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After massive proliferation over the last decade, distribution modelling (DM) – research with 
the purpose of modelling the distribution of observable objects of a specific type – has grown 
into an independent branch of ecological science. There is consensus that this new discipline 
needs a stronger theoretical foundation. I describe DM as an inductive scientific process with 
12 steps, organised into three composite steps: ecological model, data model, and statistical 
model. Step 8, modelling of the overall ecological response, places DM unambiguously among 
gradient analysis techniques and motivates for a gradient analytic (GA) perspective on DM. DM 
terminology is reviewed and revised accordingly.

Three fundamental insights of the GA perspective are described: (1) that external ‘factors’ 
do not influence the species one by one, but act on the species in concert; (2) that a few major 
complex-gradients normally account for most of the variation in species composition that can 
be explained environmentally; and (3) that species occur within a restricted interval along 
each major complex-gradient. These insights are developed into a theoretical platform for DM. 
General patterns of species performance variation along environmental complex-gradients and 
the structuring processes responsible for these patterns are reviewed. Three categories of eco-
clines, i.e., gradients of variation in species composition and the environment, are recognised: 
regional ecoclines, local ecoclines, and condition or impact ecoclines. Causes and implications 
of the unimodal shape of species’ responses to environmental complex-gradients are reviewed. 
Structuring processes are divided into three categories: limited physiological tolerance, inter-
specific interactions, and demographic processes. Relationships between categories of ecoclines, 
the processes responsible for variation in species performance along them, and the spatial and 
temporal scale intervals in which variation is large, are reviewed.

The GA perspective forms the basis for discussions of important steps in the DM process. 
Initially, the controversial concepts of the habitat and the niche are reviewed and their role in 
the ecological model (Step 1) discussed. I conclude that neither of these concepts are neces-
sary, nor useful, for DM. As an alternative to conceptual models based upon the niche concept, I 
propose a new conceptual modelling framework for DM, the HED framework, which is rooted in 
the gradient analytic perspective. I show how this new framework can be used, in initial phases 
of a DM study to formulate a meta-model for factors that influence distributions, and in the 
analytic phase to guide important choices of methods and options and to assist interpretation 
of modelling results. Important data model issues are: collection of data for the modelled target 
and preparation of raw response variables (Steps 2 and 6); collection of explanatory data (Step 
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3); conceptualisation of the study area (Step 4); collection of data for calibration and evaluation 
(Step 9); and transformation of explanatory variables to derived variables subjected to DM (Step 
5,ii). Important statistical model issues are: statistical model formulation, i.e. choice of method 
(Step 7,i) and model specification (Step 7,ii); model selection and internal assessment of model 
performance (Steps 8,i and 8,ii); and model evaluation (Step 10). Two points are emphasised: 
(1) that modelling purpose should inform choice of methods and options; and (2) the impor-
tance of an independently collected presence/absence data set, which can be used to calibrate, 
evaluate and iteratively improve models.

Finally I list seven challenges of particular importance for progress in DM: (1) that more 
knowledge of patterns of natural variation is needed; (2) that a better mechanistic understand-
ing of causes of patterns of natural variation is needed; (3) that the availability of relevant ras-
terised explanatory variables needs to be improved; (4) that more studies of patterns at local 
and micro spatial scales, in addition to multiple-scale studies using DM methods, are needed; 
(5) that evaluation by independent data should be established as a standard in DM; (6) that 
further insights into statistical modelling methods and their options, with particular reference 
to appropriateness for different types of data and DM purposes, are needed; and (7) that DM 
methods should be incorporated in studies with a broader scope. I conclude that there are 
considerable potentials for improvement of DM methods and practice. Increased return from 
DM in terms of contributions that improve our understanding of patterns of natural variation 
and their causes, should be expected.

Keywords: Conceptual model; Distribution modelling; Ecocline; Gradient analysis; Grain; Habitat; 
Niche; Spatial scale; Statistical model; Temporal scale; Terminology.

Abbreviations: ALS = airborne laser scanning (= LiDAR); AOR = abundance-occupancy relation-
ship; AUC = area under the (ROC) curve; BAM diagram = a conceptual model for distribution 
modelling; BIOCLIM = bioclimatic envelope model; BRT = boosted regression trees; CCA = 
canonical correspondence analysis; CO = constrained ordination; CSR model = competitor–
stress tolerator–ruderal model; CURS = core-urban-rural-satellite (model); DCA = detrended 
correspondence analysis; DEM = digital elevation model; DM = distribution modelling; EFL = 
empirical forest limit; ENFA = ecological niche factor analysis; ENM = ecological niche modelling; 
ERM = ecological response modelling; EUNIS = the European habitat classification system; GA 
= gradient analysis; GAM = generalised additive models; GAP = the gradient analytic perspec-
tive; GARP = genetic algorithm for rule-set production; GBIF = Global Biodiversity Informa-
tion Facility; GIS = geographic information system; GLM = generalised linear models; GLMM 
= generalised linear mixed models; HED = conceptual modelling framework for distribution 
modelling with three components: (1) heuristic factor diagrams (H-diagrams), (2) ecological 
response curves (E-curves), and (3) distribution maps (D.maps); HOF = Huisman-Olff-Fresco 
(models); LC = linear combination; LPT = lack of physiological tolerance; MaxEnt = maximum 
entropy (model); MAUP = modifiable area unit problem; MNM = mechanistic niche modelling; 
NiN = Norwegian nature types [Naturtyper i Norge]; P/A = presence/absence; PCA = principal 
component analysis; PO = presence-only; PPM = projective distribution modelling; PPP = pre-
dicted probability of presence; RDA = redundancy analysis; ROC = receiver operating charac-
teristic (curve); RPPP = relative predicted probability of presence; RSD = remote sensing data; 
SAR = species richness–area relationship; SD = standard deviation; SDM = species distribution 
modelling; SEM = structural equation model; SPM = spatial prediction modelling; SS = sum of 
squares; UPCFL = upper potential climatic forest line; UTM = Universal Transverse Mercator 
(grid reference); VP = variation partitioning; WA = weighted average.
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Introduction

SETTING THE SCENE: A SIMPLE EXPLANATION OF WHAT DISTRIBUTION MODELLING IS

Distribution modelling (DM) can be explained, simply, as research with the purpose of model-
ling the distribution of observable objects of a specific type, the modelled target, as a response 
to supplied explanatory variables. Five important terms are used in this explanation, which 
themselves need to be explained: ̒ observable objectʼ, ̒ distributionʼ, ̒ modelʼ, ̒ response variableʼ, 
and ʻexplanatory variableʼ. In this essay review, the expression ʻobservable objects of a speci-
fied typeʼ includes all natural phenomena, resulting from geological, biological, or ecological 
processes, which are more or less discrete, observable, and which, according to a set of explicit 
criteria, belong to a specific type category. Relevant object types include species or other biologi-
cal taxa, communities of plants and animals, ecosystems, landscape types, landforms, minerals, 
and bedrock types. Also direct physical manifestations of ecological and geological processes, 
such as earthslides and extensive windthrows, may be targets for distribution modelling. The 
collective term ʻdistributionʼ adresses the physical arrangement of objects belonging to a spe-
cific type category – where and when they occurred, occur, or are expected to occur. The terms 
ʻmodelʼ, ʻresponse variableʼ, and ʻexplanatory variableʼ are closely linked to each other. In the 
most inclusive sense, a model is ʻanything used in any way to represent anything elseʼ (http://
en.wikipedia.org/wiki/Conceptual_model, accessed 30 June 2012). A model is a description 
– in words, by diagrams, or in mathematical or statistical terms – of how one phenomenon is 
related to one or more other phenomena. A model can describe general or context-dependent 
relationships between the phenomena in question. The term response variable is used in 
mathematical and statistical modelling contexts for a variable that is used to characterise the 
phenomenon that is modelled. The term targeted response variable addresses the response 
variable in a distribution model, i.e., the variable used to characterise the modelled target. The 
term explanatory variable is used for a variable that, alone or in combination with other vari-
ables, is used to characterise a phenomenon that represents, or describes, the modelled target. 
In a statistical modelling context, the term is used for any variable that potentially may account 
for some variation in the response variable. Explanatory variables may be causally related to the 
response variable, proxies for putatively causal factors, or any other variable used for model-
ling, regardless of their relationship to the modelled phenomenon. Thus, the term ‘explanatory 
variable’ should be understood in a strictly statistical meaning, without any assumptions of, or 
allutions to, causality (Økland et al. 2001). Most ̒ explanatory variablesʼ used in DM contexts are 
environmental variables, but biotic variables, i.e., descriptors of potential influences from 
other organisms, are also used. With environment I here mean environmental variation in the 
widest sense, comprising all external factors that potentially may influence organisms. 

This simple explanation for distribution modelling establishes DM as a multidisciplinary 
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field of research which, depending on which natural phenomenon is modelled, integrates skills 
in botany, zoology, ecology, geology, or physical geography, with methods for processing geo-
graphical information and statistical modelling methods.

HISTORICAL BACKGROUND

Describing and understanding distributions have been focal issues in natural sciences since 
the early 19th century (e.g., see Guisan & Zimmermann 2000), e.g., recognised under names 
such as biogeography, vegetation geography, and physical geography. Distribution modelling 
developed from these fields during the 25-year period from 1975 to 2000, when natural sci-
ences developed from being mainly descriptive to addressing a wide range of questions by use 
of a multitude of approaches and methods.

DM partly originated in biogeographersʼ search for climatic factors that could explain dis-
tributions of species (e.g., Salisbury 1926) and biomes (e.g., Walter 1968), partly in community 
ecologistsʼ search for general ̒ species response curvesʼ, i.e., for models of speciesʼ distributions 
with respect to important environmental variables (Whittaker 1967, Austin 1976, 1980, Økland 
1990a). Starting out by means of simple graphs (e.g., Iversen 1944, Ellenberg 1953, Whittaker 
1956, Grime & Lloyd 1973), all-round modelling methods like generalised linear modelling 
(GLM; e.g., Austin et al. 1984) and generalised additive modelling (GAM; e.g., Austin & Meyers 
1997) gradually came into use during the 1980s and 1990s. In recent years, new modelling tools, 
such as HOF modelling (Huisman et al. 1993, Oksanen & Minchin 2002), have been developed 
for analysis of speciesʼ responses to single explanatory variables. Examples of studies in which 
these tools are used include Oksanen & Minchin (2002), Rydgren et al. (2003), Kalusova et al. 
(2009), and Peper et al. (2011).

DM developed into a scientific discipline on its own by inorporating geographic infor-
mation systems (GIS; Burrough & McDonnell 1998, O’Sullivan & Unwin 2003) and statistical 
modelling methods (e.g., Hastie et al. 2009, Zuur et al. 2009) into a distinctive methodological 
framework for analysis of georeferenced biogeographic data. Furthermore, the development 
of DM has been strongly facilitated by advances in computer science, among others under the 
heading of biodiversity informatics (Peterson et al. 2010). Advances in this field have opened 
for digitisation of vast amounts of data, among others in natural history museum collections, 
access to these data via web services such as the Global Biodiversity Information Facility (GBIF; 
Telenius 2011), and processing of increasingly large sets of data by use of increasingly complex 
methods.

A large number of statistical modelling methods have been applied to analysis of georef-
erenced distributional data; from all-round modelling methods like GLM (e.g., Pearce & Ferrier 
2000a; see Fig. 9) and GAM (Leathwick 1995, Lehmann et al. 2002), to methods specifically 
developed for DM, available in software applications specifically adapted for DM. Development 
of methods of the last-mentioned type started out with simpler methods such as bioclimatic 
envelope modelling (BIOCLIM; Busby 1991) and continued with more complex methods such 
as GARP (Stockwell & Peters 1999) and ENFA (Hirzel et al. 2002). Two of the currently most 
popular DM methods, which also perform the best in comparative tests [see Elith et al. (2006), 
Guisan et al. (2007), Elith & Graham (2009), Phillips et al. (2009), Mateo et al. (2010), Rupprecht 
et al. (2011)], are MaxEnt (Phillips et al. 2006, Phillips & Dudík 2008, Elith et al. 2011, Halvorsen 
in press), which is based upon the maximum entropy principle, and machine learning methods 
like boosted regression trees (BRT; Deʼath 2007, Elith et al. 2008). A recent trend is towards 
use of ensemble modelling approaches such as BIOMOD (Thuiller et al. 2009), by which models 
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obtained by different methods are combined into one ensemble model (e.g., Beaumont et al. 
2009, Lomba et al. 2010, Nenzén & Araújo 2011). Comprehensive overviews of DM methods are 
provided by Franklin (2009); alse see Elith & Leathwich (2009) and Peterson et al. (2011).

	 The increasing rates by which new modelling methods for DM have come into regular 
use (e.g., Phillips & Dudík 2008, Thuiller et al. 2009), and the steadily growing rate by which 
papers with a DM approach are published (Lobo et al. 2010), indicate that the proliferation of 
DM will continue in the near future.

	 The category of nature phenomena by far most often targeted by DM methods is the 
species, as exemplified by studies of plants by Parolo et al. (2008), Jones et al. (2010), and Ed-
vardsen et al. (2011); of animals by Luoto et al. (2006) and Lozier et al. (2009); and of fungi by 
Wollan et al. (2008). Other natural phenomena that have been subjected to DM include species 
assemblages (‘communities’ or ʻvegetation typesʼ; Cawsey et al. 2002, Weber 2011, Hemsing 
& Bryn 2012), species diversity variables like richness or evenness (Miller & Franklin 2002, 
Buhk et al. 2007, Baselga & Araújo 2009, Dubuis et al. 2011), and land-cover types (Dobrowski 
et al. 2008). Phenomena that are not yet physically observable, such as the upper potential cli-
matic forest line, have also been subjected to distribution modelling (Bryn et al. 2012). While 
in recent textbooks (Franklin 2009, Peterson et al. 2011) attention is restricted to modelling 
of taxonomic entities (ʻspeciesʼ), this essay review also briefly covers approaches to modelling 
distributions of other natural phenomena. This is reflected in the use in this essay review of the 
term ̒ modelled targetʼ rather than ̒ speciesʼ for situations where no specific category of natural 
phenomena is addressed.

	 An important reason for the recent proliferation of DM is the proven value of DM results 
for applied purposes (Elith & Leathwick 2009, Franklin 2009). Important applied uses of DM 
include assistance to conservation biologists in their search for, and sampling of, rare species for 
monitoring purposes (Edwards et al. 2005, Guisan & Thuiller 2005, Guisan et al. 2006a, Marage 
et al. 2008, Parviainen et al. 2008, de Siqueira et al. 2009, Gogol-Prokurat 2011, Marino et al. 
2011), judgement of conservation priority (Platts et al. 2010, Bombi et al. 2011), management 
of invasive species (Crawford & Hoagland 2009, Václavík & Meentemeyer 2009, Catford et al. 
2011, Gormley et al. 2011) and prediction of range shifts in response to climate change (Heik-
kinen et al. 2006, Zurell et al. 2009, Engler et al. 2011). A result of the strong applied interest 
in DM is the recent recognition of conservation biogeography as an ecological discipline on its 
own (Whittaker et al. 2005, Franklin 2010, Richardson & Whittaker 2010).

WHY DISTRIBUTION MODELLING NEEDS A STRONGER THEORETICAL FOUNDATION

All branches of science, distribution modelling included, depend on the firm foothold offered 
by a strong theoretical foundation: in-depth understanding of the major processes and mecha-
nisms that are responsible for observed patterns, built upon a conceptual basis that consists of 
precisely defined terms. In spite of the proliferation of DM methodology and applications, it is 
recurrently claimed that distribution modelling lacks such a foundation, and that more explicit 
links with ecological theory is needed (Araújo & Guisan 2006, Austin 2007, Hirzel & Le Lay 2008, 
Jiménez-Valverde et al. 2008, Elith & Leathwick 2009, Peterson et al. 2011). Even though several 
recent contributions have improved the theoretical basis for DM, notably by attempts to clarify 
relationships between DM and niche concepts (e.g., Pulliam 2000, Kearney 2006, Austin 2007, 
Soberón 2007, 2010, Godsoe 2010, Barve et al. 2011, Cassini 2011, Peterson et al. 2011), DM 
still faces a multitude of fundamental challenges. This is exemplified by the lack of consensus 
on important methodological questions, such as the relative performance of different modelling 
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methods and their options (Elith et al. 2006, Hirzel et al. 2006, Elith & Graham 2009, Mateo et 
al. 2010, Rota et al. 2011); how to deal with the commonly occurring lack of true absence infor-
mation (and the related question of how pseudo-absence ‘observations’ should be generated) 
and how choices in this respect influence DM results (Chefauoi & Lobo 2008, Lobo et al. 2010, 
Stokland et al. 2011); how to select explanatory variables to be used in DM studies and, notably, 
determine which types of variables generally improve (or fail to improve) distribution models 
(Randin et al. 2009a, 2009b, Ko et al. 2011, Marino et al. 2011); how the choice of explanatory 
variables interacts with the spatial scale addressed by the study (Pearson & Dawson 2003, Jones 
et al. 2010, Kriticos & Leriche 2010); and, finally, how to evaluate distribution models, i.e., how 
to tell good from poor models (Lobo et al. 2008, Jiménez-Valverde et al. 2009, Edvardsen et al. 
2011, Merckx et al. 2011, Warren & Seifert 2011).

Development of ‘schools’ with different research paradigms is typical of research areas 
tenuously rooted in theory (Austin 2007). A typical example of ‘school formation’ in ecology is the 
fragmentation of phytosociology in the early 20th century (Whittaker 1962) into schools which 
differed fundamentally in their basic understanding of the nature of natural variation (Whittaker 
1962, McIntosh 1985, Økland & Bendiksen 1985). Examples of topics that were vigourously 
debated are: if distinct community units exist (Clements 1916, Du Rietz 1921, Braun-Blanquet 
1928), or communities are social constructions [in the sense of Hacking (1999)] as argued for by 
Nordhagen (1920) and Kylin (1926); if variation in single-species abundances is predominantly 
individualistic and variation in species composition, i.e., vegetation, predominantly continuous 
under natural conditions (Gleason 1926), or if distinct discontinuities in vegetation exist also 
when environmental conditions vary continuously (Cajander 1909; Du Rietz 1921); how to 
define the fundamental unit in the phytosociological hierarchy, the association (e.g., Du Rietz 
1936); and how to describe and name plant communities (see, e.g., Whittaker 1962, van der 
Maarel 2005). Similar tendencies for fragmentation into ‘schools’ characterised by separate 
paradigms (Kuhn 1996) can now be observed within DM (Austin 2007, Peterson et al. 2011). 
This is reflected in different conceptual frameworks and the role of the niche concept in these; 
different agreed sets of facts – types of data and methods by which they are collected; different 
questions asked; different spatial scales addressed; and different standard methods used. Per-
haps the most obvious example of school formation is offered by the diversity of opinions on, 
and lack of consensus with respect to, the applicability of niche concepts to DM: if the concept 
of the niche is important for DM or rather a nonconcept which ʻhas been defined in such vari-
ous and disparate ways that it now conveys no information other than “something to do with 
[the relationships of species to their surroundings]”ʼ, quoting Hurlbertʼs (1971) critique of the 
concept of ʻspecies diversityʼ. While some authors argue that the niche concept is the essence 
of distribution modelling and, accordingly, use the term ‘ecological niche modelling’ (ENM; 
Peterson 2003, Peterson et al. 2007, Ebeling et al 2008, de Siqueira et al. 2009, Guinan et al. 
2009, Lozier et al. 2009, Costa et al. 2010, Barve et al. 2011, Pearman et al. 2011, Peterson et 
al. 2011, Warren & Seifert 2011), ‘environmental niche modelling’ (Warren et al. 2008), ‘niche 
modelling’ (Parolo et al. 2008, Kearney & Porter 2009, Veloz 2009, Kriticos & Leriche 2010) 
or ‘niche-based modelling’ (Guisan et al. 2006a, Randin et al. 2006, Segurado et al. 2006, Bahn 
& McGill 2007, Bartel & Sexton 2009, Capinha & Anastacio 2011), others, such as Guisan & 
Zimmermann (2000), Guisan & Thuiller (2005), Araújo & Guisan (2006), and Franklin (2009) 
recognise the importance of niche concepts in general but admit that the relationship of DM 
modelling to the niche concept is a complex one. Many authors use the term ‘habitat’ instead of 
‘niche’, as exemplified by terms like ‘predictive habitat distribution modelling’ (Guisan & Zim-
mermann 2000), ‘predictive distribution modelling’ (Lobo et al. 2008, Marmion et al. 2009b), 
‘habitat suitability modelling’ (Hirzel et al. 2006, Murphy & Lovett-Doust 2007, Hirzel & Le Lay 
2008, Cianfrani et al. 2010), ‘habitat distribution modelling’ (Dirnböck & Dullinger 2004) or, 
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simply, ‘habitat modelling’ (Pearce & Ferrier 2000b, Burger & Page 2007). A different stand-
point is taken by Elith & Leathwick (2009) who explicitly advocate use of neutral terminology 
to describe distribution models. Many authors have followed this recommendation, using the 
simple, neutral term ‘species distribution modelling’ (Pearce & Ferrier 2000a, Rushton et al. 2004, 
Araújo & Guisan 2006, Edwards et al. 2006, Elith et al. 2006, Hernandez et al. 2006, Leathwick 
et al. 2006, Lütolf et al. 2006, Araújo & Luoto 2007, Raes & ter Steege 2007, Tsoar et al. 2007, 
Dobrowski et al. 2008, Jiménez-Valverde et al. 2008, 2009, Elith & Graham 2009, Elith & Leath-
wick 2009, Franklin 2009, Phillips et al. 2009, Pineda & Lobo 2009, Zurell et al. 2009, Santika 
& Hutchinson 2009, Lobo et al. 2010, Mateo et al. 2010, Stankowski & Parker 2010, Syphard 
& Franklin 2010, Aranda & Lobo 2011, Austin & van Niel 2011a, 2011b, Phillips & Elith 2011, 
Synes & Osborne 2011). On closer view, it is evident from the extensive literature cited above 
that opinions on fundamental DM issues such as the relevance of habitat and niche concepts 
are often coupled with the modellers’ preferences for methods and their choice of terminology. 
This indicates existence of ‘schools’, as suggested by Austin (2007). 

In order to mitigate further segregation into ‘schools’, consensus solutions to fundamental 
methodological challenges in DM should be actively searched for with the aim of establishing 
a unified theoretical platform for this new branch of ecological science (Austin 2007, Peterson 
et al. 2011). This is, however, difficult when no unified ecological theory exists (Austin 1986, 
1990, 1999b, 2005). As pointed out by Austin (2005), ‘there are many unanswered questions’ 
as well as ‘many unquestioned answers’. Nevertheless, the statement of Austinʼs (2005) that 
the views may be less different than they seem, because of apparent differences resulting from 
different focuses, from different scales of observation, and from differences between the eco-
systems investigated, opens for the possibility that a common theoretical platform for DM may 
be established. Similar views are expressed by Peterson et al. (2011) in their recent synthesis 
of DM concepts. DM obviously needs a stronger theoretical foundation.

ABOUT THIS ESSAY REVIEW: THEORETICAL PLATFORM, AIMS STATEMENT, AND STRUC-
TURE

Theoretical platform

Distribution modelling can be conceptualised in different ways, and the appropriateness of each 
conceptual framework will have to be judged by its contribution to progress in the field. In the 
recent book ʻEcological niches and geographic distributionsʼ, which by the authors is charac-
terised as ʻa first synthesis of concepts in this emerging fieldʼ, Peterson et al. (2011) present a 
conceptual framework for DM based upon niche theory: ʻ... a body of terminology and schemes 
by which to understand and discuss phenomena of distributional ecology ... [based upon] the 
complex relationships between ecological niches and geographic distributions of species ...ʼ 
(Peterson et al. 2011: 3). The focal point of niche theory is the species, as demonstrated by the 
following statement of Peterson et al.ʼs (2011: 17): ʻneither Grinnellian nor Eltonian niches 
can be operationalised without reference to a particular species ... no “empty” Grinnellian or 
Eltonian niches can exist.ʼ

The conceptualisation of natural variation adopted in this essay review is diametri-
cally opposite to that of Peterson et al. (2011): rather than starting with the species, I use 
an ʻenvironment-centredʼ approach to DM. This choice of mine is certainly a product of my 
training as vegetation ecologist with strong interests in biostatistics, and experience gained by 
participation in studies of species–environment relationships. However, more fundamentally, 
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my choice is motivated by reflections over the fact that all individuals of all extant species are 
direct descendants of individuals that managed to cope with the environmental factors experi-
enced by them (Dawkins 2009). While I acknowledge that species influence the environment 
to the extent that several aspects of ʻenvironmentalʼ variation are modified by, or direct results 
of, the existence of living organisms, my opinion is that the environment is the fundament for 
understanding natural variation: it is the totality of environmental impacts that determines the 
fate of each individual of each species, which in turn sum up to speciesʼ distributions in space 
and time. Accordingly, variation in the environment is my obvious choice as reference frame 
for describing and understanding distributions. 

The ʻenvironment-centredʼ (as opposed to a ʻspecies-centredʼ) understanding of natural 
variation adopted in this essay review implies that distribution modelling is explained from 
knowledge about environmental gradients and speciesʼ responses to these gradients. The term 
gradient is used to denote the more or less gradual variation of a property of the environment, 
or of a specific type category of natural phenomena. This knowledge is referred to as the gradi-
ent analytic perspective (GAP). 

Placing DM in a gradient analytic perspective is not a new idea. Guisan & Zimmermann 
(2000: 148) started their influential review of ‘predictive habitat models’ with the statement 
that ‘the analysis of species–environment relationship has always been a central issue in ecol-
ogy’. Furthermore, in two reviews, Austin calls for a stronger link between ‘spatial prediction of 
species distributions’ (Austin 2002) and ‘species distribution modelling’ (Austin 2007) on one 
hand and ecological theory on the other, with explicit reference to gradient analysis. However, 
these reviews are exceptions to the current tendency for distribution modellers to neglect the 
rooting of DM in basic gradient analysis.

Aims statement

My main ambition with this essay review is to contribute to the anchoring of distribution 
modelling in ecological sciences by development of terminology and a conceptual framework 
rooted in the gradient analytic perspective. Based upon this theoretical basis, my intention is 
to explore several aspects of current practices in distribution modelling. Finally, I also intend 
to explore potential contributions of distribution modelling to ecological theory. Although my 
theoretical basis differs from that of Peterson et al. (2011), my aim concurs with theirs: ̒ to move 
the discourse in this field to a new levelʼ (Peterson et al. 2011: 4).

This essay review is not an exhaustive review of, or textbook in, distribution modelling. 
For an overview of DM methods the reader is referred to Franklin (2009); Franklin (2009) 
and Peterson et al. (2011) should be consulted for examples of practical applications of these 
methods.	

