubstitution and/or data-splitting methods to the PO data set used to parameterise
the model does not alleviate problems caused by spatial autocorrelation in the data (Araujo et
al. 2005, Raes & ter Steege 2007).

PERFORMANCE MEASURES AND THEIR USE FOR QUANTIFYING VARIABLE CONTRIBUTION

The maximum likelihood explanation of MaxEnt provides users with a likelihood-based measure
of variation accounted for (VA), v, which is analogous to the r? of linear models and the deviance
of other maximum likelihood modelling methods. However, being based upon the log likelihood
of observed presence observations rather than all observations, MaxEnt’s measure of variation
may differ from these in important properties. The use of log loss to obtain a measure of VA in
MaxEnt is not a new idea; this has been common usage since MaxEnt was first made available
to the distribution modelling community via the Maxent software in 2004 ( e.g., Phillips et al.
2006, Phillips & Dudik 2008). What is new in this paper is the development of log-loss based
statistics into methods for comparison of nested MaxEnt models and for quantifying variable
contributions to MaxEnt models. Furthermore, the worked examples shed new light on the re-
lationship between the two alternative model performance measures, FTVA (Fraction of Total
Variation Accounted for) and AUC (Area Under the receiver operating characteristic Curve).
Results of worked examples show that the scales on which FTVA and AUC are recorded
are different scales: even after eventual correction for use with PO data, AUC is recorded on a
scale that effectively goes from 0.5 for a random model such as the MaxEnt null model to 1 for
a model that perfectly predicts the observed presences and predicts absence in all uninformed
background grid cells, such as the MaxEnt saturated model. FTVA, on the other hand, is recorded
on a 0-1 scale. Taking this into account, a comparison of the two performance measures for
the two example data sets shows that although there seems to be no systematic rank-order
inconsistency between the two measures, they do not necessarily follow each other exactly
and they are clearly non-linearly related to each other (Fig. 14). Compared to FTVA, the non-
parametric AUC measure differentiates strongly between models near the poor-performance
end of the scale, i.e., between models that differ little from the null model. Thus, in example data
set1,AUC_ =0.636 and FTVA = 0.0422 for the single-variable MaxEnt model for X1.3L which is
found not to be significantly different from the null model both by the F-ratio and randomisa-
tion tests (pF = 0.2551 and pRand = 0.1885; Table 8). In this example, the lower 27 % of the
effective AUC scale corresponds to the lower 4.2 % of the FTVA scale, i.e., a ‘scale utilisation
ratio’ of ca. 6. Even stronger differentiation between models with poor predictive performance
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is found in example data set 2: the single-variable MaxEnt model for the L variable derived
from the random explanatory variable X, . has AUC_ = 0.566 (13 %) and FTVA = 0.0090 (0.9
%), corresponding to a ‘scale utilisation ratio’ of ca. 14 This may indicate a tendency of AUC to
emphasise differences between low-performance models more strongly when the number of
presence and/or background observations increases. This difference between AUC and FTVA
is reflected in measures of variable contribution: measures based upon AUC attribute higher
importance to variables with relatively lower explanatory power. These results show that both
the non-parametric AUC measure and FTVA can be used to rank MaxEnt models, but also indicate
that differences in AUC between models should not be added and subtracted to form variable
contribution measures. The two AUC-based measures used in this study (VC,, and VC, ) strongly
emphasise differences in performance between models with low predictive power and, hence,
attribute unduly high importance to variables that are likely to be unimportant for the target.
One noteworthy result from the worked examples is that among AUC-based measures of variable
contribution reported by Maxent software, ‘percent contribution’ (VC,.) appears to be much
less reliable than the alternative measure, ‘permutation importance’ (VC, ). This result, which
contrasts the rating of the two measures by Phillips (2011), is exemplified by the single-variable
MaxEnt model for the L variable derived from the non-significant EV Z1 ,» which is not included
in any of the manual MaxEnt models. Nevertheless, this variable is attributed a contribution
of VC,, = 0.683 to the Auto|L model while two other variable contribution measures attribute
contrlbutlons 0f 0.012 and 0.045, respectively, to Z, ,