Structure and overview

This essay review is divided into five chapters, of which each is one piece in the puzzle of ex-
plaining distribution modelling from a gradient analytic perspective (Fig. 1). The first chapter 
provides a brief outline of basic concepts and terminology of gradient analysis, starting with 
the three fundamental insights of the gradient analytic perspective. This fundament is used in 
the subsequent chapter to redefine distribution modelling in gradient analytic terms as a 12-
step process. The third of the five chapters contains a review of current knowledge of patterns 
of variation in species composition in relation to environmental conditions and the extent to 



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 10

Fig. 1. Interactions between the gradient analytic perspective and distribution modelling and the 
structure of this essay review; the five chapters are shown as boxes on yellow background.
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which these patterns can be generalised, as well as of the processes and mechanisms respon-
sible for these patterns, drawing extensively upon examples from Fennoscandian vegetation 
which I have had the opportunity to study for more than 30 years. The extended gradient 
analytic perspective outlined in this chapter forms the basis for the discussion, in the fourth of 
the five chapters, of implications for critical steps in the distribution modelling process. This 
discussion is structured by the three main components needed for statistical modelling listed 
by Austin (2002): (1) ʻecological modelʼ, i.e., ʻtheory to be used or testedʼ; (2) ‘data model’, i.e., 
the ‘collection and measurement of ... data’; and (3) ‘statistical model’, i.e., ‘the statistical theory 
and methods used’. These ʻcomponentsʼ will be referred to as the composite steps of the DM 
process elsewhere in this essay review. The discussion of ecological model starts with niche-
related concepts and conceptual models, and concludes with a proposal for a new conceptual 
framework for DM based upon the gradient analytic perspective. This framework is used in 
the discussions of data model and statistical model. I conclude this essay review with a brief 
discussion of potential contributions from DM to ecological theory and finally provide a list of 
challenges for DM.

basic CONCEPTS AND TERMINOLOGY of gradient analysis

the gradient analytic perspective

The gradient analytic perspective, i.e., explanations of natural variation based upon knowledge 
about environmental gradients and speciesʼ responses to these gradients, consists of insights 
obtained by gradient analysis of different species groups in different ecosystems in different 
parts of the world. Several important terms are used in this explanation, which themselves need 
to be explained. The first of these is environmental gradient (Whittaker 1967), which denotes 
the more or less gradual variation in any anvironmental ‘factor’. In the DM context the term 
is mostly used for ʻfactorsʻ that may potentially impact a species or another modelled target. 
Such ‘factorsʼ may or may not be ‘environmental’ in the strict meaning of the word. Examples of 
strictly ‘environmental’ factors are concentrations of nitrate or calcium in the upper soil layers, 
and volumetric soil moisture. However, in principle, ‘factorsʼ of all kinds may be of relevance for 
modelling distributions of natural phenomena, including, e.g., historical factors and other aspects 
of human influence (e.g., Hamre et al. 2010). Another example of an environmental gradient in 
this wide sense is disturbance severity, which can be approximated by the soil depth to which 
the impact of a tree uprooting incident can be traced (Schaetzl et al. 1989b). This broad concept 
of an environmental gradient also comprises ‘factors’ that are essentially biotic, e.g., tree-layer 
cover which indirectly impacts forest understorey vegetation by giving rise to variation in sev-
eral strictly environmental ‘factors’, such as incident radiation, throughfall precipitation, and 
litterfall (Økland & Eilertsen 1993).

The term gradient analysis (GA) is defined according to ter Braak & Prentice (1988: 272), 
as ‘the interpretation of community composition in tems of species’ responses to environmen-
tal gradients in the broadest sense’. The term community, which appears in this definition of 
ʻgradient analysisʼ, is here defined as organisms which live together at the same time within a 
restricted area (cf. Ricklefs 1973), i.e. the biotic component of ecosystems. Whittaker (1967: 207) 
defines the term ̒ gradient analysisʼ simply as ̒ a research approach for study of spatial patternsʼ. 
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The similarity between Whittakerʼs definition and the definition of distribution modelling pro-
vided at the very start of the introduction to this essay review should be noted.

Gradient analysis has been an important part of ecological research for almost a century, 
performed with increasingly sophisticated analytical methods. A multitude of methods for 
gradient analysis exists, ranging from simple graphical tools for visualisation (e.g., Whittaker 
1952, 1956) to more sophisticated, univariate and multivariate, statistical methods (e.g., Øk-
land 1990a, McCune & Grace 2002, ter Braak & Šmilauer 2002, Zuur et al. 2007). The concept 
of gradient analysis covers variation from the finest spatial scales (near the size of individuals) 
to the regional scale, and from time scales of seasonal and year-to-year variation to variation 
on geological time scales (Birks 1993b). The gradient analytic perspective therefore includes 
environmental variation on all spatial and temporal scales, and the relationships of species to 
all of this variation.

The most fundamental insights of the gradient analytic perspective can be summarised in 
three points as follows (Whittaker 1967, Austin & Smith 1989, Økland 1990a, Austin 2005): 

1. 	 External ‘factors’ do not influence the species one by one, but act on the species in concert. 
Explanatory variables used to characterise environmental gradients of importance for 
species and other modelled targets tend to be more or less strongly correlated with 
other explanatory variables. Therefore, the concept of the environmental complex-
gradient (Whittaker 1956), or, simply, complex-gradient, i.e., a set of more or less 
strongly correlated environmental variables, is fundamental for describing and un-
derstanding variation in species’ responses to the environment.

2.	 A few major complex-gradients normally account for most of the variation in species com-
position that can be explained environmentally. While innumerable complex-gradients 
may, in principle, explain variation in the ʻdegree of presenceʼ of a taxonomically, 
functionally and/or geographically delimited set of species, such as vascular plants 
in Norway (Pedersen 1990), soil-dwelling insects at the Finnish archipelago of Åland 
(Niemelä et al. 1985, or mycorrhiza-forming fungi in the Solhomfjell forest area in S 
Norway (Bendiksen et al. 2004), studies of variation in species composition by ordina-
tion methods usually fail to extract more than three gradients in species composition 
that are interpretable in terms of environmental complex-gradients (e.g., Økland & 
Eilertsen 1996, T. Økland 1996, Økland et al. 2001). The term major complex-gradient 
is used for these few, usually one, two or three, complex-gradients that account for 
most of the variation in species composition that can be explained environmentally. 
Environmental gradients are concrete in the sense that gradient positions can normally 
be quantified by measurements of soil pH, soil calcium concentrations, soil water 
content, photon fluxes, or other variables. Complex-gradients, on the other hand, are 
abstractions. No obvious choice of a representative variable that can be used, e.g., to 
scale complex-gradients, therefore exists. Operationalisation of complex-gradients is 
usually accomplished by way of indirect indicators, e.g.: by the main structure axis 
extracted from a set of measurements of relevant environmental variables, extracted 
by PCA ordination; by use of one, selected, environmental variable as a proxy; or by 
use of a gradient in species composition, e.g., extracted by an ordination method, which 
is interpreted as conditioned on this complex-gradient (Økland 1992, Ejrnæs 2000, 
Rydgren et al. 2003).

3. 	 Species occur within a restricted interval along each major complex-gradient. The range 
of genetic variation that can be maintained in a population or a set of populations, 
within which individuals shall be able to exchange genes by normal mating mecha-
nisms, is limited. Accordingly, one of the most important ecological consequences of 
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natural selection is that trade-offs are continuously made between traits that are, as 
such, all beneficial, but that cannot be combined. Examples of such traits are low and 
high growth rates, small and large seeds, etc. (Tilman 1990). Trade-offs restrict the 
tolerance of every species to a narrower or broader interval along each major complex-
gradient. If a sufficiently broad range of variation along a major complex-gradient is 
taken into consideration, each species will be able to survive, or occur, or have positive 
fitness, in a restricted interval along the complex-gradient only. The term ʻfitnessʼ is 
here defined demographically, as the average number of descendants in the next gen-
eration per individual in the current generation (Caswell 2001). Outside this interval 
the species will normally be absent or have negative fitness.

 
I consider the gradient analytic perspective (GAP) as a ʻtheoryʼ, just as evolution of species 
through natural selection is a theory (Lawton 1999, Dawkins 2009). Several definitions of 
‘theory’ exist, of which one reads: ‘a scheme or system of ideas or statements held as an expla-
nation or account of a group of facts or phenomena; a hypothesis that has been confirmed or 
established by observation or experiment, and is propounded or accepted as accounting for the 
known facts; a statement of what is held to be the general laws, or causes of something known 
or observed’ [Oxford English Dictionary, cited from Dawkins (2009)]. The gradient analytic per-
spective makes up a theory according to this definition because it comprises a coherent system 
of ideas. However, like other biological ʻtheoriesʼ, it hardly meets the demands for a scientific 
theory in the strict sense of Popperʼs (1959, 1989), which requires falsifiability of appropriate 
alternative hypotheses. 

THE ECOLOGICAL AND GEOGRAPHICAL CONCEPTUAL SPACES

The three fundamental insights of the gradient analytic perspective address patterns of variation 
in the ʻdegree of presenceʼ of species along major complex-gradients. Three basic geometric 
representations (‘conceptual spaces’) are useful for conceptualising these patterns. From the 
second insight it follows directly that the low-dimensional ecological space with the major 
complex-gradients as axes is particularly appropriate as a conceptual geometric space for repre-
sentation of variation in speciesʼ quantities, i.e., what is referred to as their ̒ degree of presenceʼ. 
Most often, the ecological space is conceived as a an orthogonal space although non-orthogonal 
axes may in many cases be more realistic, accounting for the fact that major complex-gradients 
often are not fully independent. This is exemplified by the water-table and lime richness gra-
dients in boreal mires (Malmer 1962, Tyler 1981, Økland 1990b). The complex-gradients, i.e., 
the axes of the ecological space, are abstract ideal combinations of environmental variables that 
maximise variation in speciesʼ ʻdegree of presenceʼ (Økland 1990a).

Several categories of variables can be used as proxies for axes in abstract ecological 
space:

1.	 Single environmental variables (Austin & Gaywood 1994); the conceptual geometric 
space with selected, measurable, environmental variables as axes are referred to as 
the environmental variables space (Økland 1990a). 

2.	 Combinations of environmental variables, for instance obtained as axes in constrained 
ordination (CO; ter Braak 1987, Palmer 1993). The most popular constrained ordina-
tion methods, redundancy analysis (RDA) and canonical correspondence analysis (CCA; 
e.g., ter Braak 1987), find axes that are linear combinations of environmental variables, 
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but methods also exist that search for other functional relationships (Makarenkov & 
Legendre 2002). It is the ‘linear combinations’, ‘LC scores’ of ter Braak (1987) and 
‘maximally constrained’ site scores of Palmer (1993), that represent true linear com-
binations of environmental variables, while the ‘weighted average’ scores, ‘WA scores’ 
of ter Braak (1987) and ‘minimally constrained’ site scores of Palmer (1993), fail to 
have an explicit interpretation in terms of concrete environmental variables and are 
irrelevant in this context (McCune 1997). Furthermore, it should be noted that all en-
vironmental measurements are noisy in the sense that they are subject to recording or 
measurement error and natural variability, and that the magnitude of this stochastic 
variation affects the performance of environmental variables as proxies for axes of 
the ideal ecological space (McCune 1997).

3. 	 Environmentally interpreted gradients in species composition (coenoclines; Whittaker 
1967), e.g., identified by ordination methods (Økland 1986a, 1990a, Ejrnæs 2000, 
Rydgren et al. 2003). 

The concept of the ecocline (Whittaker 1967, Økland 1990a, Halvorsen et al. 2009), i.e., the 
parallel, more or less gradual, co-variation of species composition, i.e. a coenocline, and a major 
complex-gradient, is central to the gradient analytic perspective. Thus, R. Økland (1996) main-
tains that identification of ecoclines is a major goal of general-purpose ecological studies in the 
gradient analytic tradition, i.e., studies which aim at modelling relationships between species 
and the environment within a study area (Whittaker 1967, Gauch 1982a, Økland 1990a). The 
ecocline concept can be used to rephrase the aim of general-purpose gradient analytic studies 
as follows: ‘identification of the most important ecoclines, i.e., gradients in species composition 
and the complex-gradients responsible for this variation, in a study area’. Having identified the 
major ecoclines, variation in properties of single species, species richness, biomass, productiv-
ity, etc., along identified ecoclines can be studied. 

The gradient analytic (GA) tradition primarily addresses relationships in ecological space, 
i.e., without taking the geographic positions of observation units into account. Access to georef-
erenced observation units opens for visualising coenoclinal or ecoclinal patterns on maps (e.g., 
Pedersen 1990) as well as for analyses of spatial patterns, e.g., by geostatistical methods (e.g., 
Økland et al. 2001, Edvardsen & Økland 2006). Distribution modelling (DM) starts, and may also 
end, with patterns of variation in speciesʼ ʻdegree of presenceʼ and/or variation in explanatory 
variables in a concrete, two- or three-dimensional geographical space (e.g., Legendre & Fortin 
1989), with geographical co-ordinates x, y and eventually also z, as its dimensions (Guisan & 
Zimmermann 2000). Every georeferenced site can be represented by a point in geographical 
space, regardless if it is considered as a dimensionless sampling point or as occupying a fixed 
area (e.g., a 1-m2 vegetation quadrat) or volume (e.g., a 1-m3 volume of sea water). In the lat-
ter cases, the observation unit can be represented in geographical space by the position of the 
centroid or by the range it occupies along each axis.

The geographical space, or a subset of this space, can be divided into contiguous quadrats 
(grid cells) of equal size by the process of rasterisation or gridding, to give a rasterised geo-
graphical space. The term discrete environmental variables space is used for an environmen-
tal variables space in which characteristics of grid cells are shown, while the term continuous 
environmental variables space is used for a space in which other observation units than grid 
cells are shown. A set of grid cells, which corresponds to a specific rasterisation of geographical 
space, is referred to as units in abstract geographical space when their collective properties 
are addressed without taking geographical co-ordinates into account.
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SAMPLING

Species, as well as other categories of observable object of relevance for distribution modelling, 
comprises a finite number of individuals. This number can, however, be extremely large and for 
many natural phenomena, species included, defining individuals is difficult. This is exemplified 
for species by the dichotomy between ramets or clonal fragments, and genets, i.e., offspring from 
the same zygote (cf. Harper 1977). All individuals that belong to the same cetegory make up a 
population according to the statistical definition of the term (all potential sampling units for a 
phenomenon), while in a biological context a population is defined as individuals belonging to 
the same species, likely to exchange genetic material or interact with each other in some way. 
One ʻstatistical populationʼ may thus make up several ʻbiological populationsʼ. Each individual 
present at a given time-point occupies a discrete volume of space. The population, statistical or 
biological, can therefore be characterised by properties such as number of individuals, mean 
size of individuals, size variation, and mean distance between neighbouring individuals (e.g., 
Hutchings 1997). In the real world, recording all individuals in a population is possible only 
in exceptional cases and estimation is needed to infer properties of the phenomenon studied. 
Estimation requires access to a representative data set, obtained from the population by sam-
pling, followed by modelling of the relationship between response and explanatory variables. In 
accordance with Dungan et al. (2002) I define sampling as the methods and procedures used 
to acquire information about the phenomenon under study, i.e., the modelled target. Regard-
less of which sampling procedure is chosen, sampling inevitably implies filtering of informa-
tion about the studied phenomenon and, hence, imposes restrictions on the properties of the 
studied phenomenon that can be inferred from subsequent analyses of the sample (Økland 
1990a, 2007). Therefore, as pointed out by Dungan et al. (2002), a clear distinction needs to be 
made between the properties of a studied phenomenon as such, e.g., a species’ distribution or 
the environmental conditions at a locality, and properties inferred by analysis of a sample of 
observations of this phenomenon.

Natural sampling units can be used in exceptional cases when clones or individuals are 
observation units (Dungan et al. 2002). In all other cases, sampling is carried out by collecting 
data for observation units, i.e., (de)limited areas or volumes in a field site or in the laboratory 
for, or within which, information about a phenomenon is collected. In most cases, observa-
tion units are standardised with respect to temporal and spatial coverage. As pointed out in 
an extensive literature on the ‘modifiable area unit problem’ (MAUP; e.g., Openshaw & Taylor 
1979, Dungan et al. 2002, Wu 2004) the choice of observation-unit dimensions fundamentally 
influences the properties of the phenomenon that can be inferred from results of subsequent 
analyses. However, the sample of observation units does not necessarily have to be subjected to 
analysis (modelling) as it is. We therefore distinguish between the sample of observation units 
as such, the raw observations, and samples (there may be more than one) of units subjected 
to analysis. An example of a study in which units subjected to analysis were different from 
raw observation units is that of Mathiassen & Økland (2007): observation units searched for 
epiphytic pyrenomycetes in the field were individual Salix shrubs or trees, while multivariate 
analyses were carried out on total species lists for sets of 10 Salix individuals of the same spe-
cies, situated in the same bioclimatic zone and section.

Each observation unit can be represented by a point, an area, or a volume, in any of the 
three conceptual spaces (or variants thereof; see above). Co-ordinates in environmental vari-
ables space are given by the values recorded for single environmental variables that span the 
space; co-ordinates in ecological space are given by values for combinations of environmental 
variables or environmentally interpreted gradients in species composition; and co-ordinates in 
geographical space are given by geographical co-ordinates such as longitude and latitude, or east-



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 16

ing and northing as given by projected UTM (Universal Transverse Mercator) grid references.

SPATIAL AND TEMPORAL SCALES

The concept of ’scale’ is essential in all branches of science that deal with the geographical 
distribution of spatially explicit entities (Wiens 1989, Legendre & Legendre 1998). The term 
’scale’ is, however, used with so many different meanings that it was considered a nonconcept 
by Dungan et al. (2002), who proposed its replacement by other, more precise terms in order to 
avoid confusion. So far, their proposal has not been approved by the research community. I have 
therefore retained the term ’scale’ in this essay review for description of spatial and temporal 
patterns of variation, in accordance with current practice. In order to maximise clarity, I define 
scale-related terms explicitly. 

In principle, scale and associated terms can be used to address categories of three differ-
ent kinds (Dungan et al. 2002): the sample of observation units; a sample of units subjected to 
analysis, and natural units of the studied phenomenon (e.g., individuals of a species). For each of 
these three categories, two ʻdimensionsʼ, or independent variables, are needed to describe the 
spatial dimension, the ’spatial scale’, and two dimensions are needed to describe the temporal 
dimension, the ’temporal scale’ (Dungan et al. 2002). 

The two variables that characterise the spatial dimension, both defined in geographical 
space, are (Wiens 1989, Dungan et al. 2002):

The 1.	 spatial grain, mostly referred to only as grain, is the size, in geographical space, 
of one observation unit. The grain can be expressed as a linear measure, as an area, 
or as a volume. Custom practice is to express grain in linear terms. For quadratic 
observation units such as grid cells, the length of the edge is typically taken to be 
the grain, e.g., 1, 5, and 10 km for the grid-cell observation units used in the study 
of biogeoclimatic variation in Norway by Bakkestuen et al. (2008), and 1 m for 1-m2 
vegetation plots (e.g., Økland et al. 2001). Strictly speaking, however, the largest linear 
dimension of quadratic or rectangular observation units is the length of the diagonal. 
For observation units with a circular shape, such as the pitfall traps with an aperture 
diameter of 65 mm as used by Niemelä et al. (1985) for collecting ground-dwelling 
beetles, the aperture diameter can be taken as the grain.
The 2.	 spatial extent of the study area, mostly referred to only as extent, is the size, 
in geographical space, of the area within which observation units that make up a 
sample were collected. As for grain, the extent of quadratic or rectangular study 
areas is typically recorded as the length of the longest edge, although the diagonal is 
the largest linear dimension of the area. For study areas with irregular shapes, the 
longest distance across the area is typically recorded as the extent. Study areas can 
be naturally delimited (e.g., islands; Niemelä et al. 1985, Preston et al. 2011), they 
can be delimited by political boundaries (e.g., a country; Pedersen 1990), or they can 
be delimited by other, e.g., practical, criteria (e.g., the boundaries of a nature reserve; 
Økland et al. 2001). 

Similarly, the temporal dimension is characterised by temporal grain and temporal extent. 
Temporal grain is exemplified by recording vascular plants in vegetation plots, which is nor-
mally completed within 24 hours. Temporal extents vary from typical values of months, e.g., 
one summer (Økland et al. 2001), two summers (Bratli et al. 2006), or even five summers (T. 
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Økland 1996) for large sets of vegetation data, to decades or even centuries for long-term 
studies of vegetation dynamics such as the 60-year study of forest understorey vegetation at 
Karlshaugen, SE Norway (Nygaard & Ødegaard 1999), or the exceptional Rothamstead Park 
Grass Experiment, initiated in 1856 (e.g., Silvertown et al. 2006). In each of the 10 observation 
units in the study of Niemelä et al. (1985), beetles were trapped during four periods of five days 
each, between May 22 and August 24, 1982. Both the temporal grain and the temporal extent 
of this study are therefore 94 days.

The meaning of grain and extent is illustrated in Fig. 2 by a sample of observations units of 
a hypothetical species, but the terms apply equally well to any other modelling targets. All known 
localities for the species, the study area, and observation units used for recording presence or 
absence of the species, are illustrated on a map in Fig. 2a. Sampling in each observation unit is 
accomplished by rasterisation of vectorised locality data, whereby points, lines or polygons in 
(continuous) geographical space is converted to raster data with reference to the rasterised geo-
graphical space. The data set consisting of binary observations of recorded presence or absence 
in the 256 observation units (Fig. 2b) can be subjected to analysis, in which case the set of units 
subjected to analysis is the same as the set of observation units. An alternative sample of units 

Fig. 2. Terms related to spatial scale and distribution. (a) Map of a land area, delimited by con-
tinuous thick line, with localities for a hypothetical species represented by dots. The shaded 
region delineated by a broken line is the extent of occurrence of the species. The study area 
from which a sample of observations of the species is obtained is indicated by the large quadrat, 
delineated by a continuous line. The linear dimension (size) of this study area is the extent of 
the sample. The study area is rasterised into a regular hexadecadal grid, i.e., a grid with 16 × 
16 grid cells, of which each grid cell is taken as an observation unit. The length of the edge of 
one grid cell is the grain of the sample. (b) Raster map of records of the hypothetical species in 
the 256 observation units; presence (filled grid cells) or absence (open grid cells). The species 
is recorded as present in 43 out of the 256 grid cells and, accordingly, has a prevalence in the 
sample of 0.168. If the edge of each grid cell is 10 km and, hence, the area of each grid cell is 100 
km2, the area of occupancy of the species within the extent of the sample is 4,300 km2.
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subjected to analysis is the set of 16 units, each consisting of 4 × 4 cells of the original 256-cell 
grid, with presence or absence scored for each. The linear grain size of units in this sample is 4 
times larger than in the original sample while the extent of the samples are the same.

When the grain and the extent of the study area are allowed to vary independently of each 
other, which is normally the case, two independent variables, one for the extent and one for the 
grain, are needed to characterise the linear spatial dimension and two independent variables 
are needed to characterise the temporal dimension of any sample of observation units or units 
subjected to analysis (Fig. 3). Nevertheless, common practice is to characterise the spatial ’scale’ 
of a study by terms such as ‘fine’ or ‘small’ vs ‘large’, ‘coarse’ or ‘broad’; ‘micro’ vs ‘macro’; ‘local’ 
vs ‘regional’; or ‘site’, ‘landscape’ and ‘continental’ vs ‘global’, with reference to one linear scale in 
metric units (e.g., Willis & Whittaker 2002, Pearson & Dawson 2003). Fig. 3 shows that the use 
of one number to characterise ’spatial scales’ is generally inappropriate and that more precise 
definitions of scale-related terms are needed. The statement ʻlarge spatial extents are associ-
ated with coarse data resolutions, and small extents with fine data resolutionsʼ of Pearson & 
Dawson (2003), does, however, indicate that these authors use one linear scale in metric units 
to characterise ’spatial scales’ based upon an implicit, but unspoken, assumption of a more 
or less fixed relationship between extent and grain. This relationship is characterised by the 
extent-grain ratio, which is defined as the linear dimension of the extent divided by the linear 
dimension of the grain. A related term is spatial domain (Wiens 1989) which is defined as the 
range, along the scale of metric units, that can be addressed by analysis of a given sample. The 
spatial domain is the interval bounded below by the linear dimension of the grain, e.g., grid-cell 
edge length, and above by the linear dimension of the extent. The spatial domain of the sample 
of presence/absence data for hypothetical species in Fig. 2 is 10–160 km. The extent-grain 
ratio expresses the width of the spatial domain in grain-size units. The extent-grain ratio of 
the regular hexadecadal grid in Fig. 2, i.e. the grid with 256 grid cells in a 16 ×16 pattern (cf. 
Conlisk et al. 2009), is 160/10 = 16. 

A sample of observation units can be characterised by one number on one scale of metric 
units if and only if the extent-grain ratio is fixed. This is illustrated for two series of nested, 
regular hexadecadal grids in Fig. 3. Two options therefore exist for precise definition of terms 
for ̒ spatial scalesʼ: characterisation by two attibutes, grain and extent, or characterisation with 
reference to a fixed extent-grain ratio. The second option is chosen for defining the terms for 
characterising spatial scales in this essay review: the term spatial scale refers to the linear 
grain size in samples with extent-grain ratio of 16, typically exemplified by regular hexadec-
adal grids (Figs 2–3). I define seven terms for spatial scales (Fig. 4), which can be grouped into 
broad scales (linear grain > 1 km) and fine scales (linear grain < 1 km). Broad scales include 
global scale, coarse regional scale, and fine regional scale; fine scales include coarse local 
scale, medium local scale, fine local scale, and micro scale. These terms are to some degree 
comparable with the terms used by Pearson & Dawson (2003), originally proposed by Willis 
& Whittaker (2002), see Fig. 4.

Of these spatial scales, the global scale as here defined, which includes the ʻcontinental 
scaleʼ and ʻglobal scaleʼ of Willis & Whittaker (2002), is mostly outside the range of scales at 
which environmental factors, recordable today, can explain distributions of species and other 
relevant targets for modelling. Instead, variation at the global scale is the results of actions of 
fundamental geophysical processes such as continental plate movements, sea-level changes, 
mountain-chain upfolding, and repeated glacial cycles, over millions of years (Willis & Whittaker 
2002). The spatial distribution of these geological processes themselves and their imprints 
on the distribution of landforms, ecosystems, and taxonomic groups (see, e.g., Qian & Riclefs 
2000, Qian et al. 2007, Riclefs 2007, 2011, Whittaker & Kerr 2011), is outside of the scope of 
this essay review, the focus of which is therefore restricted to spatial scales from the coarse 
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Fig. 3. The spatial scale of samples (data sets), characterised by the spatial extent (horizontal 
axis) and the spatial grain (vertical axis). Characteristics of samples used in four published stud-
ies are indicated by black symbols: Niemelä et al. (1985) who studied ground-dwelling beetles 
in the Åland archipelago, Finland, by use of pitfall traps with a diameter of 65 mm; Pedersen 
(1990) who studied the distribution of vascular plants in the Nordic countries using grid cells 
of 50 ×50 km as observation units; Økland et al. (2001) who studied the species composition 
of vascular plants, bryophytes and lichens of swamp forests in Østmarka nature reserve, SE 
Norway, using 1-m2 vegetation quadrats; and Bratli et al. (2006) who studied the vascular 
plant species composition of land cover-class patches varying from 3 m2 to 801 000 m2 in 
SE Norwegian agricultural landscapes. Open and filled red symbols denote two sequences of 
nested, regular hexadecadal grid samples, i.e., samples with all cells of a regular 16 × 16 grid 
as observation units. Nestedness is obtained by taking one cell of one grid as the extent of a 
new regular hexadecadal grid, the cells of which are used as observation units in the sample at 
the next lower nesting level, and so on. The linear grain size of regular hexadecadal grids are 
used to define terms for spatial scales in this study (see Fig. 4). Gray, dotted lines are used to 
indicate 1 m (log10 1 = 0), 1 km (log10 1 000 = 3) and 1 000 km (log10 1 000 000 = 6) along 
both axes. A linear grain size of 1 km in regular hexadecadal grids marks the limit between fine 
and broad spatial scales.