Measures of variation accounted for that are calculated from log loss [expression (29)],
ie,v,and V, and the corresponding measures calculated from regularised log loss [expressmn
(44)] ie., V and V or, what is essentially the same, the ‘gain’ and ‘regularised gain’ of Elith et
al. (2011) and Phllllps (2011), are treated in most MaxEnt modelling studies as if they were
commensurable. Although Phillips et al. (2006) and Phillips & Dudik (2008) use two terms,
‘log loss’ and ‘regularised log loss’, no distinction seems to be made between them when it
comes to use and interpretation [also see Phillips (2011)]. Theoretical reasoning as well as
results obtained for the two example data sets in thus study do, however, clearly show that
log loss and regularised log loss and model performance statistics and measures of variation
calculated from them express different properties of MaxEnt models and are incommensurable
(see Tables 10 and 15): while V, is a likelihood-based measure of variation, statistics calculated
from regularised log loss are analogous with penalised likelihood statistics such as AIC and
BIC [compare expressions (29) and (45) with expression (44)], expressed on scales without
bounds on which the magnitude of differences can hardly be interpreted ecologically. Accord-
ingly, regularised log loss (or ‘regularised training gain’) should not be used for quantifying
relative variable contributions.

Results obtained in the present study suggest that measures of variation calculated
from log loss are preferential to AUC for quantifying variable contributions to MaxEnt models.
Furthermore, the results suggest that variable contributions should be quantified for EVs rep-
resented by a parsimonious set of DVs rather than for the individual DVs. This is illustrated by
the individually mostimportant variable in example data set 1, Z, . When variable contribution
is measured by VC,w the relative contribution from Z_ | to the Man+ model, i.e., the model with
each variable represented by a parsimonious set conSIStlng of only one DV, is relatively much
lower than the variable‘s contribution to the Auto|All models in which this variable is represented
by two strongly correlated DVs. Results obtained for four measures of variable contributions
in this study show that further research on measures of variable contribution is required to
sort out which measures are informative also when the environmental data set contains many,
strongly correlated variables.
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NEW PERSPECTIVES ON THE GOOD PERFORMANCE OF MAXENT

The default £ -regularisation procedure is often claimed to be a major reason for MaxEnt's good
performance in practical distribution modelling (Hernandez et al. 2006, Phillips et al. 2006,
Dudik etal. 2007, Raes & ter Steege 2007, Wisz et al. 2008, Wollan et al. 2008, Tinoco et al. 2009,
Elith etal. 2011). Theoretical reasoning and results of worked examples in this paper indicates
that MaxEnt performs well despite, and not because of, the £ -regularisation procedure. Two
alternative explanations for MaxEnt’s good performance accord with the maximum likelihood
explanation of MaxEnt:

1. Choice of response variable. The quantity modelled by generative MaxEnt is the prob-
ability that one specific presence cell i, selected at random from all presence cells, is
grid cell i. Predictions from MaxEnt models are interpretable as the ‘relative suitability
of one place vs. another’ (Elith etal. 2011). The direct relevance of quantity modelled
by MaxEnt for all purposes of distribution modelling and the fact that MaxEnt esti-
mates the response without implicit or explicit assumptions of the prevalence of the
modelled target, may contribute to MaxEnt’s good performance. It should be noted
that the statement in most treatises on MaxEnt that the method is a PO method is not
correct; only the generative MaxEnt method is bound to use PO data. MaxEnt shares
with other maximum likelihood estimation methods available for distribution mod-
elling with PO data, e.g.,, GLM and GAM, the property that uninformed background
observations are treated as pseudo-absence observations. This is evident from the
fact that the reference model for with which all other MaxEnt models are compared,
the saturated model, predicts absence (7 = 0) in all uninformed background cells and
presence (1 = % ) in all observed presence cells [expression (15)].

2. Flexibility and ecological realism of the fitted functional relationship. The worked
examples show that the Gibbs function fitted by MaxEnt has the flexibility needed to
model overall ecological response curves with a large variety of realistic shapes: linear,
plateau-shaped, symmetric and skewed, unimodal or truncated unimodal. However,
this flexibility with respect to response-curve shapes is not an inherent property
of the MaxEnt method, but a property that may arise if the range of transformation
functions used to derive DVs from EVs is appropriate. The input to MaxEnt is single
(derived) variables, which are combined to more or less complex ecological response
models. MaxEnt also handles interactions between variables. MaxEnt thus opens for
fitting the entire range of realistic functional relationships between response and
explanatory variables and thus combines attributes of GLM and GAM. The similarity
between MaxEnt on one hand and GLM and GAM on the other with respect to flex-
ibility in model fitting is also pointed out by Phillips et al. (2006), Suarez-Seoane et
al. (2008), Willems & Hill (2009) and Elith et al. (2011).

CONCLUDING REMARKS, RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE RESEARCH

MaxEnt became a state-of-the art method for distribution modelling in less than five years after
the method was made available to a broad audience of distribution modellers. MaxEnt’s success
is due to good documented performance in practical distribution modelling and easy access via
the free, user-friendly Maxent software. In this paper I combine the conceptual framework of
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the gradient analytic perspective on distribution modelling (Halvorsen 2012) with maximum
likelihood estimation into a new explanation of MaxEnt. This theoretical platform, supported by
simple worked examples, opens several possibilities for improvement of the current standard
practice for distribution modelling by MaxEnt. These improvements are partly methodological,
such as changes of options and settings or implementation of tools currently in use with other
methods, such as the likelihood-ratio and F-ratio tests, partly practical, such as suggestions for
new tools that can be operationalised for use directly in Maxent software, or indirectly, e.g., as
R tools that work together with Maxent software (Hijmans & Elith 2011, Phillips 2011).

The potentially most important methodological improvements suggested in the present
study, and the practical tools needed to implement them, are:

1. Flexible, interactive tools to assist the process by which derived variables are obtained
from explanatory variables by the transformation step (Step 5,ii in the 12-step DM
process), including: (i) graphical tools such as the frequency-of-observed-presence
plots to assist choice of derived variable type; (ii) a broader range of flexible func-
tions for transformation of explanatory variables, including monotonous functions,
deviation-type functions, and complex spline functions; and (iii) V- knot graphs to
guide transformation of explanatory variables into derived variables of the spline
types.

2. A comprehensive, flexible, interactive toolbox that allows the user to combine (i)
model selection methods; (ii) methods and approaches for internal model perfor-
mance assessment, and (iii) model improvement criteria, that opens for integration
of independent presence/absence data into the modelling process, for external model
performance assessment, for model calibration, and for model evaluation. Model
selection tools should include the full range of manual and automated procedures
for (a) subset selection, including forward and forward-backward, for small sets of
explanatory variables perhaps also backward, selection; and (b) shrinkage methods
(see Dudik et al. 2007). Facilities for interactive manual selection should be avail-
able at each step in the modelling process, thus allowing for manual construction
of parsimonious sets of derived variables for each explanatory variable as well as
manual construction of multi-variable MaxEnt models. Methods and approaches for
internal model performance assessment should include likelihood-ratio and F-ratio
tests, randomisation tests, and AUC-based methods, with model improvement criteria
set by the user.

3. New output formats; (i) the probability-ratio output format ¢, which expresses the
‘relative suitability of one place vs. another’, should be available for cases by which
no presence/absence data are available for calibrating the output to a probability-of-
presence scale; and (ii) the probability-of-presence output format ¢, which expresses
the predicted probability of presence in a site, should be available for cases by which
independent presence/absence data are available.

4. Options for discriminative use of MaxEnt, i.e., MaxEnt modelling by use of presence/
absence data.

Many of these tools are accessible today; some are implemented in the Maxent software (Elith
etal. 2011, Phillips 2011) and some are available in R tools more or less well integrated with
Maxent software (Elith et al. 2011, Hijmans & Elith 2011, Phillips 2011). Most of the proposed
tools do, however, require extensive scripting or programming to be made accessible. Exploration
of the proposed new options, settings and tools will depend on accessibility, e.g., implementa-
tion in user-friendly software such as Maxent software and/or in R as a ‘MaxEnt for R’ library,
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and/or in other new software. An outline of a consensus MaxEnt practice, applicable for spatial
prediction modelling (SPM), general-purpose ecological response modelling, and most projec-
tive distribution modelling (PPM) purposes (Halvorsen 2012), that emerge from theoretical
reasoning, examples and discussion throughout this paper, is given in Table 17.

Several research needs have been identified, among which the most important are con-
sidered to be:

1. Further exploration of statistical properties of the MaxEnt method and associated
tools from a maximum likelihood modelling perspective, e.g.: (i) effects of spatial
autocorrelation and other aspects of non-independence of response and exploratory
variables for statistical inference about model performance; (ii) the possibility for
incorporating spatial autoregressive terms in MaxEnt models; (iii) determination of
appropriate degrees of freedom for sets of variables derived from one explanatory
variable by transformation; (iv) investigations into the statistical properties of the
measure of variation accounted for in MaxEnt, which is based upon log loss, and
its relationship to the deviance; (v) further development of existing methods and
approaches for internal model performance assessment, and development of new
measures of model performance; and (vi) development of improved measures of
variable contribution to models.