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 20

Fig. 4. Terminology for spatial scales, defined as the linear grain size in samples with extent-grain 
ratio of 16 such as regular hexadecadal (16 × 16) grids (see Fig. 1). Intervals on the linear scale 
in metric units that correspond to each term are shown on the vertical axis. Scale-related terms 
of Pearson and Dawson (2003), which are defined by these authors primarily with reference to 
study-area extent, are incorporated in the figure by assuming a fixed extent-grain ratio of 16, 
in accordance with the statement ‘large spatial extents are associated with coarse data resolu-
tions, and small extents with fine data resolutionsʼ. An extent-grain ratio of 16 corresponds to 
a difference between grain and extent of 1.204 units on the log10 scale.



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 21

regional to micro.
The term spatial scale interval in which variation is large is defined as the range of 

spatial scales, within which, by analysis of samples with extent-grain ratio of 16 such as regular 
hexadecadal grids, the variation in a variable of interest is distinctly larger than in samples with 
smaller or larger grain sizes. There are good reasons to assume that the spatial scale interval in 
which variation is large, estimated from samples of empirical data, will be much more strongly 
influenced by the grain than by the extent. Regardless of how small grain size is used in a study, 
there will be environmental variation and, most often, also variation in the performance of 
most species, within each observation unit. Only between observation-unit, i.e., between-grain, 
variation can normally be ‘explained’ by analysis of data while within-grain variation is left 
unexplained (Wiens 1989, Økland 1990). Patterns emerging from analyses, such as coenoclines 
identified by ordination methods, will therefore remain more or less unaffected by changes of 
extent as long as the relative frequency of different combinations of fundamental properties, 
such as important environmental conditions, does not change. The frequency of fundamental 
properties will change when the study area is extended into areas with different climate, differ-
ent topography, different bedrock, different land-use history, and/or broader range of variation 
along important other important environmental gradients.

DISTRIBUTION, PERFORMANCE, AND THE OVERALL ECOLOGICAL RESPONSE 

The term distribution is used in this essay review to address the physical arrangement of objects 
of that belong to a specific type category, in general. Analysing distributions requires a more 
precise and specific terminology for ̒ characteristics of species’ areal occupancy in geographical 
spaceʼ [definition of ʻdistributionʼ by Hengeveld & Haeck (1981)]. A fundamental property of 
distributions is the extent of occurrence (Fig. 2a), defined as the ‘area which lies within the 
outermost geographic limits to the occurrence of a species’ (Gaston 1991, Gaston & Fuller 2009). 
Commonly used, but less precise, terms for ʻextent of occurrenceʼ are ʻgeographical rangeʼ and 
ʻdistributional rangeʼ. The extent of occurrence is a property of distributions that is essentially 
unaffected by rasterisation.

The term performance (van der Maarel 2005) is used as a collective term for what has so 
far been referred to as the ̒ degree of presenceʼ of a natural phenomenon within one observation 
unit, i.e., its quality (presence or absence) and, eventually also, its quantity. I avoided the com-
monly used term ʼresponseʼ, which is often used for the performance of species (ʻthe species’ 
responseʼ), for two reasons: (1) potential confusion with the term ʻresponse variableʼ; and (2) 
the term ̒ responseʼ is less appropriate for modelled targets such as landforms and nature types 
which do not respond mechanistically to the environment in the same way as species. Care should 
be taken not to confound ʻperformanceʼ as defined above with the predictive performance of a 
model. Variables used to record performance are termed performance measures. Performance 
can be recorded qualitatively, as presence (= occurrence), the opposite of which is absence 
(Fig. 2b), or, quantitatively. Examples of measures of quantitative performance are: abundance, 
number of individuals of a species or, for other modelled targets, discrete units, or, for clonal 
organisms, organismal units (van der Maarel 2005); density, abundance per unit area (van der 
Maarel 2005); cover, vertical projection of biomass (Du Rietz 1921, Wilson 2011); and subplot 
frequency, fraction, or percentage, of subplots into which an observation unit is divided, in 
which a species is present (Økland 1988) in the observation unit. For modelled targets such 
as nature types, the term fractional area is used for the fraction, by area, of an observation 
unit that is occupied. An index obtained by combining two or more quantitative performance 
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measures is termed importance value (e.g., Curtis 1959, Økland 1986).
The term aggregated performance is used as a collective term for performance, recorded 

by some performance measure, aggregated for sets of observations units of a modelled target. 
Often used aggregated performance measures are (e.g., Økland 1990a): frequency of presence, 
the fraction, or percentage, of observations units in a set, in which the modelled target is present; 
and mean abundance, the average of abundance values for observation units in the set. The 
mean abundance can be calculated by taking all observation units in the set into account, or only 
by using observation units in which the modelled target is present. Aggregated performance 
is typically estimated by use of a representative sample of observation units in which a perfor-
mance measure, e.g., presence or absence, or abundance, is recorded. Technically, the frequency 
of presence can also be calculated for samples of observation units in which observed presence 
is recorded for some observation units while nothing is known about presence or absence in the 
remaining, uninformed background observation units. These two fundamentally different 
types of data are referred to as presence/absence data, or P/A data, and presence-only data, 
or PO data, respectively. The term frequency of observed presence is used for the fraction of 
observed presences in a PO data set. The frequency of recorded presence is a characteristic of 
the data set that can be strongly or weakly related to the real frequency of presence.

A specific set of terms are often used for performance aggregated to, or estimated for, 
the entire study area, e.g., over all grid-cell observation units in a rasterised study area. The 
term prevalence (e.g., Hirzel et al. 2006), which is used for the modelled targetʻs frequency of 
presence in a study area, is synonymous with occupancy (Conlisk et al. 2009). The meaning of 
prevalence is exemplified by the hypothetical species in Fig. 2 which occurs in 43 out of 256 
grid cells in the study area and therefore has a prevalence of 0.168. The area of occupancy, 
i.e., the total area of grid cells in which a species, or another modelled target, is recorded as 
present, is an alternative way to express occupancy in sets of raster data. The area of occupancy 
is the number of presence grid-cells × the area of each grid cell (Gaston 1991, Gaston & Fuller 
2009), All characteristics of distributions that are estimated from rasterised observational data 
depend strongly on the choice of grain and extent (Dungan et al. 2002, Gaston & Fuller 2009). 
In general, prevalence decreases with increasing extent-grain ratio.

Knowledge of variation in aggregated performance along an environmental gradient, i.e., 
of patterns of variation in the modelled targetʼs response to environmental complex-gradients, 
is an essential element of the gradient analytic perspective. The term overall ecological re-
sponse is used to denote variation in aggregated performance with respect to any variable that 
may be used as axis in the discrete or continuous ecological variables spaces or in ecological 
space. The word ʻresponseʼ is used here in a statistical sense, without any allusion to causal or 
other functional relationships between the environmental complex-gradient and the modelled 
target. Typically, aggregated performance is estimated for intervals of fixed width, e.g., one 
unit, along an axis in environmental variables space, ecological space or geographical space. 
Examples of intervals and axes in the respective spaces are one pH unit, 1 S.D. unit along an 
ecologically interpreted DCA ordination axis, and a latitudinal band of width 0.1°. The overall 
ecological response is exemplified in Fig. 5 which shows variation in frequency of presence of 
a hypothetical species in response to two explanatory variables.

A model for a modelled targetʼs overall ecological response with respect to a gradient 
is the target’ response curve with respect to that gradient (Ellenberg 1953, Whittaker 1956, 
1967, Austin 1976). Two examples of species response curves are given in Figs 5d–e. Examples 
of parameters that may be useful for characterising the overall ecological response are: the 
modelled target’s tolerance with respect to the gradient, i.e., the range along the gradient in 
which the modelled target occurs; and its optimum along the gradient, i.e. the gradient posi-
tion at which the response curve peaks (Gauch & Whittaker 1972, Minchin 1987, Austin 2005). 
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Fig. 5. The overall ecological response 
of the hypothetical species in Fig. 2. (a) 
Observations of the species are made in 
a regular hexadecadal grid sample of 256 
observation units, i.e., with extent-grain 
ratio 16. Species’ performance is recorded 
as presence (filled grid cells) or absence 
(open grid cells) in each grid cell. (b, c) 
Recorded values for two explanatory (pre-
dictor) variables; explanatory variable 1 
(b) and explanatory variable 2 (c). (d, e) 
Overall ecological response of the species 
to each of the two explanatory variables, 
calculated by use of frequency of presence 
as measure of aggregated performance. 
Smooth species response curves are indi-
cated by red lines in (d) and (e).
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Furthermore, response curves can be characterised by descriptive statistics such as skewness 
and kurtosis [see Sokal & Rohlf (1995) for definitions]. I use the term fractional amplitude 
for tolerance, expressed as the ratio of the species’ amplitude along a gradient and the length 
of the entire gradient, expressed in relevant units. The fractional amplitude is the difference 
between the maximum and minimum values for gradient position, recorded on some scale, 
between which aggregated performance of the modelled target is expected to be > 0, divided 
on the length of the gradient. Gradient length is normally estimated as the difference between 
the maximum and minimum value encountered for gradient position for observation units in a 
sample, disregarding if the species is present or not. The fractional amplitude depends on the 
ʻsizeʼ of individual sampling units (grain) and, most notably, of the ʻextent of the study area in 
environmental spaceʼ (not in geographical space). Figs 5d–e show overall ecological responses 
of a hypothetical species with respect to two explanatory variables, visualised by species re-
sponse curves drawn onto barplots of frequency of presence for each of the four levels of each 
explanatory variable.

A VARIATION PARTITIONING APPROACH TO QUANTIFYING NATURAL VARIATION

Adequate description of patterns of natural variation requires that the concept of ʻvariationʼ 
can be operationalised and appropriately quantified. For this purpose, I adopt the principles 
of the variation partitioning (VP) approach, which have been developed as a part of gradient 
analysis (GA) through a series of publications starting with the influential paper of Borcard 
et al. (1992). In the GA context, VP mostly implies use of constrained ordination methods to 
partition variation in a multivariate response variable onto sets of explanatory variables, i.e., 
to quantify unique and shared components of variation among explanatory variables or sets of 
explanatory variables (Økland 2003). The approach also applies to single response variables, i.e., 
the univariate case (Venables & Ripley 2002, Crawley 2007). Explanatory variables appropriate 
for VP are single environmental variables, groups of environmental variables (Borcard et al. 
1992, Økland & Eilertsen 1994, Raatikainen et al. 2007, Stevens et al. 2011), historical variables 
(Graae et al. 2004), geographical co-ordinates (Borcard et al. 1992, Økland & Eilertsen 1994), 
affiliation to discrete patches in a mosaic landscape (R. Økland et al. 2003), hierarchically nested 
generalisation levels (e.g., land-cover types; Økland et al. 2006), and time intervals (Svenning 
& Skov 2005, Pellerin et al. 2008).

The VP approach is most often used for identification, for given species groups in given 
ecosystems, of the explanatory variables that ‘best explain’ variation in species composition. 
Multivariate VP approaches thus assist identification of major ecoclines. Examples of studies in 
which the VP approach is used for assessment of ecocline importance, are the study of freshwater 
zooplankton by Pinel-Alloul et al. (1995), of forest understorey vegetation by Qian et al. (2003), 
of bird communities by Miller et al. (2004), of freshwater algae by McGowan et al. (2005), and 
of terrestrial arthropodes by Schweiger et al. (2005).

A desirable property of variation components, i.e. the variation associated with each 
unique source of variation in a variation partitioning analysis, is that they can be combined in 
a multifactorial manner (Anderson & Gribble 1998, Økland 2003). The variation partitioning 
approach therefore not only enables identification of which explanatory variables are impor-
tant for variation in species composition, but also of spatial scale intervals at which variation is 
large (e.g., Økland & Eilertsen 1994, Wagner 2004, Økland et al. 2006, Raatikainen et al. 2007). 
Furthermore, the VP approach can be combined with descriptive geostatistical methods like 
semivariance analysis (Rossi et al. 1992, Burrough & McDonnell 1998) for further analysis of 
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spatial patterns.
The reliability of results of variation partitioning analyses, like the results of all other 

statistical modelling, depends on choice of an appropriate statistical model. However, most spe-
cies show non-linear overall responses to the main complex-gradients (the third insight of the 
gradient analytic perspective) while the statistical model implicit in the constrained ordination 
methods most often used for VP basically assumes a linear relationship. This applies to both 
RDA and CCA, as evident from the ‘linear aspect of correspondence analysis’ demonstrated by 
Wagner (2004). This reduces the precision of variation components estimated by constrained 
ordination and, notably, inflates the estimated ‘total variation’ in species data to such extents 
that only relative amounts of variation explained by different sets and combinations of sets of 
variables normally can be trusted (Økland 1999).

The main reason for problems with model inappropriateness in multivariate studies is the 
large between-species variation in the shape of overall responses to main complex-gradients 
(Økland 1999). With only one response variable, however, VP reduces to analyses of variance 
components within a generalised linear modelling framework (e.g., Venables & Ripley 2002). 
In the univariate case, more specific and more complex models can be fit to the species in ques-
tion, e.g., by allowing for non-linear relationships between response and explanatory variables. 
Estimates of variation components obtained for single species should therefore, in general, 
be expected to be more reliable than estimates of variation components for the entire species 
composition.

The variation partitioning approach allows re-formulation of the purpose of gradient 
analysis (GA) in the broad sense, including distribution modelling (DM), in terms of maximisa-
tion of the explained variation in the response variable (cf. Legendre & Legendre 1998). In the 
multivariate case, with species composition as response-variable set, indirect GA (ordination) 
aims at maximising the variation in species composition extracted on the lowest possible num-
ber of axes. Thus axis 1 is the latent, or constructed, variable that, with respect to the chosen 
statistical model, explains the maximum variation that can possibly be explained by any single 
variable, axis 2 is the constructed variable that explains the maximum residual variation after 
the variation explained by axis 1 is accounted for, possible to explain by any single variable, 
etc. Direct multivariate GA and univariate GA, including DM, aim at explaining as much of the 
variation in the response as possible by the supplied set of explanatory variables.

The variation in performance (presence/absence) of a modelled target can be quantified 
for all grids, and several measures of the total variation are available. Perhaps the simplest of 
these is the sum of squared differences between observed binary presence values in n grid cells 
and the mean, which equals the prevalence p, i.e. the sum of squares, given as:

                                    .

SS depends only on p and n, is proportional with n, and peaks for p = 0.5 [for further in-
formation, see Crawley (2007)]. A derived measure of variation, which is comparable between 
grids of unequal size, is obtained by expressing variation as the fraction of the theoretical 
maximum variation in the grid. This measure, relative variation, which is given on a 0–1 scale, 
is given by

                                                                  .

I use data for the hypothetical species in Figs 2 and 5 to exemplify how the variation 
partitioning principle can be used to quantify variation (see Fig. 6). The full set of observations 
of presence or absence of the species in the 256 cells of the 16 × 16 grid, the Fine sample, was 
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used to construct a Coarse sample with 16 large observation units, each with grain = 4 grid 
cells of the hexadecadal grid. Furthermore, observation units of the Coarse sample were used 
as extents of 16 subsamples of the Fine sample. The extent-grain ratio of the Fine sample is 16, 
while that of the Coarse sample and of Fine subsamples are 4. This facilitates comparability of 
explained variation between the spatial scales represented by the Coarse sample and the Fine 
sample, respectively.

For our hypothetical species, which is present in 7 out of 16 cells in the coarse grid, SSrel,Coarse 
= 0.984. This value is comparable with the mean of SSrel values for the 7 Fine subsample grids 
in which the species is present, which is SSrel,Fine = 0.757 (the mean of SSrel values of 0.234 in the 
grid with one presence, of 0.750 in the three grids with 4 or 12 presences, and of 0.938 in the 
3 grids with 6 or 10 presences).

By use of an appropriate statistical model, the variation in species occurrence can be 
partitioned on variation explained by explanatory variables and unexplained variation. This 
is exemplified by generalised linear modelling with presence (or absence) of the hypothetical 
species as the response variable, modelled with respect to explanatory variables, e.g., variables 
1 and 2 of Figs 5b and 5c, respectively, for the Coarse sample and the Fine subsamples. A linear 
model, for which the SS is an appropriate measure of variation, cannot be used with binary ob-
servations because predicted values for the response below 0 or above 1 make no sense. Instead, 
we may use deviance in a logistic regression model (a generalised linear model with logit link 
and binomial errors; Venables & Ripley 2002) to obtain appropriate measures of variation. The 
total deviance of such models is:

                                                                              .

The deviance function for binomially distributed variables closely follows the sum of 
squares, peaking for p = 0.5 and having a value of 0 for p = 0 or p = 1 (Fig. 7). Like the sum of 
squares, the deviance can be turned into a relative measure of variation comparable between 
grids of unequal size, the fraction of the theoretical maximum deviance for the grid, by the fol-
lowing equation:

                                                                                                                                                .

For our example data, DEVrel,Coarse = 0.989 and DEVrel,Fine = 0.805. The best logistic regression 
model for observations of the species in the coarse grid, with explanatory variable 1 (EV1) as 
the only independent variable, is given by the equation

	  

                                                                       .

The explained deviance of this model is 2.610 out of a total of 21.930 units, i.e., a frac-
tion of 0.119 which amounts to a fraction of 0.117 of the theoretical maximum deviance in this 
sample. It should be noted that the explained deviance depends on the variables in the model. 
By including (EV1)2 in the model for the coarse grid, as suggested by the unimodal overall re-
sponse of the species to this variable (Fig. 5d), the explained deviance increases to 6.1891 units, 
or 0.278× the theoretical maximum deviance in this sample. Explanatory variable 2 explains 
no variation in the coarse grid because the average value for this variable does not vary among 
observation units (grid cells).
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Fig. 6. The variation partitioning principle, exemplified by analysis of two different samples 
of observations of recorded presence (filled grid cells) or absence (open grid cells) of the hy-
pothetical species in Figs 2 and 5. The study area is a regular hexadecadal grid sample of 256 
observation units, i.e. with extent-grain ratio 16. (a) Distribution of the species in two samples 
of observation units: Fine = 256 small units with grain = 1 grid cell of the hexadecadal 16 × 
16 grid; and Coarse = 16 large units with grain = 4 grid cells of the hexadecadal grid. A thick, 
continuous line is used to separate large observation units. The extents are the same for both 
samples: the entire hexadecadal grid. Black and gray cells indicate presence in small and large 
observation units, respectively. (b) Variation in species performance in the two samples, ex-
pressed as fraction of the theoretical maximum deviance of an appropriate logistic regression 
null model, shown by the height of entire bars. The maximum variation is obtained when the 
species is present in 50 % and absent from 50 % of the observation units. The black parts of 
the columns show the fractions of variation in the Coarse and Fine samples, respectively, which 
are explained by explanatory variables 1 of Fig. 5b and 2 of Fig. 5c, respectively. The fraction of 
variation explained by variable 2 in the Fine sample is calculated as the average of variations 
explained in each of the seven subsets of the Fine sample, with extents equal to the observation 
units of the Coarse sample of 4 × 4 grids, in which the species occurs.

Similarly, we find that a fraction of 0.215 of the total variation, or a fraction of 0.173 of 
the theoretical maximum, is explained, on average, by explanatory variable 2 in the Fine sample 
(Fig. 6b). Within this scale domain, no variation is explained by explanatory variable 1 which 
has the same value for every grid in all of the 16 fine-extent grids. 

The example in Fig. 6 illustrates the general principle that the tendency for patterns to 
differ among scales is the rule rather than the exception (Wiens 1989, 2002, Wu 2004).

The operationalisation of the variation partitioning principle exemplified for two nested, 
regular 4 × 4 grids in Fig. 6 can be extended to quantify the variation expressed at several 
spatial scales and, hence, to assess the spatial scale interval in which variation of explanatory 
variables of all kinds (environmental variables, coenoclines used as proxies for ecoclines etc.) is 
large. Most variables that are relevant for such analyses can be recorded on continuous scales, 
and can therefore be analysed by linear models using sum of squares as measure of variation. 
Variables with skewed distributions should be appropriately transformed before analysis, e.g., 
by the zero-skewness transformation (Økland et al. 2001).
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Fig. 7. Variation in a sample of binary (presence or absence) observations of a species, expressed 
as a function of the prevalence (p) of the species. Variation is calculated as the fraction of the 
theoretical maximum (which is obtained for p = 0.5), averaged over all observations. Two 
measures of variation are used: red line = sum of squares; blue line = deviance for binomially 
distributed variables.
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REDEFINING DISTRIBUTION MODELLING IN GRADIENT ANALYTIC 
TERMS

THE DISTRIBUTION MODELLING PROCESS

The explanation of distribution modelling given in the introduction, ̒ research with the purpose 
of modelling the distribution of observable objects of a modelled target, as a response to sup-
plied explanatory variablesʼ, defines DM very broadly with respect to the specific type of natural 
phenomenon targeted, the modelling method used, types of explanatory variables used in the 
modelling, and intended uses of models. Three examples illustrate that most definitions of DM 
and related terms given in the literature are narrower than the DM definition given above: the 
definition of a ʻspecies distribution modelʼ by Elith & Leathwick (2009: 678) as ʻa model that 
relates species distribution data (occurrence or abundance at known locations) with informa-
tion on the environmental and/or spatial characteristics of those locationsʼ; the operational 
definition of ʻspecies distribution modellingʼ by Franklin (2009: xv), ʻto model, or, in some way, 
spatially interpolate species distributions, and other biospatial variablesʼ; and the definition of 
ʻecological niche modellingʼ by Peterson et al. (2011: 2), ̒ application of niche theory to questions 
about real and possible spatial distributions of species in the past, present, and futureʼ.

The large diversity of DM-related approaches is, in my opinion, an argument for of a 
broad circumscription of the field: exchange of ideas among ʻresearcher guildsʼ is important to 
prevent school formation. Furthermore, and more importantly, a broad circumscription of DM 
is motivated by the fact that the gradient analytic perspective can serve as theoretical platform 
for the whole spectre of approaches encompassed by the broad definition of DM.

DM is often described as a four- or five-step procedure, of which some steps consist of 
multiple tasks (Guisan & Zimmermann 2000, Hirzel et al. 2002, Franklin 2009, Peterson et al. 
2011). I here describe DM as a process with 12 steps (Fig. 8). These steps are normally, but not 
always, carried out in sequence according to the ordered list. In this chapter I briefly describe 
each step and provide definitions of relevant terms. In the discussion chapter, implications of 
the gradient analytic perspective for development of theory, methods and best practice will be 
discussed separately for each step.

1.	 Problem formulation and specification. All scientific investigations should start with an 
explicit formulation and specification of a problem, by use of well-defined terms. This 
requires a solid theoretical platform (cf. Guisan & Zimmermann 2000, Austin 2002, 
2007). 

2.	 Collection of raw data for the modelled target. DM requires georeferenced observa-
tional data for the modelled target. Typical sources of raw species data are museum 
collection databases (Loiselle et al. 2008, Mateo et al. 2010, Robertson et al. 2010) and 
inventory databases (Edwards et al. 2005), while other data sources may be relevant 
for categories of modelled targets other than species (e.g., see Franklin 2009). In some 
cases, several alternative response variables can be used to represent one modelled 
target (e.g., Wollan et al. 2011). 

3.	 Collection of explanatory data. DM also requires data for explanatory variables, i.e., vari-
ables that may potentially account for some variation in the distribution of the modelled 
target. All explanatory variables used in DM have to be relevant for the purpose of the 
modelling (Step 1) which, among others, implies that they have to reflect variation at 
appropriate spatial and temporal scales. Furthermore, only variables that are avail-
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Fig. 8. Overview of the distribution modelling process, emphasising interdependencies between 
the 12 analytic steps. Steps are grouped into three composite steps, ʻecological modelʼ (red 
background), ̒ data modelʼ (orange background), and ̒ statistical modelʼ (yellow background), in 
accordance with Austin (2002). Steps that are mandatory for a study to be distribution model-
ling, are indicated by thick borders. Steps involved in re-iteration of the model are indicated by 
gray lines. Broken lines indicate optional pathways.
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able for the entire study area can be used. Potentially relevant variables include those 
with a hypothesised or confirmed, direct functional relationship with the performance 
of the modelled target, those for which a correlative relationship with the modelled 
target is suspected, as well as all other variables that are available in an appropriate 
format. Appropriateness of formats may depend on the modelling method. Most DM 
methods treat all variables as either continuous variables, i.e., variables that can 
take every value in the real domain, or categorical variables, i.e., variables that can 
take a finite number of positive integer values, each of which indicate affiliation to a 
class, type, etc. Discrete, e.g., count, and ordered factor variables are typically treated 
as continuous variables while binary variables are treated as categorical variables 
with two levels. Collection of explanatory data contains two tasks:

i.	 Provide an updated overview of available explanatory variables, i.e. variables that 
have previously been operationalised for DM.

ii.	 Collection of data for new explanatory variables.
4.	 Conceptualisation of the study area. DM methods require rasterised input data for the 

modelled target as well as for all explanatory variables. Rasterisation, which is preceded 
by conceptualisation of the study area as a rasterised geographical space, implies fixing 
extent and grain, i.e., delimiting the study area and deciding the size of observation 
units. These important choices should, in principle, be guided by the problem formu-
lation and specification (Step 1) alone. However, availability of appropriate raw data 
for the modelled target (Step 2) and, in practice, even more importantly, availability of 
data for relevant explanatory variables (Step 3), tend to dictate conceptualisation of 
the study area. The main reason for this is that preparation of explanatory variables 
with ʻwall-to-wall coverageʼ for study areas with large extent-grain ratio is resource-
demanding. Often, therefore, is the grain size of practical DM studies set equal to that 
of relevant accessible data sets. A ʻstandardʼ grid-cell size of 1 × 1 km is used in many 
studies (e.g., Bombi et al. 2011, Jarnevich & Reynolds 2011, Marino et al. 2011), e.g., 
because the publicly available WorldClim data set (Hijmans et al. 2005) has this grain 
size. The set of two biogeoclimatic variables prepared for Norway by Bakkestuen et 
al. (2008) by PCA ordination of 54 climatic, geological and topographical variables, 
is available for 1 × 1 and 5 × 5 km grid cells (e.g., Wollan et al. 2008, Edvardsen et al. 
2011, Stokland et al. 2011). Extents are often bound to follow administrative borders 
because data sets, both for modelled targets and explanatory variables, are national or 
developed for smaller administrative units. The demand for an overview of available 
data before the final decision about grain and extent is made, explains why conceptu-
alisation of the study area is inserted in the DM process as a separate step after Steps 
2 and 3. 