2. Research to find best strategies for transformation of explanatory variables into de-
rived variables and for construction of parsimonious sets of derived variables that
account for unimodality, skewness and/or platy- or leptokurtosis in frequency-of-
presence curves for targets subjected to distribution modelling by MaxEnt.

3. Extensive comparative tests of the predictive performance of MaxEnt models over
the entire range of realistic choices of options and settings, including model selection
methods, internal model performance assessment, and model improvement criteria,
in search for patterns with general applicability. A particularly important question is
if one, generally applicable, procedure for parameterisation of MaxEnt models can be
found. The importance of using independent presence/absence data for evaluation of
distribution models for the SPM purpose, including their options and settings, cannot
be too strongly emphasised.

A summary of research needs is given in Table 17.

I hope this paper will contribute to a better understanding of what goes on in ‘the MaxEnt
black box’ and stimulate research on the still many obscure issues in MaxEnt methodology.
also hope that the results have demonstrated clearly that the general recommendation not to
trust automated procedures blindly (@kland 2007) also applies to MaxEnt. [ hope this paper
will stimulate further development of user-friendly tools for MaxEnt modelling, which may in
turn assist the search for generally robust principles for modelling by MaxEnt. If models with
near-optimal predictive performance on a given data set can be guaranteed, MaxEnt will be an
even better tool for practical distribution modelling, e.g., for conservation purposes. Finally, |
hope this paper will stimulate comparative studies of MaxEnt options and settings, in continu-
ous search for improved MaxEnt modelling practices.
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APPENDIX II: INDEX

For bold face italicised terms, explicit definitions are given in the text [and, eventually, also in
Appendix I of Halvorsen (2012)], bold-face page number refer to page on which the definition
is given; plain bold-face letters refer to terms only defined in Appendix I of Halvorsen (2012).

12-step process (for distribution modelling) 4,8,10,12,15-17,38,42,44,47,53,95
abandonment (of agricultural practices) 6
absence 2,16,17,22, 24, 38,39-41, 50, 52-55, 57, 83, 87,92, 94
abstract geographical space 14,18, 43-45,47,48
AIC, see Akaike’s information criterion

Akaike’s information criterion (AIC) 37
area under the ROC curve (AUC) 12, 38, 40,41, 50,53, 62,92
AUC, see area under the ROC curve

automated variable selection 62,66,76
‘average presence site’ 50,51
background observations 34,36,41,47,48,50,90,91, 93,94
back-transformation function 16,52
backward elimination of variables 12,31
Bayes’ rule 44,45, 47
Bayesian information criterion (BIC) 37
Bayesian statistics 14, 44
‘best specific MaxEnt practice’ 88
bias 30, 34,50, 52, 54, 89-92
BIC, see Bayesian information criterion

binary prediction 38
binary (C) variable 22,28,34
binomial errors 52
biogeography 4,8
boosted regression trees (BRT) 8

BRT, see boosted regression trees
C variable, see binary variable

calibration 2,6,38,52
calibration model 6,52
calibration plot 51
categorical (C) variable, see binary variable 19, 22, 28
chi-square distribution 35
chi-squared approximation of the log-likelihood ratio 34
choice of modelling method 6,17,31,53,88-90
climatic scenario 7
closed arithmetic sequence 55,57
collection of presence/absence data for model calibration and evaluation 6,38,52
combining probabilities test 59
commission error (of models) 39
community assembly rules 9
complex spline (X) variable 21,22,95

complex-gradient 6,12,19,22,83,85
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conceptual space 7,14,18, 43, 45
conceptualization 6,15,47
conditional probability 45,47,49
confidence interval 33,42,51
confusion matrix 38
‘consensus MaxEnt practice’ 2,88,96
conservation biogeography 8
continuous environmental variables space 14,19, 44, 45,47,48,91
continuous response function 43,44,47,48
continuous transformation 19
continuous variable 19,71
correlation 10,67,75
covariance (0) variable 21,22,62
crossvalidation 62,66,67,76,79, 88
cumulative output (format) 43,50, 54
D variable; see deviation variable
data collection 4,6,38,52
data model 6,15, 16,47
data preparation 6
decision matrix 38
default value 10,11, 88
degree of freedom 1, 35,36,57,86,90,91, 96
dependent variable 90
dependent variable set 37
derived variable (DV) 2,6,10-13,16,18, 19, 22-24, 26-31, 33, 34, 36, 37, 42-45,
47,48,50,53,55,57,59,61-63, 65, 66,70,71, 74-76, 79, 83, 85-87, 89, 90, 93-96
derived variable main type (DVMT) 2,19-21
derived variable type (DVT) 2,19-21
deviance 29,34,37,92,96
deviation (D) variable 19, 20, 61, 85,95
discontinuous transformation 19, 22
discrete environmental variables space 18, 44,45, 47,48
discrete observation unit 15,43, 45
discrete probability distribution 18, 24,47,48
discrete variable 30,55,57
discriminative MaxEnt model 2,9,15,17,54,95
distribution 1,4,6-10, 13, 14, 18, 24-26, 28, 44, 48,50, 55,57, 59, 87, 89-91
distribution model 7,11,17, 38,40, 43, 44, 53,87,89,91, 92,96
distribution modelling (DM) 1,4,6-11,13-15, 23, 24, 28, 29, 35, 36, 44, 48, 86, 87,
92,94-96, 100

DM, see distribution modelling

downweighting (of variables) 87
DV, see derived variable

DVMT, see derived variable main type

DVT, see derived variable type

ecological model 6,13
ecological niche theory 8
ecological process 6

ecological response curve 12,78, 83, 85, 86, 94



SOMMERFELTIA 36 (2013) Halvorsen: A strict maximum likelihood explanation of MaxEnt,...

ecological response modelling (ERM)
ecological science

ecological theory

ecology

empirical data

entropy

environmental complex-gradient
environmental data (set)
environmental gradient
environmental sampling bias
environmental scenario
environmental variables space
ERM, see ecological response modelling
EV, see explanatory variable

exact binomial test

explained deviance

explanatory variable (EV)

explanatory variable vector

exponential function

extent

external model performance assessment
extraction of model predictions

F distribution

F statistic

factor level

false negative rate

false positive rate (FPR)

‘feature’

forward hinge (HF) variable

forward selection of variables
forward-backward selection of variables
FP, see frequency of presence

FPR, see false positive rate

fraction of explained deviance

fraction of total variation accounted for (FTVA)

F-ratio test

frequency of observed presence
frequency of presence (FP)
frequency-of-observed-presence curve

125

6,7,18,22,23,44,48,53,78,87,94,96

6,9,14,18,19,43-50

59, 60

29
1,37, 41, 44,
9,91,93-96
45

17

6,10, 25,42, 50, 51, 59, 85, 87, 89,91
2,30,53,95

6

35

35,90,91

22

39,50

39

10,11, 16, 33,49

20, 22,61

31,78

10, 31, 89

2,6-8,10-13,15,16, 19, 22, 24, 27-3
55,57,61, 62, 65,71, 83,85-87, 8

29
29,43,57,59, 61, 62,65-67,70,
71,75,76,78, 83, 85, 86,92

1,35-37,53,57,59-63, 65,67,71,75,87,90,92, 95

41,55,57,65,71,83,89
17,51,52, 54
57,62, 65,71,75, 83, 85, 86,96

FTVA; see fraction of total variation accounted for

‘gain’

GAM, see generalised additive models
generalised additive models (GAM)
generalised linear models (GLM)

general-purpose ecological response modeling

generative distribution model
generative MaxEnt model

63,93

14,19, 34,94

10,13, 14, 19, 25, 29, 34, 35, 52, 85, 90, 94
7,96

23

9,15-19, 23, 25, 38,41, 43, 44, 53, 54, 94
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geographical sampling bias 49
geographical space 6,12,14-16,18,43-45,47,48,55,57
geostatistical method 91
Gibbs distribution 26
Gibbs function 44,94
Gini coefficient of size inequality 41
GLM, see generalised linear models
gradient 86,87
gradient analysis 8,12,85
gradient analysis technique 6
gradient analytic perspective 1,4, 14, 15, 83,87,95
grain 15,52, 89
grid cell6, 9, 15-18, 24, 25, 27-29, 33, 36, 38, 41, 43-50, 52, 54, 55,57, 63, 67,70, 71, 79, 83,
85,91,92,94
H variable; see hinge variable
heuristic methods for estimating variable contribution to model 43, 62
HF variable; see forward hinge variable
hinge (H) variable 10, 13,22,27,61, 85, 86
HOF models, see Huisman-Olff-Fresco models
homogeneous population 91
HR variable; see reverse hinge variable
Huisman-Olff-Fresco (HOF) models 86
hypersurface 47
hypervolume 45,47,50
idiosyncrasy (of properties of modelled targets) 7,88
independence (of observations) 23,25,35,37,57,90-92
independent (P/A data) for calibration and/or evaluation 7,19, 38,52, 53, 87-89, 92, 95, 96
individually significant derived variable (ISDV) 1,32,62,65,75,79,87,92
interaction variable 10,19, 22,43,62
intercept 31, 35,52,89
internal model performance assessmentl, 2, 6, 10, 18, 30, 31, 34, 38,42, 53, 54, 88, 90, 95,
96
interpretation of model predictions 1,18, 43,44,54,91
ISDV, see individually significant derived variable
iteration process 43,62
‘jackknife variation accounted for’ 63,83
jackknifing 43
Kendall’s rank correlation coefficient 65,67,75,76,78
knot 22,36,61,63,65,71, 85,95
Kolmogorov-Smirnov (K-S) test 59, 60
K-S test; see Kolmogorov-Smirnov test
Kullback-Leibler divergence 25,48
L variable, see linear variable
¢ -regularisation 10, 11, 31, 33, 34, 62, 66, 67,76, 87-89, 94
landform 4
lasso penalty 10,11, 31
left-skewed variables 85
leptokurtosis 86,96