5.	 Preparation of independent variables. Each explanatory variable collected in Step 3 is 
prepared for modelling by a two-step procedure, of which step (i) is mandatory:

i.	 Rasterisation, by which one value is assigned to each of the n observation units in 
the rasterised geographical space representation of the study area. Rasterisation is 
normally accomplished by use of geographic information systems (GIS; Burrough 
& McDonnell 1998, O’Sullivan & Unwin 2003). Most raster data are prepared by 
spatial interpolation, i.e., use of models to estimate unknown variable values from 
observations in georeferenced points. Accordingly, most explanatory variables used 
in DM are model predictions. The terms ‘environmental layer’ and ‘GIS layer’ are 
often used for rasterised variables. Rasterised explanatory variables can be qualita-
tive (continuous) or categorical (i.e., factor-type or binary).

ii.	 Transformation is the mathematical operation by which one or several variables 
are derived from each raw explanatory variable. These derived explanatory vari-
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ables are in then used to parameterise the model (Step 8,iii). The terms ̓ explanatory 
variableʼ, ʻpredictor variableʼ, and ʻindependent variableʼ are mostly used in the 
literature interchangeably for (i) variables that may, potentially, account for some 
variation in a response, i.e., in general, without reference to a particular model; and 
(ii) input variables to parameterisation of the model (see Step 8,iii). In this essay 
review, I consistently use the term explanatory variable for (i) and the term derived 
variable for (ii), while the term independent variable is used collectively for the 
two. Independent variables may therefore include raw explanatory variables and/or 
variables derived from raw explanatory variables by transformation, i.e., derived 
variables.

6.	 Preparation of response variable(s). SM requires that raw data for the modelled target 
is also rasterised to the grid chosen i Step 4. Like independent variables vectors ob-
tained in Step 5, the response variable(s) vector(s) shall have length n, the number of 
grid cells within the extent. The response variable can be quantitative or qualitative, 
expressing the quantitative performance of the modelled target or its mere presence. 
Qualitative response variables can be of the presence/absence (P/A) or presence-only 
(PO) types. Synonyms for the term ʻresponse variableʼ, much used in the literature, 
are ʻdependent variableʼ and ʻtraining variableʼ.

7.	 Statistical model formulation. DM is mostly accomplished by univariate modelling 
methods, i.e., methods by which one response variable is modelled as a response to 
the independent variables [but see, e.g., Guisan et al. 1999)]. If the modelled target is 
represented by more than one response variable (Step 2), each of these is modelled 
separately. Modelling proceeds in two steps: In Step 7 a framework for the modelling 
process is set up, while in Step 8 this framework is used to find a model. Setting up 
the modelling framework (Step 7) consists of two tasks, of which both are mandatory 
in all statistical modelling:

i.	 Choice of modelling method, i.e. to decide which category of method to use [reviews 
of DM methods are found in papers and textbooks such as Guisan & Zimmermann 
(2000), Elith et al. (2006), Austin (2007), Franklin (2009), and Peterson et al. (2011)]. 
Methods currently in use for DM can be divided into group discriminative methods, 
i.e., methods that contrast environmental characteristics of presence data points with 
properties of absence, random or pseudo-absence points, and profile techniques, 
i.e., methods that make predictions from properties of presence data points alone.

ii.	 Model specification, i.e., specification of a mathematical function that expresses 
how the response variable is related to the independent variables. A statistical model 
typically has two elements, the systematic part and the error part, both of which need 
to be specified (Sokal & Rohlf 1995). Model specification is exhaustively discussed 
in standard statistical textbooks (e.g., Pinheiro & Bates 2000, Venables & Ripley 
2002, Crawley 2007, Zuur et al. 2007, Hastie et al. 2009).

8.	 Modelling of the overall ecological response. In this step, a model, as specified in Step 
7,ii, is fit to the sample of recorded values for the response and independent variables. 
Fitting a model normally involves three tasks, which are performed sequentially or 
as one integrated process, depending on the method. Operationalisation of modelling 
results is included in Step 8 as the fourth task.

i.	 Model selection, i.e., application of procedures that assist choice among alternative 
models, is normally accomplished by means of explicit criteria for model comparison 
based upon internal model performance assessment, i.e., by incorporating Step 8,ii 
directly into the model selection process. Two principally different approaches to 
model selection can be discerned (Hastie et al. 2009):
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a.	 Subset selection methods, by which a discrete subset of independent vari-
ables is selected and the rest discarded, typically by omission of independent 
variables that do not contribute significantly to the performance of the model. 
The explicit criteria for model comparison mentioned above are used in subset 
selection.

b.	 Shrinkage methods, by which model coefficients are shrunk by imposing 
a penalty on their magnitude, rather than left out fom the model (also see 
Reikeking & Schröder 2006).

ii.	 Internal model performance assessment, i.e., calculation of model performance 
statistics directly by the same data that are used to parameterise the model, e.g., 
by use of measures of variation explained such as variance, deviance, or loss (e.g., 
Hastie et al. 2009). The term ʻverificationʼ, which is sometimes used for what is 
here termed ̒ internal model performance assessmentʼ (e.g., Araújo & Guisan 2006), 
should be avoided because verification of numerical models in the strict sense of 
the word is not possible (Oreskes et al. 1994). Because internal model performance 
assessment makes direct use of one set of corresponding values for response and 
independent variables to find and assess the performance of models (compare with 
model evaluation procedures of Step 11), results of internal model performance as-
sessment are liable to influence by all kinds of biases and errors in the data (Guisan 
& Zimmermann 2000, Austin 2007).

iii.	Model parameterisation, i.e., estimation of model parameters. A parameterised model 
summarises the overall ecological response of the modelled target to the explanatory 
variables, the latter represented by the set of derived variables. ʻModel estimationʼ, 
ʻmodel calibrationʼ, and ʻmodel trainingʼ are frequently used synonyms of what is 
here termed ̒ model parameterisationʼ. Note that the term ̒ model calibrationʼ is used 
in this essay review in a different meaning (see Step 8,iv).

iv.	 Extraction of model predictions. Predictions of the modelled target’s aggregated 
performance in rasterised geographical space, as well as in discrete environmental 
variables space, are obtained as the fitted values of the parameterised model (Fig. 9b). 
If the response variable is of the presence/absence type (presence or absence in each 
grid cell), the prevalence of the modelled target in the study area can be estimated 
from the data, and model predictions are interpretable as predicted probability of 
presence (PPP) in each grid cell. This is the case for the example species in Fig. 9, 
which has a prevalence of 0.168 in the study area (Fig. 2). With presence-only (PO) 
data, however, the prevalence remains unknown, the probability of presence in each 
cell cannot be estimated from the data (Phillips et al. 2006, Ward et al. 2009), and 
the modelled quantity is therefore the relative predicted probability of presence 
(RPPP). The term ‘relative’ here indicates that model predictions can be compared 
among grid cells, but that their absolute values cannot be interpreted in terms of 
probabilities of presence of the modelled target (Ferrier et al. 2002). RPPP values 
can be reported in several ̒ output formatsʼ, e.g., ‘raw values’ that sum to unity over 
all pixels, and ‘cumulative values’ (Phillips & Dudík 2008, Halvorsen in press).

9.	 Collection of presence/absence data for model calibration and evaluation. A sample of 
presence/absence observations of the modelled target, preferably collected independ-
ently of the sample used to parameterise the model (cf. Step 2), is required for two 
unrelated purposes; model calibration (Step 10) and model evaluation (Step 11).

10.	Model calibration, i.e., assessment of the numerical accuracy of model predictions 
(Harrell et al. 1996, Vaughan & Ormerod 2005), in the DM context calibration im-
plies assessment of the degree of correspondence between model predictions and 
true probabilities of presence of the modelled target. Model calibration implies that 
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Fig. 9. Steps in the distribution modelling process, exemplified by logistic regression of ras-
terised presence-absence data for the hypothetical species of Figs 2, 5 and 6 (modelled target, 
response variable) with respect to the two explanatory variables of Figs 5b (EV1) and 5c (EV2), 
both recorded in each of the 256 grid cells that make up the study area. (a) Distribution of the 
hypothetical species in rasterised geographical space: black cells indicate presence and white 
cells indicate absence. (b) Model of the overall ecological response in continuous environmental 
variables space (Step 8,iv), obtained as the back-transformed values (predicted propability of 
presence, PPP) from the logistic regression model PPP = exp(g)/(1+exp(g)) where g = –5.543619 
+ 0.9484586*EV1 + 0.6100511*EV2. The model explains 16.95% of the deviance in the re-
sponse variable (F-test: p < 10–8). (c) Map representation of model predictions in rasterised 
geographical space (Step 12,i).
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the relationship between observed presence or absence (response variable in the 
calibration model) and predictions from a distribution model (Step 8,iv) is modelled. 
For distribution models parameterised by use of presence-only data for the response 
variable, calibration is the only way to bring the predicted RPPP values onto a true 
probability scale (Pearce & Ferrier 2000b, Phillips et al. 2006, 2009). Model calibra-
tion can be accomplished by use of presence/absence data (Step 9) or by use of prior 
knowledge of the prevalence of the modelled target (Pearce & Ferrier 2000b). Note 
that the term ʻmodel calibrationʼ is often used in the meaning of what is here termed 
ʻmodel parameterisationʼ (Step 8,iii). The term calibration model is used to denote 
a model which is used in model calibration. A graph of frequency of presence plotted 
against model predictions, typically with subsets of observation units in the calibra-
tion data set (Step 9) as data points, is termed calibration plot (Chatfield 1995). 

11.	Model evaluation, i.e., assessment of model performance by use of data not directly 
used to parameterise the model (Guisan & Zimmermann 2000). The term thus ad-
dresses methods for external model performance assessment (compare with defini-
tion of ʻinternal model performance asssessmentʼ in Step 8,ii). The term ʻvalidationʼ, 
which is often used for what is here termed ʻmodel evaluationʼ (e.g., Araújo & Guisan 
2006), should be avoided because ʻmodel results may or may not be valid, depending 
on the quality and quantity of the input parameters and the accuracy of the auxiliary 
hypothesesʼ (Oreskes et al. 1994: 642). The term ʻmodel evaluationʼ is often used in a 
broader sense, also including internal model performance assessment. I have adopted 
a more strict definition of the term ʻmodel evaluationʼ because of the fundamental 
differences between model assessments that use the entire set of response-variable 
data directly, and assessments based upon data derived from this set orf more or less 
independent data (see, e.g., Guisan & Zimmermann 2000, Elith et al. 2006, Raes & 
ter Steege 2007, Veloz 2009, Edvardsen et al. 2011). Several model performance, or 
‘goodness-of-fit’, statistics are available (e.g., see Fielding & Bell 1997, Pearce & Ferrier 
2000b), of which the area under the receiver operating characteristic (ROC) curve, AUC, 
is one of the most popular (e.g., Franklin 2009). Several strategies exist for evaluation 
of distribution models. These can be ordered from less to more rigorous, e.g., by their 
vulnerability to observer bias, etc. (see Guisan & Zimmermann 2000, Elith et al. 2006, 
Hirzel et al. 2006), as follows:

i.	 Model evaluation by data-splitting, whereby one sample of observations of the 
modelled target is split into one subset that is used to parameterise the model and 
one set that is used to estimate model performance statistics.

ii.	 Model evaluation by data resubstitution, whereby model performance statistics are 
calculated by bootstrapping, jackknifing or crossvalidating procedures. One sample 
of observations of the modelled target is used both for parameterisation and evalu-
ation, but performance statistics are estimated from data not used to parameterise 
the model.

iii.	Model evaluation by repeated resubstitution of data, i.e., a combination of (i) and 
(ii) whereby one sample of observations of the modelled target is randomly split 
m times into subsets, and the m single values for a model performance statistic are 
combined into one representative value for the model (e.g., Riordan & Rundel 2009, 
J. Williams et al. 2009, Weber 2011). 

iv.	 Model evaluation by independent data, i.e., calculation of model performance statis-
tics by use of presence/absence data for the modelled target, collected independently 
of the data used to parameterise the model (Step 9).
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Several other strategies for model evaluation also exist, which do not fit into the ̒ gradientʼ from 
(i) to (iv) above. Examples of these strategies are the use of predictions from another distribu-
tion model, e.g., obtained by other methods, as a reference with which models are compared 
(Bryn et al. 2012, Hemsing & Bryn 2012); comparison of model predictions with a known dis-
tribution that is used as a reference (e.g., Bombi & DʼAmen 2012); and comparison with expert 
knowledge (Mellert et al. 2011). Use of different modelling methods in parallell to check models 
for consistency accords with the practice in ordination analysis, to use two different ordina-
tion methods in parallell and to accept as reliable structure ordination axes identified by both 
ordination methods (R. Økland 1996). 

12.	Applications. Predictions from distribution models can be used for several applied 
purposes [e.g., see Franklin (2009) and Peterson et al. (2011)], of which two should 
be specifically mentioned: 

i.	 Map representation of predictions in geographical space, i.e., the use of GIS and/
or other software to visualise the modelled ecological response in rasterised geo-
graphical space. If the grain is very fine compared to the extent, i.e., if the number 
of pixels, n, is high, smoothing of predictions may be required for the map repre-
sentation to be readable. The map representation of predictions for the hypothetical 
species in Fig. 9c reflects the tendency for the species to be present more often in 
cells with high, than in cells with low, values for both explanatory variables (see Fig. 
9b). While values for explanatory variable 1 increases from ‘north’ to ‘south’ in the 
hexadecadally rasterised study area, showing no systematic variation within each 
of the 16-cell units, explanatory variable 2 shows no systematic variation between 
16-cell units but increases from ‘northeast’ to ‘southwest’ within each unit (Figs 
5d–e). The pattern of variation in model predictions in rasterised geographical space 
(Fig. 9c) thus reflects the patterns of variation in both explanatory variables and the 
speciesʼ response to them.

ii.	 Transfer of modelling results (spatial or temporal extrapolation), i.e., use of the 
model for prediction outside the study area, to other time-points, or to other scenarios. 
Transfer of modelling results is explained and discussed in an extensive literature, 
e.g., Araújo et al. (2005), Pearman et al. (2007), Thuiller et al. (2008), Elith et al. 
(2010), and Peterson et al. (2011). 

The 12 steps of the DM process are grouped into three composite steps (ʻcomponents needed 
for statistical modellingʼ) in accordance with Austin (2002: 101) as follows (see Fig. 8): Step 1 
belongs to ̒ ecological modelʼ, i.e., ̒ theory to be used or testedʼ ; Steps 2–6, and 9, belong to ‘data 
model’, i.e., ‘collection and measurement of ... data’, however, Steps 4 and 7 also benefit strongly 
from being informed by basic theory; and Steps 7, 8, 10, and 11 belong to ‘statistical model’, i.e., 
‘the statistical theory and methods used’.

Steps 1–8 are essential for a study to belong to distribution modelling (DM) as defined in 
this essay review, i.e., as a study in which the primary response variable describes a distribu-
tion (Steps 2, 4 and 6), with explanatory variables that represent explanatory gradients and 
are recorded or estimated for all grid cells within the extent of the study (Steps 3–5), and in 
which the modelled property is the overall ecological response (performance in ecological vari-
ables space; Steps 7–8). It is Step 8, modelling of the overall ecological response, that places DM 
unambiguously among gradient analysis techniques as defined by ter Braak & Prentice (1988), 
and it is because of Step 8 that a gradient analytic perspective on distribution modelling should 
be adopted. More specifically, DM belongs to the sub-category ‘direct gradient analysis’ of GA 
techniques, ‘in which each species’ abundance is described as a function of measured environ-
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mental variables’, and to the sub-subcategory ‘regression’, or univariate modelling methods, to 
which direct gradient analysis techniques for one response variable belong.

Distribution models can be improved iteratively, by incorporating new data for the mod-
elled target (Steps 2 and 9) as well as by using results of one modelling cycle to improve choices 
made in the next step [Fig. 8; also see Guisan et al. (2006a) and Stokland et al. (2008)]. 

DISTRIBUTION MODELLING AS AN INDUCTIVE SCIENTIFIC APPROACH

Two main research paradigms are relevant for ecology: (1) the hypothetico-deductive approach, 
by which knowledge is gradually built from first principles by acceptance or rejection (verifi-
cation and falsification), or by falsification only (Popper 1959, 1989), of scientific hypotheses; 
and (2) the inductive approach, by which knowledge accumulates by a two-step procedure: (i) 
extraction of patterns from empirical data, and (ii) search for general trends in patterns derived 
from comparable empirical data sets (Økland 2007). Ecology has a long tradition for research by 
inductive (Lawton 1996), or correlative (Shipley 2000) approaches, but has also, at times, been 
criticised by strong proponents of the hypothetico-deductive paradigm for being ‘subjective’ 
or ‘unscientific’ (e.g., Murray 2000, 2001). This criticism has sometimes been raised with such 
an emphasis that concern has been expressed for loss of diversity in ecological research (Noss 
1996, Weber 1999, Økland 2007). However, for the last ten years (or so) there has been a shift 
from insistence on experiments and hypothesis testing to acceptance of, or even preference for, 
more or less formal modelling approaches (e.g., Shipley 2000, Hastie et al. 2009, Zuur et al. 2009, 
Grace et al. 2010) as part of a growing consensus that ecology needs hypothetico-deductive 
as well as inductive approaches (Lawton 1996, 1999, Økland 2007). This paradigm shift oc-
curs because an increasing number of ecologists realise that ecology deals with disentangling 
complex patterns in search for even more complex causal relationships, and that the complex-
ity of the studied systems far exceeds what can be addressed by simple, testable hypotheses 
(Wilson 2003). DM is basically a correlative approach (Peterson et al. 2011): tests of effects of 
single variables or combinations of variables will never account for the complexity of factors 
and interactions between factors that shape distributions of natural phenomena. In addition to 
challenges related to the complexity of natural variation, DM has to face the additional challenge 
that many explanatory variables needed for adequate representation of the distribution-limiting 
factors, the proximal factors in the terminology of Austin (2002), will be unavailable. Reasons 
for that include, e.g., difficulties in quantifying, and obtaining areal-covering data for, decisive 
extreme events such as the one-hundred-year flood or the fifty-year drought spell. Other reasons 
are costs in terms of labour and other resources of making thousands or millions of measure-
ments, and lack of knowledge of which environmental factors are most important. In practical 
DM, proximal or otherwise potentially causal factors have to be approximated by surrogate 
variables that are more or less appropriate for the purpose (Austin 2002). However, even if we 
were able to record all relevant environmental, historical and other factors, reconstructing the 
multitude of events (evolutionary, historical, demographic, etc.) that resulted in the specific 
distribution pattern observable at a given time-point would be in vain. The 12-step DM process 
described above therefore, in general, accords with the inductive paradigm and the proliferation 
of DM methodology after year 2000 has occurred as part of the paradigm shift from insistence 
on hypothesis testing to acceptance of modelling as a useful tool. One distribution model may, 
though, be used as a reference with which other models are compared (e.g., Bryn et al. 2012, 
Hemsing & Bryn 2012), i.e., for testing weak hypotheses.
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PURPOSES OF DISTRIBUTION MODELLING

Many authors recognise that important choices of methods, options and settings (Step 7 in 
the DM process; Fig. 8) should be guided by the purpose of the DM project (e.g., Guisan & Zim-
mermann 2000, Araújo & Guisan 2006, Jiménez-Valverde et al. 2008). Araújo & Guisan (2006: 
1679) therefore encourage modellers to make the purpose of their modelling clear at the outset, 
stating ‘that [distribution] modellers should make a clearer distinction between niche models 
and the modelling of spatially explicit features’. Franklin (2009: 207) points to the importance 
of purpose for choice of modelling strategy by stating: ‘evaluation of species distribution models 
... has tended to focus on the predictive performance as the most important measure of model 
validity’ while ‘predictive power is really only one aspect of model evaluation’ and ‘ecological 
realism ... (model credibility) [is] also important’. She thus indicates a potential conflict of in-
terest between ecological interpretability of modelling results, i.e., good representation of the 
overall ecological response in environmental variables space, and predictive performance in 
geographical space. In the discussion chapters ̒ Implications [of the gradient analytic perspective] 
for choice of data modelʼ and ʻImplications [of the gradient analytic perspective] for choice of 
statistical modelʼ, I will discuss this conflict of interest in greater detail and show that model-
ling purpose dictates the appropriateness of different types of response-variable data, different 
explanatory variables, and different modelling methods. An explicit distinction between DM 
purposes along these lines is, however, normally not made in the DM literature. An exception, 
however, is the statement of Peterson et al.ʼs (2011: 2) that ʻ... what has been termed “species 
distribution modelling” ..., as well as the related (but by no means equivalent) endeavor called 
“ecological niche modelling” ...ʼ, which suggests that the two terms are used, at least partially, 
for DM approaches with different purposes.

I recognise three main purposes of DM, which represent nodes in a continuum of pur-
poses:

1.	 Ecological response modelling (ERM), which comprises DM with the main purpose 
of modelling the relationship between a target, typically the performance of a species, 
and a set of explanatory variables. The focus in ERM is to find and understand gen-
eral patterns in the overall ecological response of the modelled target to explanatory 
variables; with or without reference to a particular study area or point in time. ERM 
thus addresses relationships in environmental variables (or ecological) space. ERM 
purposes can be divided into two sub-categories:

a.	 Specific-purpose ecological response modelling, i.e., to describe and understand 
distributional variation at relevant scales, with regard to a specific set of explanatory 
variables.

b.	 General-purpose ecological response modelling, i.e., to describe and understand 
distributional variation at relevant scales, without regard to a specific set of explana-
tory variables.

2.	 Spatial prediction modelling (SPM), the distribution of a modelled target in a specific 
study area in a specific time interval, modelled by use of a set of explanatory variables, 
with the main purpose of optimising the fit between model predictions and the true 
distribution of the modelled target’s performance in this area at this point in time. 
SPM thus addresses relationships in geographical space.

3.	 Projective prediction modelling (PPM), the distribution of a target, modelled by use 
of a set of explanatory variables, with the main purpose to transfer model predictions 
to a spatiotemporal setting different from the one at which the data used for model-
ling were collected, i.e., other areas and/or time intervals or scenarios. PPM can ad-



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 39

dress relationships in geographical space or environmental variables (or ecological) 
space.

The three purposes differ with respect to which Step in the 12-step DM process that is focused 
most strongly and, accordingly, which conceptual geometrical space is relevant for use and 
interpretation of results. In ERM, the modelled targetʼs overall ecological response to specific 
explanatory variables is modelled in order to improve the modeller’s insight into the mecha-
nisms and processes behind observed relationships, as such. The focus of ERM is entirely on 
relationships in environmental variables (or ecological) space, i.e., on Steps 7–8 in the DM 
process. Examples of research questions addressed in ERM are the ranking of environmental 
factors according to importance for the species in question (e.g., Wollan et al. 2008); in addition 
to exploratory analysis of response-curve skewness with respect to a specific environmental vari-
able for a set of species (e.g., Austin et al. 1994). ERM is brought to the extreme by ʻmechanistic 
niche modellingʼ (Kearney & Porter 2009) by which environmental variables with documented 
physiological impact on the modelled species are used are used as explanatory variables in the 
modelling. Provided that the focus of the study is on the speciesʼ response to explanatory vari-
ables 1 and 2 as such, as illustrated by environmental variables in Fig. 9b, the model in Fig. 9 
exemplifies ERM. In an ERM context, the predicted distributional consequences of relationships 
in environmental variables (or ecological) space (Fig. 9c) are considered unimportant.

The above-mentioned examples illustrate specific ERM purposes, i.e., the modelled targetʼs 
relationship to a specific set of explanatory variables. In general-purpose ERM, on the other hand, 
the aim is to identify the environmental complex-gradients which are most important for the 
modelled target in order to improve our understand of its relationship with the environment. 
The definition of the general-purpose ERM conforms to the definition of the general-purpose 
ecological study (R. Økland 1990a, 1996), which for vegetation as study object is formulated as 
follows: ‘to summarize the main structure in a species-by-sample data matrix, to relate structure 
in vegetation to external factors, and to generate hypotheses about vegetation-environment 
relationships’ (R. Økland 1996: 289).

Prediction modelling, which can be used as a collective term for PPM and SPM, on the 
other hand, has as its main focus to construct the model that gives the best spatial predictions in 
a time perspective that is either synchronous (SPM) or asynchronous (PPM), and/or a geographic 
area of interest that is either coincident with (SPM), or differs from (PPM), the spatiotemporal 
setting at which the set of units subjected to analysis were collected. The focus of SPM and PPM 
is on relationships in geographical space, exemplified by Fig. 9c. SPM and PPM studies do not 
necessarily have the spatial predictions as such as their focus, these purposes also include DM 
studies that address questions that require predictions from SPM and PPM models.

PPM differs from SPM by its focus on projections into geographical space under scenarios 
of temporal environmental change (most often, climate change; Guisan and Zimmermann 2000, 
Guisan et al. 2006b, Elith & Leathwick 2009) or into other geographical spaces (Randin et al. 
2006, VanDerWal et al. 2009, Thompson et al. 2011). Specific challenges associated with PPM 
as compared with SPM (or ERM) are defined outside the scope of this essay review. Discussions 
of PPM can be found in a number of studies, e.g., Pearson & Dawson (2003), Guisan & Thuiller 
(2005), Araújo et al. (2005), Araújo & Guisan (2006), Baselga & Araújo (2009), Diniz-Filho et 
al. (2009), Franklin (2009), Kriticos & Leriche (2010), and Peterson et al. (2011). 
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EXPANDING THE GRADIENT ANALYTIC PERSPECTIVE: Patterns of natu-
ral variation in time and space and the processes and mecha-
nisms responsible for these patterns

Empirical GA studies have revealed many strong patterns that can be generalised over regions, 
ecosystems and species groups. In particular, strong and generally valid patterns have been found 
for: (1) the spatial scale intervals in which variation along important environmental variables 
is large (Økland 1990a, Halvorsen et al. 2009); (2) the spatial scale interval in which these vari-
ables are important for explaining variation in species performance (e.g., Rydgren et al. 2003); 
and (3) properties of species’ overall ecological responses and the processes responsible for 
these patterns. These general patterns, which are summarised in this part of the essay review, 
expand the gradient perspective into a broad theoretical basis for DM. Particular emphasis is 
given to assessment of the spatial and temporal scales at which patterns of natural variation can 
be recognised and at which scales the processes responsible for these patterns operate.

Many examples in this section are taken from studies of patterns of natural variation in 
Norway (which I know by own field experience). The mainland of Norway covers only 323,802 
km2, but comprises an exceptional range of nature-type variation, its moderate size taken into 
account (Halvorsen et al. 2009). The main reasons for this are: wide range of climatic variation 
(Moen 1999, Bakkestuen et al. 2008); high mineral and bedrock diversity (Ramberg et al. 2007); 
high diversity of land forms (Anonymous 1984, Sulebak 2007); and considerable variation in 
traditional land use systems throughout the country (Sømme 1954, Christensen 2002, Almås 
et al. 2004). The range of variation in natural conditions found in Norway includes most of the 
variation that can be found in the circumboreal zone. My main focus in this essay review is on 
vegetation (plants), but the theoretical considerations and its implications are relevant also for 
other organisms with low mobility (including fungi and many groups of invertebrates). 

PATTERNS OF NATURAL VARIATION

Regional, local, and condition or impact ecoclines 

Gradient analysis assists identification of the most important ecoclines in a study area. Being 
axes of the ecological space, ecoclines are abstract ideals. Although empirical studies show that 
patterns of co-variation between environmental variables, and between species composition 
and environmental variables, often can be generalised, such patterns are never fully consistent 
among regions (T. Økland 1996), over time intervals (Gunnarsson et al. (2002), or across spatial 
scales (Økland et al. 2006). Spatial inconsistency, recognised as the modifiable areal unit prob-
lem (MAUP) by Openshaw & Turner (1979), is extensively discussed in the literature, e.g., by 
Jelinski & Wu (1996) and Wu (2004); see Økland et al. (2006) and Bakkestuen et al. (2008) for 
practical examples. The different abilities of explanatory variables 1 and 2 (in Fig. 5) to explain 
variation in the occurrence of the example species rasterised to different spatial domains (Fig. 
6) is a simple example of spatially inconsistent patterns.

Despite temporal and spatial inconsistencies, the ecocline concept has proven useful for 
generalising patterns of natural variation. Thus Halvorsen et al. (2009) use studies by ordination 
and other gradient analysis techniques to generalise patterns of variation in species composition 
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Table 1. Examples of ecoclines recognised as important in Norway according to Halvorsen et 
al. (2009) and the spatial scale intervals in which variation along them is large. ‘Spatial scale 
at which variation is large’ is defined as the range of spatial scales, within which, by analysis 
of samples with extent-grain ratio of 16 such as regular hexadecadal grids, the variation in a 
variable of interest is distinctly larger than in samples with smaller or larger grain sizes. Com-
piled from Halvorsen et al. (2009), but with terms for spatial scales at which variation is large 
adjusted to fit the definitions adopted in this essay review.

Ecocline	 Spatial scale 	 Category	 Importance
	 at which 
	 variation is 
	 large (m)		

bioclimatic 	 103–105	 regional	 universally important in terrestrial ecosystems; almost 	
zone		  ecocline	 all groups of organisms respond to ‘warmth’ (e.g., 
			   temperature of the growing season)

bioclimatic 	 103.5–105	 regional	 universally important in terrestrial ecosystems; almost
section		  ecocline	 all groups of organisms respond to variation in water 
			   suply at regional spatial scales

lime richness	 101–104	 local ecocline	 important in freshwater and terrestrial ecosystems for 
			   all except strongly mobile organisms; includes 
			   essential resources for growth

particle size 	 100–104	 local ecocline	 important for sessile aquatic organisms by regulating
(of mineral			   substrate stability (susceptibility to disturbance by 
substrates)			   water currents) and for terrestrial organisms by 
			   influencing soil drainage and water retention

severity of	 100.5–101.5	 local ecocline	 important for plants, fungi and soil-dwelling 
drought			   invertebrates in well-drained non-wetland terrestrial 
			   systems; influences ability to survive periods of 
			   exceptional drought (important correlated 
			   environmental variables are soil depth, terrain shape, 
			   topographic position and aspect)

strength of 	 100–101	 local ecocline	 important for plants and invertebrates that depend 	
rheogenous			   more or less strongly on constant physio-chemical 
water influence			   conditions (water temperature and supply of water 
			   and minerals), in wetlands and terrestrial systems 
			   influenced by rheogenous (spring) water

water saturation 	 10–1–101	 local ecocline	 important for plants and invertebrates by determining 
(of the ground)			   the degree of water saturation (e.g., measured as the 
			   median volumetric soil water content) in non-wetland 
			   terrestrial systems and the duration of water saturated 
			   topsoils in wetlands

snow-cover 	 100.5–101,5	 local ecocline	 important for many plants in alpine and arctic regions;
stability			   plants differ in tolerance for frost and wind 
			   disturbance in winter

reduced 	 100–101.5	 local ecocline	 important for many plants in alpine and arctic regions,
growing-season 			   plants differ in the time needed to complete their life 
due to prolonged 			   cycle
snow-lie		
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Table 1 (continued). 

Ecocline	 Spatial scale 	 Category	 Importance
	 at which 
	 variation is 
	 large (m)		

duration of 	 10–1–101.5	 local ecocline	 important for sessile organisms which differ in their
inundation			   tolerance of submergence

dune	 101–102.5	 local ecocline	 important for plants which differ in their ability to 
stabilisation			   colonise bare sand and to withstand burial in mobile 
			   sands

long-term 	 101.5–103	 local ecocline	 important for plants, fungi and soil-dwelling micro-
agricultural 			   organisms; in each group considerable differences in
management 			   tolerance for qualitatively different disturbance 
intensity			   regimes are found

eutrophication	 104–106	 condition or 	 important for most organisms in freshwater and
		  impact 	 terrestrial ecosystems by enhancing the availability of
		  ecocline	 nitrogen, an essential resource for growth

regrowth 	 100.5–102.5	 condition or	 important for most ground-dwelling organisms by
succession on 		  impact	 affecting time available for re-colonisation, buildup of
agricultural land		  ecocline	 organic soil layers etc. after abandonment of farming

regrowth 	 101.5–103	 condition or	 important for most ground-dwelling organisms by
succession of 		  impact	 affecting radiation and time available for re-coloni-
tree stands		  ecocline	 sation after harvesting of trees or natural disturbances

			 

and major complex-gradients in Norway into ecoclines that account for most of the explainable 
compositional variation [the Norwegian Nature Types (NiN) approach, still only available in 
Norwegian]. The NiN framework is used as a basis for description of ecoclines recognised as 
important in Norway (see Table 1).

Halvorsen et al. (2009) sort ecoclines into three groups according to spatial and temporal 
scales with large variation (Halvorsen et al. 2009): 

	
1.	 Regional ecoclines; parallel variation in species composition and macroclimatic 

factors (bioclimatic variation; Bakkestuen et al. 2008), typically with large variation 
at spatial scales of 1 km or broader; under the assumption of no change in type or 
magnitude of human influence, or other condition or impact ecoclines, patterns will 
remain more or less unchanged for centuries or millennia.

2.	 Local ecoclines; parallel variation in species composition and important environmen-
tal factors (edaphic, moisture-related, etc.), typically with large variation at spatial 
scales of 1 km or finer; under the assumption of no change in type or magnitude of 
human influence, or other condition or impact ecoclines, patterns will remain more 
or less unchanged for centuries or millennia.

3.	 Condition or impact ecoclines; parallel variation in species composition and impor-
tant environmental factors, typically with large variation at temporal scales of decades 
[(6–)10–100 years]
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The tripartition into regional, local, and condition or impact ecoclines is based on two criteria; 
the temporal and spatial scale intervals at which variation is large. The fundamental division of 
ecoclines is into basic ecoclines (regional and local ecoclines) on one hand, with patterns that 
remain more or less stable over time-scales of centuries, and condition or impact ecoclines on 
the other, which comprise transient patterns. Accordingly, patterns of species accumulation and 
establishment of ecosystem-level processes are affected by, and result in, variation along basic 
ecoclines (e.g., Noss 1990). Variation along condition and impact ecoclines is to a large extent 
independent of variation along basic ecoclines, because change of state, e.g., with respect to 
ʻtrampling and associated erosionʼ, which is a typical example of a condition or impact ecocline, 
can take place without significant change of ‘basic conditions’ at the site. The division of basic 
ecoclines by means of the spatial scale interval in which variation is large into regional and local, 
or climatic vs. edaphic, or zonal vs. azonal, gradients, follows a long tradition that is motivated 
by the more or less independent responses of species to the two sets of factors (Schimper 1898, 
Cajander 1921, Kalela 1954, Ahti et al. 1968, Økland & Bendiksen 1985). Regional ecoclines 
address patterns on regional spatial scales, while local ecoclines address patterns on fine, i.e., 
local and micro, spatial scales (Fig. 4).

Local and condition or impact ecoclines do not correspond to undisturbed and un-
disturbed sites, respectively, nor to stable and successional sites. To the contrary, examples 
of ecoclines with degree of impact by disturbance as the main responsible factor, are found 
both among local ecoclines and among condition or impact ecoclines. Typical examples are 
the local ecocline ʻflooding in an alluvial siteʼ, which is conditioned on long-term predictable 
water-induced disturbance, the intensity of which varies along the ecocline, and the condition 
or impact ecocline ʻtrampling and associated erosionʼ, which is conditioned on impacts that 
are more unpredictable and therefore likely to give rise to variation in species composition on 
finer time-scales. Successional ecoclines which result from slow, natural, ecological processes 
such as primary successions after glacier retreat or ʻseverity of droughtʼ, belong to the local 
ecoclines because patterns tend to be invariant over centuries. Variation in ̒ severity of droughtʼ 
results from primary successions having different speeds on different substrates, depending 
on topography, climate and several other factors. However, the successional ecocline ̒ regrowth 
succession on agricultural landʼ is typified as a condition or impact ecocline because it mostly 
displays variation over time scales of decades.

Regional ecoclines. For more than half a century, two regional ecoclines, or ‘bioclimatic gra-
dients’; Table 1) have been recognised as important by Fennoscandian vegetation geographers, 
for Norway (Sjörs 1963, Ahti et al. 1968, Tuhkanen 1980, Moen 1999) as well as for the entire 
circumboreal area (Tuhkanen 1984): a ‘sectional ecocline’ that runs from oceanic climates in 
the west to slightly continental inland climates in the east, and a ‘zonal ecocline’ that runs from 
temperate climates in the south and at low altitudes to cold climates in the north and at high 
altitudes. According to Fennoscandian tradition, the former is divided into ‘vegetation sections’ 
of which five occur on the Norwegian mainland, and the latter is divided into ‘vegetation zones’ 
of which 5–8 are recognised in Norway (Moen 1999). High importance of these and only these 
ecoclines at regional scales has been corroborated in a large number of studies, e.g., Moen (1987) 
and Aune & Holten (2011). Two examples of multivariate studies in which regional ecoclinal 
patterns are identified, are Pedersen (1990) and Myklestad (1993), who studied distributions 
of 722 vascular plant species and 24 Salix species, respectively, in Fennoscandia. Both of these 
studies were based upon samples of species observations, rasterised to a grain size of 50 × 50 
km, subjected to ordination. The samples of units subjected to analysis consisted of 522 and 
558 grid cells in the two studies, respectively. The two main compositional gradients recognised 
in both of these studies closely parallelled the expert divisions into ‘vegetation sections’ and 
‘vegetation zones’. Bakkestuen et al. (2008) found similar patterns of variation when a set of 
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54 climatic, topographical, hydrological and geological variables recorded for all of Norway, 
rasterised to grain sizes of 1, 5, and 10 km, was subjected to PCA ordination: patterns along the 
first two PCA axes coincided with variation along the ‘sectional’ and ‘zonal’ gradients of Moen 
(1999). Bakkestuen et al. (2008) demonstrated that this geographical pattern was invariant 
over grain sizes in the interval 1–10 km.

The finest spatial scales at which substantial variation in species performance can be 
explained by regional ecoclines is strongly influenced by the broad-scale topography (relative 
relief; Anonymous 1984), which is an important determinant of the distribution of temperatures 
and precipitation (Førland 1979, 1993, Aune 1993, Moen 1999). In parts of the world with lower 
relative relief and less steep climatic gradients variation along bioclimatic, or regional, ecoclines 
may be negligible below spatial scales of 10 km or even more (cf. Metzger et al. 2005).

Local ecoclines. While variation at broad scales, i.e., at spatial scales typically addressed 
by samples with extent-grain ratio of 16 and linear grain > 1 km (Fig. 4), can be efficiently 
summarised into two bioclimatic gradients (Bakkestuen et al. 2008), exhaustive description of 
variation at fine scales (< 1 km) require a multitude of ʻfactorsʼ, or local ecoclines. The number 
of local ecoclines recognised as important in at least one type of ecosystem at the ecological 
system level in the first version of NiN (Halvorsen et al. 2009) is 30. Types at this level are de-
fined with respect to spatial scale so that a patch of one specific type normally covers 100 m2 
or more (Halvorsen et al. 2009). Some local ecoclines are recognised as important within type 
of ecological system only, while others are important over a broad range of types. Among the 
latter, variation in species composition related to ‘lime richness’ holds a key position because 
this ecocline is important in freshwater systems and wetland systems as well as non-wetland 
terrestrial systems, and because variation related to lime richness can be observed over a con-
siderable range of spatial scales. Many terms have been used for this ecocline, e.g., ‘soil reaction’ 
(Ellenberg et al. 2001), the ‘rich-to-poor edaphic gradient’ (Du Rietz 1949, Sjörs 1967, Arnesen et 
al. 2007), ‘the acid, calcium-poor to alkaline, calcareous and carbonbate-rich gradient’ (Wheeler 
& Proctor, 2000), and ‘the differentiation into acidic vs calcareous sites’ (Walker et al. 2001). 
Properties of the bedrock such as chemical composition, hardness, and structure (e.g., layering), 
which influence weathering rates, determine the input of essential elements to the ecosystems 
and are the primary causes of variation in lime richness (hence the term ‘geological richness’; 
cf. Sjörs 1967). Occurence of mosaics of bedrock types with size of individual patches ranging 
from centimeters to hundreds of kilometers (e.g., Solli & Nordgulen 2007) contributes to the 
wide interval of observed spatial scale intervals in which variation in lime richness is large. 
However, most organisms do not live in direct contact with the bedrock itself but in, or on, the 
topsoil and/or in the ground water. For most organisms, properties of the bedrock are therefore 
just one, often minor, set of determinants of the environmental conditions experienced by the 
organisms. The most important modifiers of direct bedrock influence are glacial, glaciofluvial 
and fluvial processes. These processes bring about redistribution and weathering of parent 
material and, subsequently, in interaction with terrestrial and soil-dwelling biota, topsoil de-
velopment (Romell 1935). These processes depend, directly or indirectly, strongly on terrain 
shape (e.g., Økland & Eilertsen 1993), which influences soil depth (Skyllberg 1990) and other 
variables associated with the complex-gradient component of the lime richness ecocline. The 
complex dependencies between factors responsible for patterns related to lime richness are 
described in detail, among others, for boreal forests by Økland & Eilertsen (1993) and T. Øk-
land (1996), for ̒ swamp forestsʼ by Økland et al. (2001), and for mires by Sjörs (1948), Malmer 
(1962), and Økland (1989b). The distinction between regional and local ecoclines is not always 
sharp. Thus, the spatial scale intervals in which variation along lime richness is large and in 
some areas also include fine regional scales (e.g., Økland 1989a, Wollan et al. 2008). Similar 
patterns are also shown by other ecoclines that are categorised as local, such as the dominant 
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particle size of abyssal plains, which may be homogeneous over many kilometres (Thorsnes 
et al. 2009). This and other local ecoclines do, however, primarily display large variation at 
finer spatial scales (linear grain; < 1 km). On the Norwegian mainland, which is dominated by 
landscapes with moderate or coarse relative relief (Anonymous 1984, Etzelmüller et al. 2007, 
Sulebak 2007), particle size tends to vary over short distances due to the fine-scaled action of 
geophysical processes.

Even though all organisms are dependent, at least to some extent, on water, many organ-
isms do not tolerate extensive periods of submergence. Thus, unless specific adaptations to 
aquatic environments have been developed, vascular plants depend on aeration of below-ground 
parts to survive waterlogging (Metsävainio 1931, Bannister 1964). The moisture regime of a 
site is influenced by several geophysical processes that interact with each other and with other 
important environmental factors in complex ways. This results in existence of several, more or 
less independent, ‘moisture-related’, local ecoclines that differ with respect to the spatial scale 
interval in which variation is large and with respect to which ecosystems they are relevant for. 
Boreal forests provide a typical example. Økland & Eilertsen (1993) demonstrate existence of 
two independent ecoclines related to soil moisture, termed ʻseverity of droughtʼ and ʻwater 
saturationʼ (Table 1). For ʻseverity of droughtʼ, which is conditioned on variation in soil depth 
and topographic position, variation is large in the spatial scale interval 5–25(–100) m. Never-
theless, the response of many species to this ecocline seems to be regulated by die-back during 
periods of particularly severe summer drought, as demonstrated by Erkamo (1956, 1958) for 
Trientalis europaea in Finland and by Økland & Bendiksen (1985) for Calluna vulgaris in Nor-
way. This exemplifies a situation where a factor, temperature, with large variation on coarse 
regional scales, bring about patterns on fine to medium local scales by interaction with local 
factors such as topography and soil depth. The spatial scale interval in which variation along 
the water saturation ecocline is large, is (0.5–)1–10 m. This ecocline reflects variation in forests 
from ‘normal’ or ‘median’ soil moisture from well-drained ground to moist, i.e., slightly paludi-
fied, ground in forests, often dominated by Sphagnum spp. (Økland & Eilertsen 1993, T. Økland 
1996), and extends into peatlands (mires) in which surface microtopographic patterns with 
large variation at spatial scales as fine as 10 cm directly determine depth to the water table, 
the factor which determines degree of water saturation (Økland 1989b, Ohlson & Økland 1998, 
Økland et al. 2001, 2008).

With increasing altitude, i.e., towards the boreal–alpine forest limit, and northwards, i.e., 
towards the boreal–arctic forest limit, temperatures decrease and rainfall often increases (Sjörs 
1948, Førland 1979). Summer drought severity is not likely to be an important factor in cold, tree-
less, alpine and arctic ecosystems. Instead, a distinct zonation of vegetation from wind-exposed 
ridges to snowbeds in depressions has since long been recognised (Vestergren 1902, Fries 1913, 
Nordhagen 1928, 1943) as typical of these systems. This zonation, which mimics the variation 
related to drought severity in boreal forests (Økland & Bendiksen 1985), can be described in 
terms of two ecoclines that are both conditioned on snow cover: ʻsnow-cover stabilityʼ, i.e., the 
variation above snow-beds from wind-exposed ridges to lee sides, and ̒ reduced growing-season 
due to prolonged snow-lieʼ, i.e., the variation from moderate to extreme snow-beds. Both of 
these ecoclines are conditioned on topography and on dominant wind directions being the 
same over years. Together these factors cause locally uneven, but temporally predictable, snow 
distribution patterns (Dahl 1957, Baadsvik 1971, Odland & Munkejord 2008, Odland 2011). The 
spatial scale interval in which variation is large, is the same for the two ecoclines, 1–10(–25) m 
(Table 1), mostly reflecting spatial scales of the local topography. The zonation splits into two 
ecoclines because an important shift of factors responsible for species’ performance takes place 
in the middle part of the gradient: from tolerance to frost and wind disturbance in winter at 
the wind-exposed ridge end of the zonation to tolerance to short growing seasons towards the 
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extreme snow-beds (Resvoll 1917, Gjærevoll 1956, Dahl 1957, Halvorsen et al. 2009).
Other important local ecoclines include variation on tidal and freshwater shores related 

to flooding (in coastal ecosystems also to salinity), for which large variation is observed for 
spatial scale intervals in the range 1–100 m (e.g., Fremstad 1981, Elven et al. 1988), and varia-
tion in coastal dune ecosystems related to ‘dune stabilisation’ (Lundberg 1987) for which large 
variation is mostly found for spatial scale intervals between 5 and 50 m.

Species compositional differences due to variation in ʻlong-term agricultural manage-
ment intensityʼ also satisfy the definition of a local ecocline. This ecocline does not reflect the 
ʻintensity of current agricultural useʼ, which is a condition or state ecocline, but rather the 
ʻintensity of total management impacts associated with exploitation for agricultural purposes, 
that has given the ground its ecological characteristics and its species compositionʼ (Halvorsen 
et al. 2009). Variation in species composition and fundamental ecosystem properties along this 
ecocline is large, as demonstrated in many studies (e.g., Norderhaug et al. 2000, de Blois et al. 
2001, Myklestad 2004, Bratli et al. 2006, Hamre et al. 2010): from ecosystems with no indica-
tion of management to high-intensity management systems such as farmland dominated by 
crops. These two extremes hardly have any species in common. Between these extremes several 
‘management intensity levels’ can be distinguished: very low intensity management, e.g., forests 
managed for forestry but also used for cattle or sheep grazing; low intensity management for 
agricultural purposes without artificial fertilisation, ploughing or seeding, typically resulting in 
semi-natural grassland sites; and from moderate to high intensity management which all imply 
ploughing, artificial fertilisation, seeding and/or pesticide application. Shifts along the ʻlong-
term agricultural management intensityʼ ecocline in direction of lower management intensity 
are slow and typically take more than hundred years (e.g., Aasetre & Bele 2009). Semi-natural 
grasslands develop from forest ecosystems over centuries or millennia of low-intensity manage-
ment (Emanuelsson 2009). Shifts in direction of increased management intensity are effected 
immediately by strong sudden impacts such as applying artificial fertiliser to a semi-natural 
hay-meadow.

Local ecoclines that express variation on fine scales related to warmth or moisture may, to 
some extent, interact with regional (bioclimatic) ecoclines. This is exemplified by the increasing 
fractional area of snow-beds, slightly paludified forests below the tree line and moist coastal 
and alpine heaths, with increasing climatic humidity (Nordhagen 1943, Økland & Bendiksen 
1985, T. Økland 1996). Another example is the shift in species’ overall ecological responses to 
topographic (ridge-to-slope) gradients from oceanic to continental climates, as expressed in 
the ‘bio-geoecological law’ of Boyko’s (1947) and the ‘law of relative site constancy’ (Walter & 
Walter 1953). 

Even though many local ecoclines are needed to account for all environment-related 
variation in species composition at the ecological system level, the number of major complex-
gradients accounting for variation in species composition and, hence, the number of important 
ecoclines within each specific major type at the ecological system level, is low. This is expressed 
in the second fundamental insight of the gradient analytic perspective, a corrollary of which is 
that ecological systems differ, more or less strongly, with respect to which local ecoclines are 
important for explaining within-system variation. The extent to which ecological systems differ 
with respect to which ecoclines are important, also expresses the degree to which they differ 
with respect to important structuring processes and mechanisms. This is exemplified by open 
(non-woodland) systems on rock outcrops and on shallow soils. The ecocline ʻlime richnessʼ is 
important in both of these ecological systems, while ʻwater saturationʼ and ʻdanger of severe 
droughtʼ are relevant only for the two last-mentioned ecoclines because a soil layer is normally 
needed to create moisture gradients that persist long enough after rainfall to give rise to species 
compositional gradients. In summary, some ecoclines are relevant for many ecological systems, 
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such as ̒ lime richnessʼ, others are relevant for one major type only, e.g., ̒ reduced growing-season 
due to prolonged snow-lieʼ, which is only relevant for snow-beds.

Condition or impact ecoclines. Three examples of condition or impact ecoclines are given 
in Table 1, of which two operate on local and one on regional spatial scales. Typically, the spatial 
scale interval in which variation along condition or impact ecoclines is large reflects the scale of 
the factor responsible for this variation, e.g., management, natural or man-made disturbance, 
or other impacts. Thus, shorter-term variation in species composition and environmental con-
ditions resulting from abandonment or change to a less intensive management regime (e.g., 
Vandvik & Birks 2002, Bratli et al. 2006, Hamre et al. 2007, Potthoff 2007) can be recognised 
as variation along the condition or impact ecocline ʻregrowth succession on agricultural landʼ 
(Table 1). This ecocline typically displays large variation in the spatial scale interval 10–100 m 
(medium local scale) in landscapes formed by the low intensity, labour-intensive management 
regimes which were typical for most of Europe before World War II, and typically on coarse 
local scale, (50–)100–500(–1000) m, in landscapes formed by modern, machinery-intensive 
agricultural practices (cf. Robinson & Sutherland 2002, Emanuelsson 2009). Similarly, the spatial 
scale interval in which variation is large along the condition or impact ecocline characteristic of 
boreal forests, ̒ regrowth succession of tree standsʼ, is large and depends on the logging scheme 
(Östlund et al. 1997, T. Økland et al. 2003). Other examples of condition or impact ecoclines as-
sociated with large variation mostly at local spatial scales are ̒ watercourse regulationʼ (Jansson 
et al. 2000), ̒ all-terrain vehicle impactʼ (Harper & Kershaw 1996), andʻ trampling and associated 
erosionʻ (Arnesen 1999, Willard et al. 2007).

Eutrophication, brought about by human-induced emissions and subsequent deposition 
of nitrogen compounds (e.g., Bobbink et al. 1998, 2010), exemplifies a condition or impact eco-
cline that is associated with large variation in species composition at spatial scales broader than 
10 km (Henriksen et al. 1995, Odell & Ståhl 1998). Other condition or impact ecoclines along 
which species composition changes over time intervals of few decades but that are associated 
with large variation at regional scales, include acidification due to emission and deposition of 
long-distance airborne pollutants (e.g., sulfur; Hesthagen et al. 1999) and, currently subject to 
great concern, human-induced climatic change impacts (Frahm & Klaus 2001, van Herk et al. 
2002, Aerts et al. 2006).

Resource, direct, and indirect gradients, or proximal and distal factors

Many categorisations other than the division into local, regional, and condition or impact eco-
clines have been proposed for environmental complex-gradients and ecoclines. Of these, the two 
which are most often referred to in the DM literature are the division of environmental factors 
into resource, direct, and indirect gradients (Austin 1980, Austin & Smith 1989) or, alternatively, 
into proximal factors and distal factors (Austin 2002). The terms ʻproximalʼ and ʻdistalʼ refer 
to the role of the environmental factor in question in a conceptual model of processes that 
determine variation in a species’ performance; the environmental factor that ultimately brings 
about variation in species’ performance is the most proximal one (Austin 2002). Distal factors, 
on the other hand, do not as such impact speciesʼ performance, but serve as surrogates, or 
proxies, for more proximal factors. The terms resource, direct, and indirect are used to charac-
terise environmental gradients by the nature of their impact on the target organism: resource 
gradients, e.g., nitrate concentrations in soil, are consumed by the organism; direct gradients, 
e.g., temperature in the growing season, have direct physiological influence on the organism 
but (unlike resource gradients) are not depleted; while indirect gradients, exemplified by alti-
tude, have no direct influence on organisms but may be useful as proxies for resource or direct 
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gradients. Obviously, resource and direct gradients are more proximal than indirect gradients, 
hence the terms ‘distal’ and ‘indirect’ are used more or less as synonyms (Austin 2002).

Austin (e.g., 2005) emphasises that no absolute limits exist between these categories, 
and that one gradient may have characteristics of several categories. This is exemplified by 
the water-table gradient in boreal bogs (Økland 1992). The water table (or more precisely, the 
depth from the peat surface to the water table) does not, as such, affect plants and the gradient 
is therefore indirect according to Austin’s definition. However, the vertical position of the water 
table determines water availability, which is an essential resource for plant growth, as well as the 
duration of anaerobic, reducing conditions which have direct physiological effects on the plants. 
The water-table gradient thus combines properties of resource, direct, and indirect gradients.

The divisions into resource, direct and indirect gradients, and into proximal and distal 
factors, do not take into account the spatial and/or temporal scales at which large variation is 
found. No correspondence therefore exists between categories of ecoclines (regional, local and 
condition or impact) according to Halvorsen et al. (2009) and the division into resource, direct 
and indirect gradients of Austin (1980).