likelihood function 34
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likelihood ratio 34
likelihood-based measure of variation 92,93
likelihood-ratio test 1, 34, 35,53, 90, 95
linear (L) variable 19, 20,22,75
linear regression model (LM) 52
LM, see linear regression model

log loss 26, 28,29, 31,33,36,62,63,66,70,88,92,93,96
logistic output (format) 43,50,51,53
logistic output parameter 50, 51,53
logistic regression 12,52, 86
logit link function 52
log-likelihood 26, 34,37
M variable; see monotonous variable

machine learning 9,14
major complex-gradient 12,19, 22
manual forward stepwise variable selection 62,65,67,75,76,78,79,89,90
map representation (of predictions in geographical space) 12,13,86

MARS, see multivariate adaptive regression splines
MaxEnt, see maximum entropy model
Maxent, see maximum entropy modelling software

maximising the likelihood 24
maximum entropy (principle) 1,9,28
maximum entropy model (MaxEnt) 1,2,8-19, 23-29, 31, 33-38, 41-55,57, 59,
61-63,65-67,70,71,75,76,79, 83, 85-96

maximum entropy modelling software (Maxent) 1,8-15,17,19, 23, 25, 31, 33, 34,
36,41, 43,48-51,61-63, 66,67, 76, 8-89, 92-95, 100

maximum likelihood estimate 14, 24, 94,95
maximum likelihood explanation 1,14, 15, 23, 29, 34, 37,90-92, 94
maximum likelihood model 27,29,34,92,96
maximum likelihood principle 1,15, 23, 25, 28
mini-review 1,9,10,11,13
misidentification 24
mis-specification (of model) 86
mode 71,83
mode parameter 18
model calibration 2,6,19,38,51-54,95
model comparison 1,8,11,30,34,37,43,92
model complexity 10, 30,37,53,76,87,89
model complexity penalty term 31
model evaluation 2,6,12,19, 30, 38,53,91, 95
model evaluation by data resubstitution 53
model evaluation by data-splitting 53
model evaluation by independent data 19,53
model evaluation by repeated resubstitution of data 53
model expectation 18,52, 59
model improvement criterion 2,30,53,61,62,65,67,71,88,90,92, 95,96
model parameter (vector) 7,10,13, 24, 25,31, 36,37,43,62,67
model parameterisation 6,10,17,18, 38,91
model performance 1,2,6,7,10,18, 30,31, 34,36-38,41, 42,53, 54, 65, 74,
85, 87, 88,90, 92,93, 95,96
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model prediction 1,6,7,12,18,38,43,76,78,86
model ‘re-calibration’ by use of PO data 6
model selection 1,2,6,8,10,11, 18, 29, 30, 33, 53, 54, 62, 79, 86-89, 95, 96
model specification 6,18, 23,87
modelled target 2,4,6,7,9,10,12,13,15,17, 19, 22-24, 38, 41, 43-45,
47-49,51-55, 62, 65,71, 83,85-89, 91, 94
modelling of the overall ecological response 6,7,14,18,22,23,44,48,53
modelling purpose 7,11,12,18, 41,87
monotonous (M) variable 19, 20, 22,61
Monte Carlo test 37
multiple testing problem 53
multivariate adaptive regression splines (MARS) 8
nature type 4
nested models 1, 30, 34, 35,42, 62,90,91,92
‘new-context’ distribution modeling 7
nonlinear relationships 19
nonlinear transformation 20,97
non-parametric statistical method 38,41
null hypothesis 35, 36,90
null model 1, 24, 28,31, 34-37,43,59,61-63,70, 71, 79, 89, 90, 92
null-model comparisons 43
0 variable; see covariance variable
observation unit 15,17,18,43,45,48,52,55,57
observed presence (OP) (vector) 16,17,19, 22, 24, 26-29, 34, 36, 38, 40, 41,
49,50,52,54,55,57,62,63, 65,71, 76,83, 85-87, 89-92, 94
observed presence or absence (OPA) (vector) 16,17, 38,52
0C, see optimisation criterion
omission error (of model) 39,41
one-class estimation 9