Hierarchies of spatial and temporal variation

A basic assumption often made in ecology, DM included, is that strong correlations exist between 
the level of biological diversity, i.e., organism, population, community, and landscape (Allen & 
Starr 1982, Noss 1990), and the temporal and spatial scale intervals in which variation is large. 
Implicit in this assumption is that patterns recognisable on fine local spatial scales result from 
processes that operate on fine temporal scales and that affect low, e.g., within-population, levels 
of organisation, while patterns recognisable on regional spatial scales result from processes that 
operate on long temporal scales and that affect the ecosystem or higher levels of organisation 
(e.g., Mackey & Lindenmayer 2001, Willis & Whittaker 2002, Pearson & Dawson 2003, Frank-
lin 2009, Hortal et al. 2010). These assumptions are, however, challenged by several authors, 
including Allen & Hoekstra (1990) and van der Maarel (2005), who argue that very intricate 
relationships may exist between these three hierarchies of natural variation: the hierarchy of 
spatial scale intervals in which variation is large, the hierarchy of temporal scales, and the level 
of biological diversity. Examples that illustrate this point are easily found. Firstly, ecoclines 
that are relevant both for the population (species) and community organisation levels occur 
both among local and condition or impact ecoclines, as exemplified by the ʼlime richnessʼ and 
ʻeutrophicationʼ ecoclines, respectively (Halvorsen et al. 2009). Furthermore, the regional eco-
clines ʻbioclimatic sectionsʼ and ʻbioclimatic zonesʼ are both relevant for explaining variation 
at several levels of organisation. Secondly, variation brought about by processes operating on 
temporal scales of millennia occurs along regional as well as along local ecoclines. Thus, both 
of the regional ecoclines ʻbioclimatic sectionsʼ and ʻbioclimatic zonesʼ contribute to explaining 
postglacial migrations towards a dynamic equilibrium with climatic conditions (Huntley et al. 
1989, Birks 1993a, Giesecke et al. 2007, Giesceke et al. 2010). Similarly, variation along the local 
ecoclines ʻwater saturationʼ and ʻdrought severityʼ, partly also ʻlime richnessʼ, in boreal forests, 
is determined by a hierarchy of factors of which one of the most important in the circumboreal 
zone, to which most of Norway belongs, is glacial erosion and deposition of glacial and glacif-
luvial sediments. Over thousands of years, these processes create topographic patterns at fine 
and medium local spatial scales. Local topographic variation does not impact the understorey 
species composition of boreal forests directly, but acts via control over variation in soil devel-
opment and soil characteristics like pH and organic content. Soil development throughout the 
entire postglacial period is responsible for present-day patterns recognisable at fine local, and 
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even micro, spatial scales (Troedsson & Tamm 1969, Troedsson & Lyford 1973). Finally, strong 
variation also occurs between condition or impact ecoclines with respect to the spatial scale 
interval in which variation is large (see Table 1 for examples). 

These examples show that species’ distributions are determined by ‘factors’, or ecoclines, 
which freely combine temporal and spatial scale intervals in which variation is large, and that 
the importance of different factors varies greatly among ecosystems. Explicit knowledge about 
which ecoclines are the most important determinants of variation in the area of interest for 
modelling a target phenomenon, e.g., a species, and the spatial and temporal scale intervals in 
which variation along these ecoclines is large, is therefore imperative for good decisions to be 
made in all phases of a DM study. Most notably, such knowledge is essential for data collected 
for the modelled target and explanatory variables (Steps 2–3 in the 12-step DM process; see 
Fig. 8) to be appropriate, for appropriate specification of the statistical model (Step 7,ii), and 
for appropriate interpretation and use of modelling results (Step 12).

Characteristics of overall ecological responses of modelled targets

Gradient analysis in general, and distribution modelling in particular, require careful choice 
of statistical model (Austin 1976, 1987, 2007, Økland 1990a, 2007). Perhaps the most critical 
task in statistical model formulation is model specification (Step 7,ii in the 12-step DM process; 
see Fig. 8), in which assumptions about the shape of the modelled target’s overall ecological 
response are translated into mathematical functions. The overall ecological response expresses 
how aggregated performance varies along gradients. According to the third insight of the gradi-
ent analytic perspective, species occur within a restricted interval along each major complex-
gradient. This holds true in the theoretical situation where complex-gradients can be conceived 
as axes that extend to infinity in both directions. However, within the physically delimited 
study areas of real DM projects, variation along all complex-gradients will be bounded above 
and below. To apply to such practical situations, the third insight of the GAP needs a clarifying 
statement as follows: a species occurs within a restricted interval along each major complex-
gradient provided that the range of variation along this gradient, encountered in the study area, 
includes at least one of the speciesʼ tolerance limits. If both tolerance limits are included in the 
range of variation encountered in the study area, the species’ overall ecological response will be 
unimodal, with maximum for aggregated performance corresponding to the species’ optimum 
along the complex-gradient (e.g., Økland 1990a). At this point, the reader is asked to recall that 
complex-gradients are abstractions which have to be approximated by a proxy, a representative 
variable (see discussion under the second insight of the GA perspective).

Unimodal functions can be parameterised in many different ways. The shapes of overall 
ecological response curves for species have therefore been debated by ecologists for more 
than fifty years. Initially, the main focus was on speciesʼ responses to local complex-gradients 
(Whittaker 1967, Austin 1976, 1980, Økland 1986, Minchin 1989, Oksanen & Minchin 2002), 
although responses to regional complex-gradients have also been addressed in several studies 
(e.g., Hengeveld & Haeck 1982, Austin et al. 1984, Brown 1984, Økland 1989a, Brown et al. 
1996, Thuiller et al. 2003, Austin 2007). Properties of overall species responses to gradients 
have been reviewed by Økland (1990a), Austin et al. (1994), and Austin (1999a, 2005) and are 
discussed, among others, by Økland (1992), Ejrnæs (2000), Oksanen & Minchin (2002) and 
Rydgren et al. (2003). Several consistent patterns emerge from this literature, which can be 
summarised as follows:
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Fig. 10. Influence of the sampled range of variation along an explanatory (predictor) variable on 
the shape of a hypothetical speciesʼ overall ecological response to this variable. (a) The distribu-
tion of the hypothetical species in rasterised geographical space: black cells indicate presence 
and white cells indicate absence. The study area is rasterised into a regular hexadecadal (16 × 
16) grid which is sampled by taking each grid cell as an observation unit (the grain of the study). 
Species’ performance is recorded as presence (filled grid cells) or absence (open grid cells) in 
each grid cell. (b) Recorded values for the explanatory variable. (c) Overall ecological response 
of the species, with frequency of presence as measure of aggregated performance, modelled by 
generalised additive modelling (GAM). The red line is the species response curve, obtained be 
smoothing fitted values from the GAM. (d) Overall ecological response in the subset for which 
the value of the explanatory variable is less than 12.5, with species response curve fitted by 
linear regression (LM).
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1.	 Most species have unimodal overall ecological responses to environmental complex-
gradients, provided that: (i) the variable is linearly related to, and strongly correlated 
with, a complex-gradient that is important for the species; and (ii) the sampled range 
of environmental variation includes the entire tolerance of the species (Figs 10c, 
11a). Complex, bi-, tri- or multimodal responses occasionally occur, most often due 
to taxonomic heterogeneity, uneven or irregular sampling, or interference from other 
gradients (Økland 1986a). For instance, deviant response curves may result from 
existence of an additional gradient that influences a speciesʼ aggregated performance 
in one part of the focal gradient only (Økland 1986a, Austin et al. 1984, 1994).

Fig. 11. Dependence of shape of the overall ecological response to an explanatory variable on 
the range of variation along the gradient that included in the sample. The explanatory variable 
can be a single environmental variable, a coenocline, or any other variable used as proxy for 
a complex-gradient or an ecocline that is important for the species in question. (a) Unimodal 
response in a sample of observation units that spans the entire tolerance of the species. (b) 
Asymmetric (truncated unimodal) response in a sample that includes the species’ optimum and 
one of the speciesʼ tolerance limits. (c) Hinge-shaped response in a sample that includes one 
tolerance limit but not the species’ optimum. (d) Near-linear response in a sample that neither 
includes the optimum nor any tolerance limit. Inserts show which part of the speciesʼ tolerance 
that is masked by the sampling (gray).
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2.	 Truncation of species response curves occur frequently. The overall ecological response 
curve is truncated when the range of environmental variation included in the sample 
does not include the entire tolerance of the species (Figs 10d, 11b–d). Three different 
response-curve shapes, resulting from truncation, are shown in Fig. 11b–d. An asym-
metric unimodal response curve results if the sample includes the species’ optimum 
and one of its tolerance limits (Fig. 11b). A ‘hinge-shaped’ curve, i.e., a function that 
is near linear for values of the explanatory variable larger than (ʻforward hingeʼ), or 
smaller than (ʻreverse hingeʼ), the tolerance limit l and 0 otherwise (Phillips & Dudík 
2008), results if the sample includes one tolerance limit but not the species’ optimum 
(Fig. 8c). Finally, a more or less linear curve results if the sample neither includes the 
optimum nor any tolerance limit (Fig. 11d). Truncation of response curves frequently 
occurs in real data sets (e.g., Økland 1986a, Rydgren et al. 2003).

3.	 Response-curve shapes are determined primarily by the amount of compositional 
turnover in the sample. The relative frequency of unimodal, truncated unimodal, hinge-
shaped, more or less linear, and deviant or indeterminate response-curve shapes to an 
explanatory variable in a specific data set is determined primarily by the amount of 
compositional turnover in the sample (Gauch & Whittaker 1972, Økland 1990a, Vel-
lend 2001, Rydgren et al. 2003). However, response-curve shapes are also influenced 
by the way the gradient is scaled. Measures of compositional turnover, which are often 
used to express positions along gradients (e.g., Økland 1986b) are, however, influenced 
by the performance measure used, and, notably, the relative weighting of high versus 
low performance values (Eilertsen et al. 1990); the extent-grain ratio of the study 
(Økland et al. 1990), which determines how the variation in species performance 
is partitioned on between observation-unit and within observation-unit variation; 
and the method used to quantify compositional turnover (Oksanen & Tonteri 1995). 
Only variation between observation units can normally be ‘explained’ by analysis of 
a sample, as explained in the chapter ʻSpatial and temporal scalesʼ.

4.	 Response-curve symmetry is influenced by the scaling of the variable. The relative fre-
quency of more or less symmetric versus more or less skewed unimodal response 
curves does not only depend on properties of the species and of the variable to which 
responses are studied, as such, but also on the way the gradient variable is scaled 
(Økland 1986a, 1992, Minchin 1989, Austin 1990, Austin et al. 1994). Every unimodal 
response curve can be turned into a symmetric curve, or vice versa, by choice of an 
appropriate non-linear transformation of the variable (Økland 1990a, 1992). Although 
no single transformation can be found that turns response curves for all co-occurring 
species into symmetric curves (Økland 1986a), rescaling of gradients in units of 
compositional turnover may tend to make response curves for a set of species on 
average slightly more symmetric [Økland (1986b), but see Rydgren et al. (2003)]. It 
has been argued (e.g., Minchin 1989) that the way gradients are scaled is essentially 
arbitrary and, thus, that all scalings are equally valid. Most authors do, however, agree 
that response-curve shape, including degree of symmetry or skewness, are important 
properties of the species (Austin 1990, 2005, Økland 1990a, Austin & Gaywood 1994, 
Oksanen & Minchin 2002). Økland (1990a, 1992) argues that response-curve skewness 
is most meaningfully considered with respect to gradients scaled in units of composi-
tional turnover, because with respect to such scalings the steepness of each speciesʼ 
response curve, i.e., the rate of change in the speciesʼ aggregated abundance per unit 
along the gradient, is related to the average species turnover along the gradient.

5.	 Response-curve shape is influenced by relevance of the variable for the species. In a given 
data set the frequency of species with determinate responses to a gradient variable, 
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i.e., species with unimodal or monotonous response models that explain significantly 
more variation than appropriate null models, increases with increasing appropri-
ateness of the variable as proxy for a major complex-gradient, and with increasing 
importance of the complex-gradient itself for the species. With reference to the first 
insight of the gradient analytic perspective, that species respond to environmental 
complex-gradients and not to single environmental factors, it can be argued (Økland 
1986a, 1990a, 1992) that species’ overall responses should be studied with respect 
to the best possible proxies for important complex-gradients. The argument for scal-
ing of gradients in units of compositional turnover, mentioned in point 4 above, also 
applies here: Ejrnæs (2000) and Rydgren et al. (2003) show that species responses 
to environmentally interpreted DCA ordination (Hill & Gauch 1980) axes scaled in 
units of compositional turnover more often tend to be determinate than responses to 
measured explanatory variables. However, the use of ordination methods for scaling 
of gradients in units of compositional turnover, has been critisised by e.g., Minchin 
(1989) and Oksanen & Tonteri (1995), for possible artifacts due to shortcomings of 
the ordination method. 

The recent search for ‘macroecological rules’ (Lawton 1999) or ‘ecogeographical rules’ (Gaston 
et al. 2008) has brought renewed interest in the shape of overall ecological responses of species 
to regional ecoclines, although in a new context and disguised in new terminology. The hypoth-
esised ‘positive abundance-occupancy relationship’ (AOR) and the ‘peak model for intraspecific 
patterns’ (Gaston et al. 2008, Conlisk et al. 2009, Köckemann et al. 2009, Leuschner et al. 2009, 
Buckley & Freckleton 2010) more or less exactly correspond to the unimodal overall ecological 
response, applied to regional gradients: a positive AOR implies that species’ aggregated per-
formance in a subset of observation units appropriate for analysing variation in the regional 
spatial domain increases from the periphery to the centre of the species’ total extent of occur-
rence (e.g., Hengeveld & Haeck 1981, Brown 1984). The study of 65 species of vascular plants, 
bryophytes and lichens on 76 mires in SE Norway by Økland (1989a) is an example of empirical 
support for a positive AOR: aggregated performance of the species in the 1000-km2 study area 
(recorded as frequency of presence in the 76 investigated mires) increased from an average 
of 5 % for species for which the study area was close to their distributional limit to 28 % for 
species for which the study area was situated near the distribution centre. Also the number of 
mire site-types in which each species was recorded, i.e., the ‘habitat breadth’, increased from 
‘marginal’ to ‘central’ species (Pearson’s product-moment correlation coefficient: r = 0.69, P > 
0.0001, n = 65). This indicated a strongly positive relationship between aggregated perform-
ance and ʻhabitat breadthʼ.

The unimodal relationship applies to variation in aggregated performance, but not neces-
sarily to other traits, along regional (or local) ecoclines; see reviews by Sagarin & Gaines (2002) 
and Sagarin et al. (2006). 

General features of the relationships of other types of observable targets for DM – such 
as ʻnature typesʼ in a wide sense, including types of communities, ecosystems, and landscapes; 
land-cover types; and landforms, minerals, and bedrock types – to environmental gradients, are 
hardly at all discussed in the literature. Reasons for this may be: (1) that relationships between 
nature types and environmental gradients are outside the primary interests of researchers with 
nature classification as their main focus; (2) lack of tradition for gradient-based approches among 
phytosociologists until recently, regardless of affiliation to ʻschoolʼ (cf. Økland 1990a); (3) that 
distributions of most geological phenomena are explored from the perspective of geophysical 
processes rather than with reference to present-day environmental conditions, because the 
latter are irrelevant for the formation and present-day distribution of these phenomena; and 
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(4) that relationships of modelled targets other than species tend to be idiosyncratic, with few 
or no properties that can be generalised, even over groups of such phenomena.

There is, however, a general recognition that ̒ nature typesʼ of most kinds represent over-
lapping or discrete intervals along environmental gradients, as expressed for ̒ communitiesʼ by 
Whittaker (1962: 128): ̒ Natural communities are related to one another along many, complexly 
related gradients of environment; and along these environmental gradients community proper-
ties form gradients which, to a considerable extent, are continuous rather than step-like. Rela-
tions of communities may consequently be understood, in the abstract, in terms of a complex, 
multi-dimensional, and largely continuous pattern; in this pattern community-types represent 
areas or points defined by given criteriaʼ. This may indicate that points 1 and 2 above, that ag-
gregated performance is more or less unimodally related to important gradients, applies to of 
ʻnature typesʼ as well as species. Furthermore, exceptions to point (iii) exist, as exemplified by 
patterned ground resulting from periglacial processes (e.g., Luoto & Seppälä 2002, Luoto & Hjort 
2006, Hjort & Marmion 2009), which depend directly on present-day environmental, notably 
climatic, conditions and are in danger of disappearing as a result of climate change (Luoto et al. 
2004). The close relationship with regional as well as local complex-gradients demonstrated for 
these landforms indicate that the unimodal response model may also apply to some geological 
targets for DM. Based on these considerations, I hypothesise that for most natural phenomena 
targeted by DM, intervals exist along at least some environmental gradients, outside of which 
these phenomena fail to occur. 

STRUCTURING PROCESSES

Overview of structuring processes

The overall ecological responses of species to important environmental complex-gradients 
result from the action of structuring processes (Økland 1990a), which can be categorised in 
several ways. Evolution, i.e., gradual or abrupt changes in the frequency and/or distribution 
of genotypes due to natural selection, provides the background for understanding how all 
processes that are currently active in structuring of species-environment relationships came 
into being. The importance of evolutionary processes is illustrated by the positive relationship 
between species richness on coarse regional spatial scales (the regional species pool; Taylor et 
al. 1990, Eriksson 1993) and the length of the time span in which evolution has proceeded in a 
favorable environment without interruption (Zobel 1992, Eriksson 1993, Nekola & White 1999). 
The fundamental role of evolution, for all aspects of biological diversity, past and present, can 
hardly be overstated [e.g., see Murphy & Lovett-Doust (2008) and Franklin (2010)]. Snapshots 
of speciesʼ distribution patterns, which are the typical targets for DM and a main focus of this 
essay review, are also results of evolutionary processes. However, a complementary way to un-
derstand distributions is in terms of processes that actively shape and maintain species’ current 
overall ecological responses, operating on ecological rather than evolutionary time scales. These 
processes can be divided into three main categories with sub-categories as follows: 

 	
1.	 Limited physiological tolerance comprises two main extrinsic processes which reduce 

the performance of a species compared to its physiological potential:
i.	 Stress (sensu Grime 1979: 21) comprises ‘external constraints which limit the rate 

of dry matter production of all or a part of the [community]ʼ (note that Grime refers 
to ‘vegetationʼ in his definition of ‘stressʼ). One example of a stressor is suboptimal 
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temperatures, the importance of which increases towards the cold end of the regional 
ecocline ̒ bioclimatic zonesʼ. Another example is extended snow-lie, which increases 
in importance along the local ecocline ʻreduced growing-season due to prolonged 
snow-lieʼ towards extreme snow-beds. The limits of most vascular plant species 
towards extreme snow-beds in arctic and alpine ecosystems are set by demands 
for growing seasons of a certain length to complete the life cycle (Resvoll 1917, 
Gjærevoll 1956).

ii.	 Destabilising processes (Økland 1990a), which correspond to disturbance sensu 
Grime (1979: 39), comprise ‘mechanisms which limit the [plant] biomass by caus-
ing its partial or total destruction’. Destabilising processes act by increasing the 
density-independent mortality of the focal species. Grime (1979) included in his 
‘disturbance’ concept not only wind, frost, drought, erosion and wildfires but also 
herbivores, pathogens and all kinds of human activities. Økland (1990a) recognises 
two sub-categories within destabilising processes: 

a.	 Disturbance sensu stricto, which comprises sudden and unpredictable events 
leading to biomass destruction. An example of disturbance, recognisable at 
fine local spatial scales, is the creation of forest-floor gaps by tree uprooting 
(Schaetzl et al. 1989a).

b.	 Fluctuations, which comprise more or less predictable events leading to 
biomass destruction, such as extended dry and rainy periods. An example of 
an effect of fluctuations is the die-back of plants from shallow-soil ridges in 
dry years, the mechanism responsible for variation in species composition 
along the ʻdrought severityʼ ecocline in boreal forests (Økland & Eilertsen 
1993).

2.	 Interspecific interactions comprise interactions between individuals of different spe-
cies that bring about change in the performance of one or both species relative to their 
physiological potential. Types of interactions are often characterised by notations like 
‘(a,b)ʼ, where ‘a’ and ‘b’ are indicators of the outcome of the interaction, seen from the 
point of view of each of the two organisms: + indicates a positive outcome, – indicates 
a negative outcome, and 0 indicates a neutral outcome. Five types of interspecific 
interactions are commonly recognised (Goldberg 1990):

i.	 Competition (–,–) comprises interactions, the outcome of which is negative for both 
organisms. Depending on the relative magnitude of the outcomes for each of the 
interacting organisms, competitive interactions can be ordered along a gradient from 
symmetric (equal outcomes for both species) to asymmetric. The classic example of 
competition is resource competition by which individuals of two different species 
share a depletable mineral resource in short supply (Tilman 1982).

ii.	 Amensalism (0,–), a term which dates back to Burkholder (1952), comprises interac-
tions, the outcome of which is neutral for one and negative for the other organism. 
The negative impact of trees on understorey plants (such as bryophytes) in forests 
is a typical example of amensalism, demonstrating how amensalism by an indirect 
mechanism modifies the effect of forest trees on the radiation, rainfall and litterfall 
at ground level [see Økland & Eilertsen (1993) and references quoted therein]. 
Typically, amensalistic interactions occur independently of the identity of any of the 
interacting species and rather result from the morphological characteristics of the 
larger species. Amensalism is an unspecific type of interaction which can often, with 
equal right, be interpreted as background stress due to unfavourable environmental 
conditions brought about by the presence of a living organism. Amensalism is the 
end-point of the gradient from a completely asymmetric to a completely symmetric 
interaction between two species. As pointed out by Økland (2000), amensalism is 
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often, intentionally or unintentionally, included in a broad ‘competition’ concept.
iii.	Commensalism (0,+), or facilitation, comprises interactions, the outcome of which 

is neutral for one and positive for the other organism. Commensalism is typically 
exemplified by the relationship between epiphytes and their host trees. A more 
specific example of commensalism is the occurrence of single shoots of Sphagnum 
balticum among S. fuscum in tall bog hummocks where the former species is un-
able to grow in pure patches due to low physiological tolerance to drought (Rydin 
1985). However, with scaffolding and water supplies provided by densely growing 
S. fuscum, S. balticum is able to extend its tolerance limit towards bog hummocks 
(Økland 1989b).

iv.	 Mutualism (+,+) comprises interactions to the benefit of both organisms. Mutual-
ism can be obligate (obligatory) or facultative. Mycorrhizas are typical examples 
of obligate mutualisms (e.g., Smith & Reed 2008).

v.	 Parasitism and contramensalism (+,–) comprise interactions, the outcome of which 
is negative for one and positive for the other organism. The term parasitism is used 
for symbiotic relationships by which one organism (the parasite) is dependent on 
another (the host) for nutrient supply and the outcome for the host is negative but not 
lethal. The term contramensalism is used for other (+,–) interactions, i.e., without 
existence of direct dependence between the interacting organisms. Mitchell & Arthur 
(1998) exemplify contramensalism by the interaction between small bryophytes 
growing at the base of a rock ledge and the large, thallose liverwort Conocephalum 
conicum. Establishment of Conocephalum is facilitated by the presence of the small 
bryophytes, while the latter are negatively affected by being overtopped by the large 
Conocephalum thalli.

Most cases of documented allelopathy, the mechanism by which plants release 
chemicals that affect other plants (Wardle et al. 1998), reveal a negative effect on 
receivers of allelochemicals, to the benefit of the releaser (Inderjit et al. 2011), 
i.e., a (+,–) relationship. Well-documented cases of allelopathy in boreal forests 
include inhibition of tree seedling growth by secondary metabolites, typically 
phenolic compounds (e.g., Nilsson 1994), released from ericaceous species such 
as Empetrum nigrum (Nilsson & Zackrisson 1992, Zackrisson & Nilsson 1992), 
Vaccinium myrtillus (Jäderlund et al. 1996, Mallik & Pellissier 2000), and Ledum 
groenlandicum (Inderjit & Mallik 1997). Allelopathy is an unspecific interaction 
between individuals of different species; a system of complex interactions that is 
best understood on the ecosystem level (Wardle et al. 1998, Inderjit et al. 2011). 
Allelopathy may also involve the microbial community and mycorrhizal interactions 
(Inderjit et al. 2011).

3.	 Demographic processes comprise processes, often with a strong stochastic element, 
that cause variation in a species’ performance not possible to explain as the response 
to environmental-complex gradients, contemporary or historical, or as the outcome 
of interactions with other organisms. The term ʻdemographic processʼ (e.g., van 
Groenendael et al. 2000) is used to highlight the fact that the processes in question 
bring about changes in the demography of the focal species. Botanical examples of 
demographic processes are diaspore production, dispersal of diaspores into new sites, 
germination and establishment. The alternative term ‘apparent random factor’ could 
have been used to highlight two properties of demographic processes: that the exact 
sequence of events leading to the present pattern can mostly not be reconstructed, 
at least not without molecular genetic studies (e.g., Brochmann et al. 2003, Alsos et 
al. 2007, Tollefsrud et al. 2008); and that results of demographic processes may seem 
erratic and inexplicable in a snapshot when no information about the history is avail-
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able. What is here referred to as demographic processes are important causes of ‘noise’ 
(Poore 1956) in ecological data sets, a term much used in early GA literature (e.g., Gauch 
1982a, 1982b) for variation not possible to explain by a model. [The complement of 
‘noise’ is ‘structure’, which pertains to explained variation (Gauch 1982a)]. I prefer 
the value neutral term ‘demographic process’ over ‘noise’, which implicitly conveys a 
negative attitude towards this kind of variation. 

Three sub-categories are recognised within demographic processes:
i.	 Dispersal into new sites, i.e., transportation and successful establishment of prop-

agules, vegetative or sexual, in sites previously unoccupied by the species in ques-
tion. Dispersal into new sites is treated as a separate sub-category of demographic 
processes because of the important difference in effect on distributions of dispersal 
to new sites compared with dispersal to sites already occupied by the species. Dis-
persal into new sites is directly responsible for changes in performance patterns on 
spatial scales much broader than the normal population patch size. 

Dispersal into new sites may, over time, contribute substantially to geographical 
patterns of speciesʼ performance that are recognisable on a wide range of spatial 
scales, regional scales included (van Groenendael et al. 2000). The term migration, 
i.e., massive and/or long-term dispersal into new sites which brings about changes in 
a speciesʼ extent of occurrence, addresses instances of dispersal into new sites with 
important distributional consequences. Examples are migration of species groups 
or entire floras or faunas, occurring when large, new land areas are laid open for 
colonisation, e.g., following deglaciation. Migration is the result of many events 
that take place on local scales (e.g., Fægri 1934, Elven 1980, Blaalid et al., in press) 
and that add up to patterns on regional scales (e.g., Skov & Svenning 2004, Birks 
2008). Migration is typically, but not necessarily, facilitated by environmental change 
(Birks & Birks 2008). Examples of migrations in which environmental change has 
not played an important part, are biological invasions facilitated by man as dispersal 
vector (e.g., Lambdon et al. 2008), and the gradual migration of the key tree species 
in boreal forests, Picea abies, westwards in Europe after the last glaciation (Hafsten 
1992, Tollefsrud et al. 2008, Seppä et al. 2009).

Theories of gap dynamics (Pickett & Thompson 1978), seed and microsite 
limitation (Eriksson & Ehrlén 1992), metapopulation dynamics (Hanski 1982, 
2004, Hanski & Gilpin 1991) and source-sink population dynamics (Pulliam 1988, 
2000) emphasise different aspects of the stochasticity involved in dispersal into, 
or establishment in, formerly unoccupied sites. An important role of dispersal into 
new sites, which is often recognised in DM contexts (e.g., Soberón 2007, Hirzel & 
Le Lay 2008, Franklin 2009), is the occurrence of newly established sink popula-
tions outside the speciesʼ normal tolerance limits, maintained by recurrent influx of 
diaspores from persistent source populations. Sink populations may be ephemeral 
or persist for a long time as stable remnant populations, a term defined by Eriks-
son (1996) as populations established after successful reproduction, dispersal and 
establishment events (e.g., under exceptionally favourable climatic conditions), that 
are unable to persist by own sexual reproduction (Eriksson 1996), but that survive 
by clonal growth for decades, centuries or even millennia. A classical example of 
stable remnant populations is provided by Tilia cordata in northern England where 
this tree species occurs ca. 200 km north of its current reproductive limit (Pigott & 
Huntley 1978, 1981). Palynological evidence indicates survival of remnant Tilia 
populations for up to 5 000–7 000 years by clonal growth (Pigott & Huntley 1980). 
Other examples of remnant populations include occurrences of clonal mire plants in 



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 58

mires (bogs) with ombrogenous surface peat, e.g., Carex pauciflora, Erica tetralix 
and Sphagnum papillosum in SE Norway (Økland 1989b, 1990d). Most probably, 
these populations established under minerogenous conditions centuries ago. Dispersal 
into new sites corresponds to ‘biogeographic’, or ‘movement-related’ processes in 
the terminology of Hortal et al. (2010).

ii.	 Within-population demographic processes, i.e., processes which determine the 
fate of individuals, which give rise to occurrence patterns at spatial scales finer than 
the normal patch size of populations of the species in question. This subcategory 
comprises all demographic processes, including diaspore dispersal, germination 
and establishment, growth, clonal branching, sexual reproduction and death as far 
as they result in changes in the structure (Hutchings 1997) of existing populations. 
Synchronous dieback of larger parts of populations is mostly, but not necessarily, 
caused by limited physiological tolerance to adverse external factors (e.g., Gauslaa 
2002) or impacts by herbivores or other organisms. The latter is typically exemplified 
by local dieback of Betula pubescens in northern boreal forests of Fennoscandia due 
to herbivory by larvae of the autumnal moth, Epirrita autumnata (Tenow & Bylund 
2000, Karlsson & Weih 2003).

Almost all instances of growth, clonal branching and death, and most instances 
of dispersal and establishment, bring about change in the number of individuals 
within existing populations. The importance of demographic processes for per-
formance variation within existing populations is well documented in an extensive 
literature on plant population ecology (e.g., see textbooks and reviews by Harper 
1977, Silvertown & Charlesworth 2001, Rydgren & Økland 2002, Rydin 2008). The 
importance of random, within-patch, ‘movements’ for plant distributions at micro 
spatial scales is highlighted in the ̒ carousel modelʼ of van der Maarel & Sykes (1993, 
1997), which emerged from observations of low persistence of vascular plants, both 
clonally and sexually reproducing species, at micro spatial scales in an alvar lime-
stone grassland. What is here termed ̒ within-population demographic processesʼ is 
contained in the broader concept of ‘occupancy dynamics’ of Hortal et al. (2010), 
which also includes the destabilising processes that bring about within-population 
demographic variation.

The term extinction debt (Tilman et al. 1994), i.e., expected future extinction 
of species due to events in the past, addresses a within-population process typically 
resulting from former changes of environmental conditions which turns popula-
tions of many species into sink populations. Extinction debt is well documented 
for vascular plants in semi-natural grasslands after cessation of management and/
or fragmentation (e.g., Cousins 2006, 2009, Hamre et al. 2010), and for vascular 
plants (Vellend et al. 2006) and lichens in forests after fragmentation (Berglund & 
Jonsson 2005, Öckinger & Nilsson 2010).

iii.	Space limitation covers stochastic effects brought about by limitations on the number 
of individuals, of the same or different species, that can co-occur in an observation 
unit of a given, small, size (Oksanen 1996). Space limitation becomes increasingly 
important towards spatial scales at which the size of the observation unit approaches 
the average size of plant units (van der Maarel et al. 1995). This follows directly 
from the positive species (richness)-area relationship (SAR; Arrhenius 1921, He 
& Legendre 1996, M. Williams et al. 2009), which predicts that the number of 
individuals, and hence also the number of species and the fraction of the local or 
regional species pools, that are present in an observation unit, decrease when the 
size of this unit decreases. The modus operandi of space limitation as a structuring 
process is by combination of two mechanisms: (a) low availability of sites that open 
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for colonisation at any given time point; and (b) stochasticity of establishment in 
vacant sites.

Stress and destabilising processes influence species’ overall ecological responses in two dif-
ferent ways:

1.	 Background stress or disturbance is a collective term for processes that reduce the 
performance of a species compared to its physiological potential, without variation 
in the magnitude of effects along the complex-gradient. Background stress or distur-
bance is exemplified by vascular plants in the middle alpine bioclimatic zone, in which 
low temperatures restrict growth also when local environmental site conditions are 
favourable (Nordhagen 1943).

2.	 Gradient-dependent stress or disturbance addresses processes that reduce the 
performance of a species compared to its physiological potential situations, with 
variation in the magnitude of effects along the complex-gradient. Typically, the mag-
nitude of performance reduction increases from the species’ optimum towards the 
tolerance limits as exemplified by vascular plants along the local ecocline ʻreduced 
growing-season due to prolonged snow-lieʼ along which density-independent mortal-
ity increases monotonously towards extreme snow-beds (e.g., Resvoll 1917). 

Effects of gradient-dependent stress or disturbance on a speciesʼ overall ecological response 
can be described along (at least) two dimensions:

1.	 Resistance (Pimm 1984); i.e., the magnitude of change in a speciesʼ performance 
in response to a certain amount of perturbation of environmental conditions, e.g., 
measured as the unit displacement of a site in environmental variables, or ecological 
space. Resistance, which can be quantified by the slope of the response curve over a 
unit interval along axes in the conceptual space, varies from high when the response 
curve is flat (species inert to perturbation) to low when the response curve is steeply 
ascending or descending. One extreme along this response gradient is the threshold 
response; the more or less theoretical situation by which a small change in an envi-
ronmental factor triggers a large but predictable response.

2.	 Reversibility; i.e., the tendency for a speciesʼ performance to return to the initial 
magnitude when a former perturbation of environmental conditions is reversed. The 
concept of reversibility combines stability and resilience (Pimm 1984, Ives 1995) into 
one dimension. Pimm (1984) defines stability as a binary variable: a system is stable if 
initial values of the response are restored when former perturbation of environmental 
conditions are reversed, and unstable if initial values are not restored. Resilience is 
defined as the rate of restoration. Reversibility thus makes up a gradient from stable 
and resilient, i.e., reversible, systems that rapidly return to initial values; via low-
resilient stable systems with slow return; to unstable or irreversible systems, which 
do not return to initial values. Irreversibility may result from removal (e.g., Hörnberg 
et al. 1999) or introduction (e.g., Hörnberg et al. 1995, Ehrenfeld 2010) of key species 
or from ecosystem degradation to initial conditions dominated by inorganic or naked 
soils (e.g., Feagin et al. 2005, Feldmeyer-Christe et al. 2011). Typically, irreversibility 
involves feedback mechanisms, as exemplified by the effect of moisture reduction and 
litterfall from a growing pine tree on peat-moss growth and abundance in boreal bogs 
(Ohlson et al. 2001).
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Legacies from structuring processes in terms of changes in species performance patterns may 
last long after the process ceased to be active. Unfortunately, however, in most cases the im-
prints of structuring processes are not sufficiently specific to allow identification of the specific 
process(es). Much of the variation in species performance that can be observed in a snapshot in 
time, will remain unexplained. Disentangling the different processes and their relative impor-
tance requires long time-series of demographic and environmental data for the target species, 
typically obtained from permanent observation units (Austin 1981). This is exemplified by the 
20-year demographic study of Hylocomium splendens in boreal forests which shows that litterfall, 
rodent grazing and uprooting, micro-landslides and frost and water damage are all important 
for the distribution of this species at micro scales (Økland 1995, 2000, Økland & Bakkestuen 
2004, Bakkestuen et al. 2009).

The Hylocomium example also shows that no definitive limit can be drawn between envi-
ronmental processes such as limited physiological tolerance, e.g., to disturbance processes, biotic 
processes such as interspecific interactions, and demographic processes: both the environment 
and other species influence the performance of the target species via demographic effects. 
The division into structuring processes therefore needs to be applied in a pragmatic way, e.g., 
by considering a hierarchy of processes with limited physiological tolerance on top, followed 
by interspecific interactions, and ending with demographic processes. In such a hierarchical 
framework, limited physiological tolerance comprises all effects on species performance that are 
directly predictable from position along the complex-gradient in question, including effects of 
interactions with species that normally vary in performance along this gradient. Furthermore, 
interspecific interactions comprise all residual effects predictable from the presence of other 
species. Accordingly, what is here referred to as demographic processes only comprise demo-
graphic changes which are not brought about by environmental or biotic processes.

Importance of structuring processes at different spatial and temporal scales

Just like ecoclines differ with respect to temporal and spatial scale intervals in which variation 
along them is large, the contributions of different structuring processes to patterns of variation 
in species performance and, hence, species composition, depend on the grain and extent chosen 
for the study (Økland 1990a). The DM literature rarely goes beyond very general statements 
about scales of variation, as exemplified by the summary of ‘scale relationships’ of four types of 
‘factors’ that affect species distributions in the recent paper by Hortal et al. (2010): (1) dispersal 
into new sites, i.e., ‘movement-related’, or ‘biogeographic’ factors in the terminology of Hortal et 
al. (2010), is important at spatial scales from the fine regional to the coarse regional; (2) limited 
physiological tolerance to environmental factors, i.e., ‘scenopoetic’ factors in the terminology 
of Hortal et al. (2010), is important at spatial scales from the coarse local to the regional; (3) 
interspecific interactions, i.e., ‘bionomic factors’ in the terminology of Hortal et al. (2010), are 
important at spatial scales from micro to coarse regional but with decreasing importance from 
the coarse local towards regional scales; and (4) within-population demographic processes, 
included in ‘occupancy dynamics’ (He & Gaston 2000) in the terminology of Hortal et al. (2010), 
are important at spatial scales from micro to fine regional but with decreasing importance from 
the coarse local scale towards coarser scales. [Note that Hortal et al.ʼs terminology for scales, 
which is based upon Pearson & Dawson (2003), is here translated into the terminology explained 
in Fig. 4.] More or less similar opinions on relationships between processes and the scales on 
which they operate, are often expressed in the DM literature, regardless of which organism group 
is focused (e.g., Pearson & Dawson 2003, Franklin 2009, Soberón 2010). The large diversity of 
environmental complex-gradients with respect to spatial and temporal scales at which varia-
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tion is large (Table 1), and of structuring processes responsible for speciesʼ responses to these 
gradients, motivate for a more nuanced view on the relationship between process and scale.

Limited physiological tolerance. Hortal et al. (2010) indicate that the relative importance 
of ‘scenopoetic’ factors is high at broad spatial scales, with increasing importance from extents 
of 10–1 000 m to 10 km, beyond which is large. This is, however, at odds with the many exam-
ples of local ecoclines with high importance for species compositional variation at micro, fine 
and medium local spatial scales (see Table 1), along which tolerance limits are set by limited 
physiological tolerance. Micro-scale patterns recognisable in observation units of 1 m or smaller, 
brought about by limited physiological tolerance are exemplified by the epiphytic lichen species 
composition on forest trees which varies within single trees and even within single branches of 
each tree (Holien 1997, Coxson & Coyle 2003), by the variation in epixylic species performance 
between (Høiland & Bendiksen 1997, Heilmann-Clausen 2001), and even within (McAlister 1997, 
Kushnevskaya et al. 2007), individual logs, and by the epilithic bryophyte and lichen species 
composition which varies within small rock surfaces (Weibull 2001, Pentecost & Zhang 2006). 
In all of these examples, water supply is important in some way, resulting in local ecoclines 
such as ʻwater saturationʼ, ʻair humidityʼ and ʻwater supply to bedrockʼ (Halvorsen et al. 2009). 
Another example of a micro-scale local ecocline is the extension of the ̒ water saturationʼ gradi-
ent into boreal mires, in which water supply is basically a function of surface microtopography 
(Økland et al. 2001). Median depth to the water table is a good proxy for this gradient (Økland 
1989b), as demonstrated by Økland (1990b), who found that depth to the water table was the 
variable which explained the largest fraction of variation in species composition in the boreal 
mire Northern Kisselbergmosen (SE Norway). Limited physiological tolerance determines 
speciesʼ performances along this ecocline down to spatial detail of centimetres (Økland 1990c). 
These examples show that ecoclinal variation in species composition, brought about by limited 
physiological tolerance of species to gradient-dependent stress or disturbance, is an important 
structuring process at spatial scales down to the size of individual plants. That species’ responses 
to regional ecoclines, the variation along which is mostly expressed on coarse regional spatial 
scales, are also determined by limited physiological tolerance, to low vs high temperatures, or 
to arid vs hyperhumid climates, is well documented in the classical biogeographic literature 
(e.g., Walter 1968, Dahl 1998).

Interspecific interactions are neighbour phenomena (Mithen et al. 1984) and, accordingly, 
of highest importance at temporal and spatial scales where individuals are in direct physical 
contact, i.e., near the size of individuals. For the vast majority of low-mobile organisms, neigh-
bour interactions take place on micro or fine local spatial scales.

Increasing amounts of empirical evidence indicate that the high importance for plant 
species composition often attributed to negative interspecific interactions like competition and 
amensalism, also at spatial scales much broader that plant unit size, is an overstatement (e.g., 
Økland 1990a, van der Maarel 2005). For negative interspecific interactions between two spe-
cies to contribute to patterns at spatial scales broader than the size of individuals, the inferior 
competitor has to encounter the superior competitor in a large fraction of the sites in which it 
occurs, i.e., within a major part of its tolerance area in conceptual ecological space and over a 
large geographical area. Furthermore, the outcome of the interaction has to be highly predictable 
and more or less invariant of position along major complex-gradients, successional state, order 
of arrival of the two species at each site, etc. Well-documented examples of negative interspecific 
interactions between plants that add up to coarser-scale patterns are not many, but some exist. 
One of the best-documented cases is provided by Leathwick & Austin (2001), who modelled the 
distribution of tree species in New Zealand. They found that GAM distribution models for 11 out 
of 12 rare tree species in New Zealand were considerably improved by including density of the 
dominant tree genus Nothofagus as an independent variable in the models. Their results were 
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thus in accordance with predictions from the hypothesis that many single interaction events 
with similar outcomes sum to a pattern that is recognisable on spatial scales much broader 
than the size of individuals (Leathwick & Austin 2001). Another example is provided by Burns 
(2007), who found that occurrence patterns of the shrub Sambucus racemosa on small islands 
in Canada were nonrandom and consistent with expectations, given that negative interactions 
from established species were an important process. Further studies are, however, needed before 
generalisations can be made about the commonness of this phenomenon among plants.

Based upon theoretical reasoning, increasing importance of interspecific interactions, 
summing up to recognisable patterns at broader scales, is likely to result when organisms are 
more mobile, have lower density, and compete with other organisms for resources that are more 
essential and in increasingly short supply. Accordingly, broad-scaled distributional consequences 
of interspecific interactions should be expected to be more common among animals, particu-
larly among vertebrates. An illustrative case study is provided by Heikkinen et al. (2007), who 
found that distribution models for four hole-nesting owl species in Finland were improved by 
including presence data for six woodpecker species as explanatory variables. Model improve-
ment was significant for samples of owl presence in 10-km grid cells, less clearly when 40-km 
grid cells were used. The spatial scale interval in which large variation in owl performance due 
to effects of interspecific interactions can be traced thus included the fine regional, but hardly 
the coarse regional scale.

The literature on biological invasions provides several examples of interspecific interac-
tions that, over shorter or longer time intervals, bring about distributional shifts of indigenous 
species that are recognisable on local or fine regional spatial scales (Mack et al. 2000, Reinhart 
et al. 2006, Combs et al. 2011). A well-documented example from Fennoscandia is the westward 
movement of Norway spruce, Picea abies, which has been going on for most of the Holocene 
and still has not come to an end (Hafsten 1992, Tollefsen et al. 2008, Seppä et al. 2009). Due 
to its high maximum relative growth rate and its shade tolerance, Picea abies is in general a 
stronger competitor than Pinus sylvestris, Betula spp. and broad-leaved deciduous forest trees 
in this region, over a wide range of environmental conditions (cf. Linder et al. 1997, Dehlin et al. 
2005). This explains why Picea locally replaces other tree species (Seppä et al. 2009). However, 
within their extent of occurrence the other tree species are still more or less constantly present 
in observation units of 1 km2 or larger within their extent of occurrence (e.g., Hultén 1971). This 
indicates that results of negative interspecific interactions among plants are mostly detectable 
at spatial scales finer than the fine regional scale.

Like negative interactions, positive interspecific interactions, i.e., commensalism and mu-
tutalism, also basically affect species’ performance on spatial scales near the size of individuals. 
Typical examples of patterns on micro and fine local spatial scales that are brought about by 
positive interactions, are the facilitation of the rare vascular plant Delphinium uliginosum by 
the moss Didymodon tophaceus in serpentine wetlands of the U.S. (Freestone 2006), the asso-
ciations observed between specialised pyrenomycetous epiphyte species on Salix in N Norway 
(Mathiassen & Økland 2007), and the enhanced performance of some vascular plant species 
in alpine heaths in the presence of shelter-providing bryophytes and/or other vascular plants 
(e.g., Carlsson & Callaghan 1991, Callaway 1995, Choler et al. 2001). In general, the importance 
of facilitation increases towards more stressful environments (Callaway et al. 2002).

Like negative interspecific interactions, effects of positive interspecific interactions are 
expected to result in single-species patterns, and patterns in species richness, recognisable at 
fine local spatial scales (Cavieres & Badano 2009). Conditions necessary for positive neighbour 
interactions to sum to patterns recognisable on coarser scales, are generally the same as for 
negative interactions, but with opposite sign. However, with increasing strength of the depend-
ence of one species on another species, i.e., along the gradients from neutral interactions to 
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obligate mutualistic or parasitic interactions, respectively, the probability for the interaction to 
give rise to patterns recognisable at coarser scales increases. One example is obligate mycor-
rhizal fungi, which are restricted to the extent of occurrence of their mycorrhizal partners, on 
local (Bendiksen et al. 2004) as well as regional (Eckblad 1981) spatial scales. Such depend-
ence is carried to the extreme by rare animal species with strong dependence on specific plants 
or plant groups, e.g., for food and shelter at larval stages (Araújo & Luoto 2007, Preston et al. 
2008). Consequences for DM are exemplified by Araújo & Luoto (2007), who found significant 
improvements of spatial predictions for the butterfly Parnassius mnemosyne when known pres-
ences of species of the herb genus Corydalis spp. were included among independent variables in 
the modelling, even if grid cells of 50 × 50 km (in the coarse regional domain; Fig. 4) were used: 
Parnassius larvae are monophagous on Corydalis species (Luoto et al. 2001). Patterns recognis-
able on coarse regional spatial scales have been demonstrated for fungal plant pathogens with 
narrow food-plant preferences and/or their hosts [e.g., Alexander et al. 2007; also see see van 
Andel (2005) for review].

One reason why distributional consequences of interspecific interactions are difficult to 
assess (e.g., Franklin 2009), is that negative and positive interspecific interactions typically occur 
together in complex ways in plant communities (Callaway & Walker 1997). This is exemplified 
by the experimental study of alpine vegetation by Mitchell et al. (2009): strong negative as well 
as strong positive interactions were found between pairs of species, but neither type of interac-
tion was considered important for the structure of the community as a whole.

 Demographic processes. Within-population demographic processes and space limitation 
first of all affect the fate of individuals and, hence, manifest themselves as patterns at micro and 
fine local spatial scales. Rare instances of long-distance dispersal into new sites may, however, 
extend a species’ extent of occurrence considerably (Alsos et al. 2007, Nathan et al. 2008, Ped-
ersen 2009) and give rise to distributional patterns with large variation on spatial scales up to 
the coarse local and fine regional (e.g., Hovstad et al. 2009, Moore 2009, Jacobson & Peres-Neto 
2010) or, in extreme cases, even the coarse regional (Nathan et al. 2008, Pedersen 2009) or 
perhaps also the global. Dispersal is therefore important at all spatial scales, from the finest to 
the broadest. Svenning & Skov (2002) demonstrated that dispersal affects the distribution of 
plants on fine to medium local spatial scales in Danish deciduous forests by analysing a sample 
of observation units with linear dimension of grain 5–14 m and of extent < 1 km: poor dispers-
ers had a more clumped distribution than species with good dispersal capabilities. Decreasing 
probability for a diaspore to reach a site with increasing distance from the source is the main 
mechanism behind reduced compositional similarity of ecologically similar sites with increas-
ing inter-site distance, as expressed in the important but not universally applicable ‘rule’ re-
ferred to as ‘distance decay of floristic similarity’ (Nekola & White 1999). Thus R. Økland et al. 
(2003) demonstrated considerable variation in species composition among 11 boreal swamp 
forests that could be explained neither by any of the 53 recorded environmental explanatory 
variables nor by between swamp-forest distances. The linear dimensions of grain and extent in 
this study were 10–100 m, and approx. 2 000 m, respectively, corresponding to medium local 
spatial scales. These results indicated that the observed pattern was not mainly due to recent 
successful dispersal and establishment events. Instead, R. Økland et al. (2003) hypothesised 
that the distinctness of each swamp forest was due to a combination of processes among which 
stochasticity of establishment in gaps, ‘windows of opportunity’, and persistence of established 
clonal species are both important. Variation at fine spatial scales due to randomness in demo-
graphic processes is exemplified by Økland (1989b) who, in a detailed study of a boreal bog, 
found about 15 small species of Cladonia spp. that were able to colonise naked peat patches 
in hummocks, apparently without differences in microsite preferences. These examples show 
that dispersal into new sites and other demographic processes bring about large variation in 
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species performance over a wide range of spatial scales, although with decreasing importance 
from finer to broader scales. By definition, space limitation is important only at fine, i.e., micro 
and fine local, spatial scales.

Assessment. Table 2, which summarises the ranges of spatial scale intervals in which vari-
ation is large for each of the structuring processes, shows that existing empirical data for plants 
and other organisms with low mobility do not support the generalisations about ‘scale relation-
ships’ expressed by Hortal et al. (2010) and elsewhere in the DM literature. Two discrepancies 
are particularly important: (1) ‘environmental factors’ that operate via limited physiological 
tolerance are important on all spatial scales from micro to the coarse regional; and (2) ‘biotic 
factors’, of which competition is most strongly focused in the literature although amensalism, 
commensalism, and facultative mutualism, are likely to be at least equally important, are pri-
marily important on micro and fine local spatial scales, although noticeable exceptions to this 
exist. Furthermore, two more points should be noted: (3) that dispersal to new sites contributes 
to performance variation over a wide range of spatial scales; and (4) that the importance of ‘oc-
cupancy dynamics’, i.e., within-population demographic processes and space limitation, increases 
strongly towards spatial scales near the size of individuals of the species in question.

My conclusion from the review of structuring processes is that a more balanced view of the 
relationship between structuring procesess and spatial scale is urgently needed. In particular, 
plants and other immobile organisms have to be recognised as fundamentally different from 
strongly mobile organisms, and there seems to be a strong tendency for patterns of performance 
variation to be idiosyncratic, i.e., to depend on properties of the species and characteristics of 
the study area.

Dependence of species’ overall ecological responses on structuring processes

Regardless of spatial scale interval in which performance variation of a species along a major 
complex-gradient is large, the species’ overall ecological response to an important complex-
gradient is expected to follow a unimodal curve because of limited physiological tolerance to 
extrinsic processes, i.e., stress and destabilising processes, the intensity of which depends on 
position along the complex-gradient (see the chapter ʻ Characteristics of overall ecological re-
sponses of modelled targetsʼ and Fig. 12). Background stress or disturbance, and demographic 
processes, influence aggregated performance at all spatial scales, without systematic variation 
in intensity of the process along the complex-gradient (Fig. 12). The importance of each sub-
category of demographic process depends on the spatial scale addressed. While lack of dispersal 
into new sites is important at regional spatial scales (Fig. 12a), within-population demographic 
processes are most important at local spatial scales (Fig. 12b) and space limitation is most 
important at micro, perhaps also fine local, spatial scales (Fig. 12c, Table 2). 

The response models in Figs 12a–c agree with the model of Austin’s (Austin 1990: Fig. 12) 
in two important respects: (1) by predicting an increasing role of physiological tolerance to stress 
and disturbance from the optimum towards gradient ends; and (2) by accounting for higher 
potential importance of negative interactions on aggregated performance near gradient mid-
points where many species tend to have their physiological optima. In accordance with Austin 
(1990), I have termed gradient extremes in Fig. 12 ‘deficient end’ and ‘toxic end’, respectively. 
The models in Fig. 12 do, however, differ from Austin’s model in five important respects:

1.	 By allowing for variation in the importance of structuring processes among spatial scales, 
in accordance with Table 2.

2.	 By allowing for variation in the kurtosis of the overall ecological response curves among 
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Fig. 12. Hypothetical contributions from different structuring processes to explaining variation 
in speciesʼ aggregated performance along environmental complex-gradients at different spatial 
scales. Spatial scale is defined as the linear grain sizes in samples with extent-grain ratio of 16 
such as regular hexadecadal grids (see Fig. 4). Aggregated performance is recorded on a scale 
from 0 (absence) to 1 (maximum). LPT = limited physiological tolerance; Δ = contribution 
from limited physiological tolerance to factor that is dependent on position along the complex-
gradient, shown for gradient position xk; Δ+, Δ– = increase and decrease, respectively, of ag-
gregated performance, relative to the situation in which the net contribution from interspecific 
interactions is 0. (a) Micro scale (grain size = 25 cm, extent = 4 m), e.g., corresponding to the local 
ecocline ʻwater saturationʼ (= depth to the water table) in a boreal mire. (b) Medium local scale 
(grain size = 25 m, extent = 400 m), e.g., corresponding to the local ecocline ʻdrought severityʼ 
in a boreal forest. (c) Fine regional scale (grain size = 1 km, extent = 16 km), e.g., corresponding 
to the regional ecocline ʻbioclimatic zonesʼ in W Norway.
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spatial scales, i.e., narrow-peaked vs. flat-topped curves (Oksanen & Minchin 2002).
3.	 By opening for the possibility that negative as well as positive interactions between 

the target species and other species may influence the shape of the overall ecological 
response. The effects of positive interactions, i.e., commensalism or mutualism, and 
negative interactions, i.e., competition and amensalism, contrast each other and may 
cancel each other out (Fig. 12b–c). The magnitudes of contributions from interspecific 
interactions, regardless of sign, increase in the models towards finer spatial scales. 
In Fig. 12b, interspecific interactions influence the value for aggregated performance 
at each point along the gradient within the tolerance limits of the species, i.e., by a 
magnitude response, while in Fig. 12c an amplitude response, i.e., a shift in the spe-
cies’ tolerance limits, is shown near the toxic end of the gradient. There is no a priori 
reason, however, to expect amplitude responses to be restricted to the finest spatial 
scales.

4.	 By explicitly incorporating contributions from processes that reduce the aggregated 
performance at the optimum from the theoretical maximum (of 1 in Figs 12a–c). Of 
such processes, background stress and disturbance, and lack of dispersal into new 
sites, are the most important at regional spatial scales. Towards finer spatial scales, 
the importance of within-population demographic processes is expected to increase. 
Near the size of individuals, space limitation is likely to be most important.