OP, see observed presence vector
OPA, see observed presence or absence vector

optimisation criterion (0C) 30, 36,37,88
optimum 83,85, 86
ordination 10
orthogonal variables 75
output format 2,18, 38, 43,48-51, 53-55, 63,95
overall ecological response 6,7,12,14,18, 22, 23, 44,48, 53, 83, 85, 94
overfitted model 1,10-13, 24, 86,87, 89
overfitting 11,12, 29, 30,87, 88

P variable, see product variable
P/A data, see presence/absence data

paradigm 8,89
parameter vector 18, 23, 25
parsimonious model 7,8,12,24, 29
parsimonious sets of derived variables 2,31,62,65,75,86,87,89,90,93, 95,96

PCA, see principal component analysis

PE, see prediction error

Pearson’s product-moment correlation coefficient 75
penalised information statistics 34,37
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penalised likelihood (PL)
penalised log loss
‘percent contribution’
performance
performance measure

performance statistic

permutation

‘permutation importance’

piecewise linear spline

PL, see penalised likelihood
plateau-shaped (response) curve
platykurtosis

PO data, see presence-only data

PPM, see projective distribution modelling
PPP, see predicted probability of presence
predicted probability of presence (PPP)
‘predicted-to-expected ratio’

prediction error (PE)

predictive performance

pre-selection of explanatory variables
presence (observation)

presence/absence (P/A) data
presence/background data
presence-only (PO) data
presence-to-background frequency ratio
prevalence

principal component analysis (PCA)
probability density function

probability distribution

probability scale

probability-of-presence output (format)
probability-ratio output (format)
probability-type response variable
problem formulation

problem specification

product (P) variable

projection

projective distribution modelling (PPM)
pseudo-absence (observation)

Q variable; see quadratic variable
quadratic (Q) variable

37,88,93
31, 33,66
43,62,93

1,2,6-10, 12, 18, 28, 30, 31, 34, 36-39, 41-43, 53, 54, 62, 65, 74, 85-96

75, 88,92

39,43, 53,74, 88,90,93
37

43,62,70,79,93

22

78,94
86,96

17,95

49

30, 34,53

1,2,7,9,12, 30, 39, 62,86-92, 96
10,11,12,89,90

1,9-12, 14,16-19, 22, 24-29, 33, 34, 36, 38-41,
45-52, 54, 55,57, 63, 65,67,70,71,76,79, 83, 85-87,89-95
2,7

,7,9,15,42,53,95,96

9

6,9,15,51

46-49

17,41, 44, 45,51, 52, 54, 55,94
10,15

47,48

9,18, 24, 25, 28,44, 48,50

6

38,51-54,95

2,48,50, 51, 54, 55, 63, 65, 76,91, 95
51

4

4

11,13, 21, 22

7,48

7,13,38,48,87,90,96
24,34,36,94

10,19, 20, 27, 61

qualitative scale for characterisation of distribution model performance 40

R programming environment
random background observations
random sample

random variable

randomisation

8

50

38,49,52,59
53,79,87,90
37,43,57,62,90

randomisation procedures for estimating variable contribution to model 42,62
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randomisation test 37,38,42,53,54,62,65,75,90,92,95
ranged derived variable (rDV) 23
ranging 20,23
ranked model performance 65,74
rasterisation 6
rasterised geographical space 6,15,16,47,55,57
raw data 4,6
raw derived variable (rDV) 23
raw output (format) 38,43,44,48-51,63,70
rDV; see raw derived variable

receiver operating characteristic (ROC) curve 12, 38,92
reference model 24,28,37,63,70,94
regression 1,8,12,14,52,86,91
regularisation 10,11, 30, 31, 33, 34,37,57, 61, 62,87-89
regularisation parameter 10,11, 30, 31, 33, 62, 88, 89
‘regularised gain’ 93
regularised log loss 88,93
regularised variation accounted for 83,84
relative predicted probability of presence (RPPP) 6,17,18,19,41,43,48,50-52
relative suitability 2,49,91,94,95
resampling procedures for estimating variable contribution to model 43,63
residual 1,36,90,91
residual deviance 29
residual variation 29, 35,57,59
response curve (shape) 11-13, 22,41, 44, 78, 83, 85, 86, 94
response variable 6,15-18, 23, 24, 29, 30, 34, 35,37,52, 54,94
reverse hinge (HR) variable 20,22,61,72
right-skewed variables 57,85

ROC curve, see receiver operating characteristic curve
RPPP, see relative predicted probability of presence

sampling bias 19,41, 42,49,50
saturated model 24, 28, 35,37,49, 63, 65,67,70,76,79, 92,94
‘scale utilisation ratio’ 92,93
scale-correction of PO-based AUC values 92
SE, see standard error (of the mean)

sensitivity (of model) 39
shrinkage method 1,10, 30, 31, 33, 34, 88,89, 95
signal processing 38
significance level () 35,53,61,90,92
simulated data 1,15, 16,41,55,57,61,87,89,91
single-variable AUC contribution 43,62,63
single-variable contribution to the total variation accounted for 43,63,83
skewed response curve (shape) 12,57,94
skewness 85, 86,96
smooth response curve (shape) 12,47,78, 83
sorting convention (for observation units) 16,55,57
spatial autocorrelation 91,92,96
spatial autoregressive terms 91, 96

spatial prediction modelling (SPM) 2,7,13,48,87,96
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spatial-transfer distribution modeling
spatiotemporal scenario

species richness

specificity (of model)

specific-purpose ecological response modeling

spline variable 19,

SPM, see spatial prediction modelling
standard deviation
standard error (of the mean)

standard MaxEnt practice 1,2,11-13, 15,

statistical mechanics

statistical model 6,

statistical model formulation

statistical modelling 7,8,

stratified random sample

study area 6,7,15,16,17,22, 38, 44,47-49, 51,
subset selection method 1,30, 31, 34,

sum of squares

symmetric response curve (shape)

T variable, see threshold variable
target-group background observations
temporal-transfer distribution modeling
theoretical foundation

threshold (T) variable 10,11, 13, 21, 22,
threshold value 38-
threshold-shaped ecological response (curve)

ties

tolerance

total variation 29,36,43,57,59,61-63,65-67,70,71,75, 76,

TPR, see true positive rate
trade-off

training data

‘training gain’

transfer of model prediction 7,
transformation 6,16,17,19, 22,23, 31, 43, 44, 48, 50,
transformation function 19,
transformation of explanatory variables 8,11, 19,

transformation of model predictions
trapezoid method

triangular inequality

true negative rate

true positive rate (TPR)

truncated response curve (shape)

tuning parameter 10, 11,

two-class estimation
Type I overfitting

Type Il overfitting

Type Il overfitting
unconditional probability

7

48

4

39

7
21,22,61,62,71

42

33
62,67,86,87,89
9

15,16,17,18, 44
6

16,17, 24,29, 89
52
55,57,87,88,91
62,89,92,95,98
34

12,94

50,91

7

4,8, 14,41, 95
28,61, 83, 85,86
40, 50, 53, 54,90
83

41

19, 22,83
78,83, 85, 86,92

30

10-12, 30,37, 62
63,93

38,43, 44,45,47
52,85, 86, 95,96
23,44, 61, 85,94
22,61, 85,95,96
18,43

40,41, 42

65

39

39

12,57,78, 85,94
33,57,85,87-90
9

12,86

12, 86,87

12

45,47,49
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uniform distribution 9,55,57,59, 60
unimodal response curve (shape) 12,19, 78, 85, 86, 88, 94, 96
uninformed background cells 16, 24, 25, 34, 36,41, 50, 55,57, 83, 85,90-92, 94
V variable, see variance variable
VA, see variation accounted for
variable contribution (VC) (to model) 42,43,62,63,67,86,92,93,96
variable diagnostics 10
variable pre-selection 10-12, 89,90
variable selection 66,76
variable type 10,11,19,27,61,95
variance 11,19, 33
variance (V) variable 19,27, 61,85
variation accounted for (VA) 29,35-37,43,57,59,61-63, 65-67,70, 71,
74-76, 78, 83, 85, 86,92,93,96
VC, see variable contribution (to model)
Vt-knot graph 61,63,71, 85
weighted average 27,119
weighted sum 27
Wilcoxon-Mann-Whitney statistic 41,42
wildfire 6
X variable; see complex spline variable
zero-skewness transformation 85