5.	 By not incorporating systematic variation in curve skewness in the models. Austin’s 
model predicts response curves to be increasingly skewed with increasing distance 
of the species’ optimum from the mid-region of the gradient, with the skew pointing 
in direction of this mid-region. Response curves for Eucalyptus species in Australia 
with respect to annual mean temperatures by Austin et al. (1994) accord with this 
prediction. The result of Økland (1986), that the skewness of response curves depends 
on the scaling of the gradient, does, however, leave open the answer to the question 
about the role of choice of scaling of the gradient for curve skewness. Austin et al. 
(1994) studied response curves with respect to a gradient scaled in physical units (°C). 
It remains to be seen if more symmetric response curve would be obtained by scaling 
the gradient in units of compositional turnover, by a method not open to criticism such 
as the non-linear rescaling option in DCA ordination (Oksanen & Tonteri 1995).

The overall ecological responses in Fig. 12 are models. Empirical overall ecological response 
curves will be less smooth due to effects of sampling, local idiosyncracies etc.

DISCUSSION: IMPLICATIONS OF THE GRADIENT ANALYTIC PERSPECTIVE 
FOR DISTRIBUTION MODELLING

ECOLOGICAL MODEL (STEP 1)

Problem formulation and specificiation, Step 1 in the distribution modelling process (Fig. 8), 
relies on a firm theoretical fundament. The logical choice of a starting point for the discussion 
of implications of the gradient analytic perspective for DM is therefore the basic concepts of the 
niche and related concepts, and conceptual models for DM built upon these concepts.
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Concepts of the habitat and the environment

The term ‘habitat’, which is related to the verb ‘inhabit’, has been used for a long time to ad-
dress the surroundings of a particular organism, e.g., the environment in which a species can 
be found (e.g., Tansley 1935) or, as formulated by Whittaker et al. (1973: 328): the ‘range of 
environments or communities over which a species occurs’. Whittaker et al. (1973) also provide 
a precise definition of the habitat in terms of gradient concepts. Firstly, quoting Goodall (1963), 
the ‘habitat hyperspace’ was defined as the m-dimensional co-ordinate system with axes that 
characterise the landscape (or location or site) under study. Secondly, a species’ habitat, i.e., 
the ‘habitat hypervolume’, was defined (Whittaker et al. 1973: 328) as ‘an abstract formula-
tion of this range [of occurence] in terms of extensive environmental variables and the species’ 
limits in relation to them’, i.e., the region in the ‘habitat hyperspace’ in which the species oc-
curs. This abstract concept of the habitat corresponds to the hypervolume in ecological space, 
occupied by the species. A concrete approximation of this abstract concept of the habitat is the 
hypervolume in an environmental variables space with axes that are proxies for the axes of the 
ecological space, occupied by the species. Hutchinson (1978) used the term ‘scenopoetic’, or 
‘scene-setting’, or ‘habitat-structuring’, variables, for the axes of the habitat hyperspace. The 
term ‘scenopoetic variable’ is interpreted by Soberón (2007) as synonymous with ‘direct gra-
dient’ in Austin’s terminology, while others, e.g., Hortal et al. (2010), use the term ‘scenopoetic 
variable’ in a wider meaning.

The definition of ‘habitat’ proposed by Kearney (2006: 187), as ‘a ... physical place, at a 
particular scale of space and time, where an organism either actually or potentially lives’, dif-
fers from the more abstract definitions given above because ‘in contrast to an environment or 
a niche, a habitat can exist and be described without reference to an organism’ (Kearney 2006: 
187). Kearney instead uses ‘environment’ for ‘the biotic and abiotic phenomena surrounding 
and potentially interacting with an organism’, i.e., the ‘particular environment experienced by 
an organism’, ‘the result of the interaction between the characteristics of that organism and 
the habitat in which it occur’. In Kearney’s terminology two organisms that live together in the 
same habitat may experience different environments.

Kearneyʼs concept of the habitat corresponds to Hutchinsonʼs (1978) concept of the 
ʻbiotopeʼ; a place in ʻthe physical world ... conceived as a map, each point (or cell) of which is 
characterized by its geographical co-ordinates and the local values of n environmental attributes 
at a given timeʼ (Colwell & Rangel 2009: 19651) that can be described without reference to 
organisms, in geographical and/or environmental variables spaces.

The term ‘habitat’ is also often used as synonymous with ‘ecosystem’ or ‘site’, e.g., in EUNIS, 
the European habitat classification system (Davies et al. 2004). The classical explanation of an 
‘ecosystem’ by Tansley (1935: 299), which reads ‘... including ... the organism-complex ... [and] 
also the whole complex of physical factors forming what we call the environment of the biome 
– the habitat factors in the widest sense’ is, however, much broader than Kearneyʼs habitat and 
Hutchinsonʼs biotope concepts.

Niche concepts

The term ‘niche’ was first used by Grinnell (1917) and has thereafter been used in many, wider or 
narrower, meanings to denote the relationship of an organism to the environment and/or other 
to organisms (Vandermeer 1972, Whittaker et al. 1973, Soberón 2007, Colwell & Rangel 2009). 
Colwell & Rangel (2009: 19651) point out that Hutchinsonʼs (1978) concepts of ʻbiotopeʼ and 
ʻnicheʼ both address ̒ exactly the same n environmental attributes [which] define [a conceptual] 
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spaceʼ, but nevertheless are fundamentally different: while the ̒ biotopeʼ is a place in the physical 
world that exists without reference to organisms, the niche only makes sense as an attribute 
of [a group of] organisms, e.g., a species. Thus, the environmental variables space is a common 
arena for the two concepts because both the ʻbiotopeʼ and the ʻnicheʼ can be described by use 
of environmental explanatory variables, a fact referred to as Hutchinsonʼs duality by Colwell & 
Rangel (2009). The ʻbiotopeʼ can also be characterised in geographical space. 

Concepts of the ‘niche’ fall into two groups: the ‘Grinnellian niche’, which comprises ‘the 
environmental requirements for a species to subsist without immigration’ (Hirzel & Le Lay 
2008: 1373), and, following Elton (1927), the ‘Eltonian niche’ which comprises the species’ 
‘relationships to other species’ (Hirzel & Le Lay 2008: 1373). While the ‘Grinnellian niche’ cor-
responds exactly to their concept of ‘habitat’, Whittaker et al. (1973) propose a definition of the 
term ‘niche’ that parallels their definition of the habitat but addresses the Eltonian niche only. 
Firstly, they (p. 332) define the niche hyperspace as the n-dimensional co-ordinate system the 
axes of which ‘representing other member species of the community as well as more general 
niche variables such as height above ground, prey size, etc.’ Secondly, they characterise the axes 
of this niche hyperspace as follows: ‘Each species in the community utilizes, or occurs in, or is 
affected by, some range of these axes [which] ... define a multidimensional niche hyperspace 
interrelating the species of the community’. In the terminology of Whittaker et al. (1973), a 
species’ niche is the region in the ‘niche hyperspace’ in which the species occurs. Hutchinson 
(1978) coined the term ‘bionomic’ for the axes of the niche hyperspace of Whittaker et al.ʼs 
(1973). The term ‘bionomic variable’ was defined by Soberón (2010: 160; also see Soberón 
2007) as comprising all variables that ‘affect the fitness of the populaton, but [that] can also be 
consumed or modified and [on which] the population ... therefore ... has an impact’, i.e., variables 
that represent interspecific interactions as well as resource gradients in Austin’s terminology. 
Soberón’s (2007, 2010) interpretation of the terms ‘scenopoetic variable’ and ‘bionomic vari-
able’ matches his definitions of the Grinnellian and the Eltonian niche: the species’ response 
to scenopoetic variables defines its Grinnellian niche while its response to bionomic variables 
defines its Eltonian niche. Most authors, as exemplified by Hortal et al. (2010), do, however, treat 
the terms ‘bionomic factor’ and ‘biotic interaction’ as synonymous and do not include resource 
gradients in these concepts.

Kearney (2006: 187), although in principle accepting Hutchinson’s idea of the niche as 
an ‘n-dimensional hypervolume’, redefines the ‘niche’ as ‘a subset [my emphasis] of those envi-
ronmental conditions which affect a particular organism, where the average absolute fitness of 
individuals in a population is greater than or equal to one.’ Including all conditions that affect 
fitness in his definition of the ‘niche’, the Eltonian niche as defined above as well as a major part 
of the Grinnellian niche is included. 

The Grinnellian and Eltonian niches are often associated with the terms fundamental niche 
and realised niche, defined by Hutchinson (1957). The fundamental niche is the n-dimensional 
hypervolume, i.e., the conceptual space in which all factors of importance for the occurrence of 
the species, both physical and biological, are included as axes, in which a species in the absence 
of competition with other species is able to persist indefinitely. The realised niche is defined as 
the part of the fundamental niche in which the species is able to persist even when exposed to 
competition from other species.

Why the concepts of habitat and niche are not useful for distribution modelling

Neither the Grinnellian nor the Eltonian, and neither the fundamental nor the realised, niche 
concepts are clear in themselves. Accordingly, I find the relevance of all of these concepts for 
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distribution modelling unclear. The main reasons for lack of clarity are:

1.	 Lack of clarity of the fundamental and realised niche concepts.
2.	 Lack of a clear distinction between ‘dimensions’ of the Grinnellian and Eltonian niche 

spaces.
3.	 Representation of interspecific interactions as axes (‘dimensions’) in a conceptual 

‘niche hyperspace’ is inadequate.
4.	 Failure of the niche concepts to take demographic processes, including historical fac-

tors, into account.
5.	 Lack of clarity with respect to how to delimit a species’ niche.

Lack of clarity of the fundamental and realised niche concepts. This reason for lack of clarity 
is thoroughly discussed by Araújo & Guisan (2006: 1678), who refer to Hutchinson’s original 
text in which it is stated that ‘all…variables, both physical and biological, being considered, the 
fundamental niche of any species will completely define its ecological properties’ (Hutchinson 
1957: 416). In their interpretation of this text, Araújo & Guisan (2006: 1678) state that ‘limiting 
factors (e.g., temperature and known presence of mutualist species) and resource factors (e.g., 
energy and presence of prey) should be part of ... the fundamental niche’. Such an interpretation 
includes all factors that limit the occurrence of a species, regardless of the type of relationship 
this species has to them, in the definition of the fundamental niche. Furthermore, Araújo & Guisan 
(2006) interpret Hutchinson’s realised niche as the response of the species when competitive 
interactions with other species at the same trophic level is also taken into account, i.e., as the 
species’ range along axes of the ‘ecotope hyperspace’ [= the habitat and niche hyperspaces taken 
together; Whittaker et al. (1973)].

The concepts of the fundamental and the realised niche are only useful if they can be 
appropriately operationalised. This is extensively discussed by Araújo & Guisan (2006) and 
Soberón (2007, 2010), neither of whom draw clear conclusions. Several of the other reasons 
for lack of clarity discussed below are rooted in lack of clarity of the fundamental and realised 
niche concepts.

Lack of a clear distinction between ‘dimensions’ of the Grinnellian and Eltonian niche spaces. 
Several competing definitions of the Grinnellian and Eltonian niche spaces exist, as exemplified 
by the difference between the commonly applied definition of the Grinnellian niche hyperspace 
and Soberón’s definition (Soberón 2007, 2010). According to the former, all environmental [or, 
habitat, in the sense of Whittaker et al. (1973)] factors determine the Grinnellian niche. Soberón, 
on the other hand, transfers factors that can be affected by the organism itself, ‘bionomic vari-
ables’ in his terminology, from the Grinnellian to the Eltonian niche hyperspaces. This difference 
between the two concepts of the Eltonian niche demonstrates the complexity of interspecific 
interactions and the fact that no clear distinction can be drawn between interspecific interac-
tions and responses to resource gradients. Lack of a clear distinction between dimensions of 
the Grinnellian and Eltonian niche spaces also result from the fact that interactions between 
species are far too complex to be divided into ‘competition’ which can be represented by ‘bio-
nomic variables’ and ‘other interactions’. In fact, these ‘other interactions’ represent a problem in 
themselves because they are not easily sorted on ‘Grinnellian’ and ‘Eltonian’ factors, regardless 
of how these concepts are defined. I will illustrate these points by some examples, the first of 
which is amensalism, (0,–) interactions, which make up one end-point of a gradual transition 
from symmetric competition via asymmetric competition to unilateral (one-sided) interaction. 
By definition, a species that has an amensalistic impact on another species contributes an El-
tonian niche dimension for the impacted species while the converse is not true. Furthermore, 
amensalistic interactions are usually not species-specific: the unaffected species impacts the 
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other species by its structure, as exemplified by trees which by their mere presence bring about 
variation along complex-gradients of radiation, throughfall precipitation, water saturation, 
etc. This environmental variation has a well-documented effect on understorey species com-
position; see Økland & Eilertsen (1993) and references quoted therein. No definitive answer 
exist to the question if such amensalistic impacts should be treated as several dimensions of 
the ‘Grinnellian niche hyperspace’ or as one dimension of the ‘Eltonian niche hyperspace’. 
Similar arguments also apply to other kinds of interspecific interactions. My second example is 
parasitism, i.e., (+,–) interactions by which one species (the parasite) is dependent on another 
species (the host) and the latter is negatively affected by the interaction. With reduced impact 
on the host and lower benefit for the parasite, respectively, parasitism grades gradually into 
commensalism, (+,0) interactions, and amensalism. The division into Grinnellian and Eltonian 
niches breaks down in this case because interactions cannot be divided into ‘resources’ and 
‘competition’. Similar arguments apply to the fundamental and realised niches because even 
these concepts rely on our ability to make a clear distinction between ‘competition’ and ‘other 
factors’. Positive interspecific interactions, which have proven important in a large number of 
ecosystems, represent a particularly difficult case: should they be considered as fundamental 
niche factors or as determinants of a species’ realised niche? Araújo & Guisan (2006: 1678) 
argue that a ‘consequence of including both positive and negative interactions within the niche 
framework is that the clear-cut dichotomy between fundamental and realized niches becomes 
artificial and its usefulness debatable’. Furthermore, they rhetorically ask: ‘If ... the fundamental 
niche is defined by the resources and limiting factors required for species’ persistence, and that 
the realized niche is defined by the constraints preventing the exploitation of resources, should 
the absence of mutualists or facilitators (thus preventing the use of resources) be included as 
part of the factors defining the realized niche?’ They conclude their discussion by stating that 
‘ambiguities concerning the role of biotic interactions within the niche framework need to be 
resolved in order to allow appropriate integration of these neglected issues into niche models.’ 
I rephrase this as follows: If these ambiguities cannot be resolved, which I believe is the case, 
niche concepts are not useful for DM.

Representation of interspecific interactions as axes (‘dimensions’) in a conceptual ‘niche 
hyperspace’ is inadequate. Resource gradients according to Austin (1980), which are included 
in Soberónʼs (2010) concept of ‘bionomic variables’, are adequately represented as contributors 
to dimensions in the ecological space. The latter are made up by complex-gradients which may 
consist of co-varying resource, direct and indirect gradients. The unimodal overall response of 
species to these complex-gradients is primarily shaped by limited physiological tolerance to 
stress and destabilising factors, the intensity of which depends on position along the complex-
gradient. However, other important structuring processes, including interspecific interactions 
and demographic processes, do not influence species by adding new, independent ‘niche dimen-
sions’ but by modifying the shape of species’ overall responses to the major complex-gradients. 
Figs 12b–c show that interspecific interactions influence aggregated performance in two ways, 
by a magnitude response and by an amplitude response. Therefore, from a conceptual point 
of view, it is inapproapriate to represent the ‘dimensions of the Eltonian niche’, or ‘bionomic 
variables’, as independent axes of a conceptual space.

Most major complex-gradients combine aspects of Grinnellian and Eltonian niche dimen-
sions, as demonstrated by variation in the importance of physiological tolerance and interspecific 
interactions along almost all important ecoclines. The CSR model of Grime’s (1977, 1979) is 
relevant in this respect. Grime defines three main ecological processes, competition, stress and 
disturbance, and divides species into three primary life strategies, competitor, stress-tolerator 
and ruderal (C, S, and R, respectively), on the basis of their evolutionary adaptations to environ-
ments in which stress, disturbance or none of these are important. Grimes’s model, as well as 
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the centrifugal model of Keddy & MacLellan (1990), is based on the implicit assumption that all 
(or almost all) ecoclines are associated with variation in the intensity and nature of interspe-
cific interactions, that negative interactions are important in benign parts of the gradients and 
unimportant in the stressful and/or disturbed parts of gradients in which positive interactions 
may instead be important. Variation in species composition along important ecoclines in many 
ecological systems has been interpreted within this framework, e.g., semi-natural grasslands 
(Eilertsen 1991), boreal forests (Økland & Eilertsen 1993), mires (Økland 1989b, 1990b, 1990c) 
and alpine heaths (e.g., Wijk 1986, Rydgren 1994).

The only conceptual geometric space that is adequate for representing a species’ total 
relationship with its surroundings is the ecological space. To my best judgment, the ecological 
space allows representation of the entire complexity of a species’ overall responses, with or 
without the effects of interactions with other species and/or demographic processes taken 
into account.

Failure of the niche concepts to take demographic processes, including historical factors, 
into account. Pulliam (2000) emphasised the importance of demographic processes, most 
notably lack of dispersal, for species’ realised distributions. Demographic processes have 
thereafter been discussed much in the DM literature (e.g., Soberón & Peterson 2005, Araújo 
& Guisan 2006, Soberón 2007, 2010, Hirzel & Le Lay 2008, Barve et al. 2011, Peterson et al. 
2011). In particular, demographic processes have been recognised as important in DM studies 
with a projective purpose (PPM), such as modelling of distributional consequences of climate 
change (Pearson & Dawson 2003, Dullinger et al. 2004, Guisan & Thuiller 2005, Engler et al. 
2009, Meier et al. 2010).

A species may be absent from sites in which environmental conditions allow it to persist 
(i.e., within its Grinnellian niche) and in which it does not face the risk of exclusion by interac-
tions with other species (i.e., within its Eltonian niche). The most obvious reasons for absence 
in such cases are: (1) that the species has never reached the site, i.e., due to lack of dispersal; 
(2) that the species is temporarily absent for demographic reasons, e.g., due to mortality after 
local disturbance events, adverse climatic conditions in the near past, etc.; or, at fine local and 
micro spatial scales, because of (3) space limitation, i.e., that all suitable sites are temporarily 
occupied. Eriksson & Ehrlén (1992) refer to lack of dispersal (1) as ‘seed limitation’, while (3) 
is included in their concept of ‘microsite limitation’. At spatial scales broader that the fine local, 
successful dispersal into new sites causes range shifts, over decades, centuries or millennia 
(Pearson & Dawson 2003). At sufficiently fine spatial scales, all species will fail to occupy at 
least some suitable sites.

Soberón (2007: 1118), also see Soberón (2010), Barve et al. (2011), and Peterson et al. 
(2011), incorporates demographic processes into a niche framework by defining ‘accessible 
area’, i.e., ‘the total area that has been or is accessible to the species within a time period of 
interest’. However, as also pointed out by Soberón (2007), it is difficult to define accessible 
area because occupancy patterns are fractals, showing patterns on multiple spatial scales, and 
because space limitation is not explicitly addressed, neither in Soberón’s concept of accessible 
area nor in other concepts of the niche. Niche concepts therefore do not account for the fact that 
most species occupy only a small fraction of observation units in samples that allow analysis of 
patterns in the micro and fine local spatial domains.

Lack of clarity with respect to how to delimit a species’ niche. Delimitation of the niche in 
the (fundamental or realised, Grinnellian or Eltonian) niche hyperspace is a problem in itself, 
in addition to, and separate from, the difficulties with representing all factors of interest as 
dimensions of this hyperspace. Hutchinson (1957) included in his original definition of the 
niche all conditions under which the species ‘is able to persist indefinitely’, i.e., where its fitness 
is positive. Leibold (1995: 1380), in a discussion of difficulties involved in separation of the 
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Grinnellian and Eltonian components of the niche, argued that ‘... the niche concept is always 
meant to be general. ... Grinnell, Elton, Hutchinson, and MacArthur and Levins all conceived that 
it was meant to summarize either “many” or “uncountable” aspects of the biology of the organ-
isms’. Accordingly, Leibold suggested that a ‘total niche’ should be defined, which comprises 
the conditions under which a species has positive per capita growth rate. Leibold’s definition 
of the niche is attractively simple, but fails to apply to practical situations for at least two main 
reasons: Firstly, because at the time-point sampling is carried out, a species can be expected 
to be present in many observation units where its long-term fitness is negative (sink popula-
tions): short-lasting sink and long-lasting stable remnant populations in which the species is 
unable to complete its life cycle have been shown to be important contributors to landscape, or 
gamma (γ), species richness (Eriksson 1996, 2000, Heegaard et al 2007, Kiviniemi 2009) by a 
mass effect (Shmida & Ellner 1984). Secondly, because a species is often absent from observa-
tion units within its ‘total niche’, i.e., from sites in which its fitness is expected to be positive, 
for demographic reasons (Fig. 12c). The possibility that a species is present in sites where its 
fitness is negative and absent from sites in which its fitness might have been positive, implies 
that a species’ distribution does not reflect fitness variation in a simple way: the distribution 
results from impacts by a large ensemble of processes, recent and historical, that affect, and have 
affected, the species. In practice, this means that fitness can only be assessed by a mechanistic, 
i.e., physiologically based, approach that starts with the relationship between fitness-related 
properties (morphological, physiological, behavioural, demographic or other life-history proper-
ties) and explanatory variables (Pearson & Dawson 2003) or by long time series of observations 
of the fate of individuals in permanently marked observation units (Rydgren & Økland 2002). 
In the real world, however, the physiological approach to modelling is unrealistic (Austin 2007) 
and the time needed for reliable assessment of long-term population trends (and, thus, fitness) 
is most often beyond reach (Bierzychudek 1999). Furthermore, results of analyses are always 
associated with some degree of uncertainty. Therefore, short-cuts such as inferring mechanims 
from observations by use of a correlative approach, are open to criticism (Shipley 2000). The 
complexity of fitness variation makes a full mechanistic understanding of a species’ ecology 
impossible and precludes exact delimitation of a species’ niche, even if the dimensions of the 
niche hyperspace could be unambiguously defined.

Assessment. My conclusion, then, is that the classical habitat and niche concepts, perhaps 
with exception of a broad concept of the niche as an inclusive term for the total relationship 
of a species with its surroundings as adopted, e.g., by Colwell & Rangel (2009), incur too many 
theoretical and practical difficulties to be useful as a platform for distribution modelling. Al-
ternatives to conceptual models for DM based upon niche and habitat concepts should instead 
be searched for by integrating knowledge of performance variation in environmental variables 
and ecological spaces over a range of spatial (and temporal) scales with knowledge about 
the mechanisms by which this performance variation translates into distributional patterns 
in geographical space. One conceptual modelling framework for DM that accords with these 
principles is outlined below.

What is really modelled in distribution modelling?

In accordance with the conclusion of the previous section that the classical niche and habitat 
concepts are burdened with too many difficulties to be useful for DM, I will discuss what is mod-
elled in SDM, i.e., distribution modelling with species as modelled target, in terms of mechanisms 
and processes that determine species’ distributions in geographical space and their responses 
in ecological (or environmental variables) space. A species’ distribution is the realisation, in 
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geographical space, at a particular time-point or over a short time interval, of the species’ re-
sponse to the totality of ‘biotic and abiotic phenomena surrounding and potentially interacting 
with an organism’, i.e., the ‘particular environment experienced by an organism’ [quoted from 
the definition of environment by Kearney (2006: 187)]. The distribution, as sampled at a given 
point in time, is the result of the complex interplay between many, fundamentally different, 
processes: evolution of physiological tolerances which constrain the way individuals of a given 
species respond to the main environmental complex-gradients, modifying effects of interactions 
with other species, and demographic processes. The outcomes of all of these processes are 
stochastic to variable degrees: responses to major environmental complex-gradients are more 
deterministic, while demographic processes have a stronger stochastic element.

The response data used in SDM to model the overall ecological response to selected ex-
planatory variables are realised distributional data. For spatial predictions from a distribution 
model (Steps 8,iv and 12,i in the 12-step DM process; see Fig. 8) to correspond fully with the 
real distribution of the modelled species, the following conditions have to be satisfied: (1) the 
sample of observations of the target species is fully representative for the distribution of the 
species (Step 2); (2) all ‘biotic and abiotic phenomena surrounding and potentially interacting 
with an organism’ (Kearney 2006: 187) are fully adequately represented by the explanatory 
variables and derived variables obtained from them by transformation (Steps 3 and 5); (3) the 
modelled speciesʼ distribution is in dynamic equilibrium with the environment; i.e., no migra-
tion of the species is currently going on; and (4) the systems in which the species occurs are 
static (Chiarucci et al. 2010); a system without stochastic variation, e.g., due to demographic 
processes, is necessary to avoid prediction error. Only when all of these conditions are satisfied, 
will a distribution model potentially summarise all systematic variation in aggregated perform-
ance of the modelled species. This distribution model, which summarises all variation in the 
distribution of the modelled target and thus perfectly predicts its distribution, will be referred 
to as the optimal distribution model. The optimal distribution model is optimal from the 
points of view of all three DM purposes; ERM (ecological response modelling), PPM (projective 
prediction modelling), and SPM (spatial prediction modelling). From the ERM perspective, this 
model is optimal because it provides the best possible summary of relationships in ecological 
space, including the modifying effects of interactions with other species and demographic fac-
tors. From the PPM perspective, this model is optimal because a good summary of relationships 
in ecological space is an optimal basis for projecting occurrence patterns to other spatial and/
or temporal contexts (Guisan & Thuiller 2005, Chapman & Purse 2011, Webber et al. 2011). 
From the SPM perspective, this model is optimal simply because it gives the best possible spa-
tial predictions. Because real distributional data are used for DM, DM is modelling of the realised 
distribution. This is the case regardless of DM purpose; in the ERM setting the realised overall 
ecological response, i.e., the realised response in ecological space, is focused, in the PPM setting 
the realised overall ecological response is used for projection, while in the SPM setting focus is 
on the spatial realisation of the overall ecological response.

An apparent difference in opinion can be traced in the DM literature between authors 
who argue that the realised distribution, often worded ‘realised niche’, is modelled in DM (e.g., 
Guisan & Zimmermann 2000, Austin 2002, Thuiller et al. 2004, Franklin 2009) and authors who 
argue that DM addresses potential distributions (e.g., Araújo & Guisan 2006, Peterson 2006). 
Although the lack of clarity of many terms used in DM contexts opens for the possibility that 
such differences are semantic only, a real disagreement is likely to be present among authors 
with respect to the ability of DM to address the potential distribution (often worded ‘funda-
mental niche’). Araújo & Guisan (2006) and Peterson (2006) argue that an important distinc-
tion should be made between distribution models based upon environmental [‘scenopoetic’ in 
the terminology of Soberón (2007, 2010)] variables only [such models are termed ‘ecological 
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niche models’ by Soberón & Peterson (2005), Peterson (2006), and Peterson et al. (2011)] and 
distribution models which, in addition, include biotic (‘bionomic’ in Soberón’s terminology) 
variables [such models are referred to as ‘distribution models’ by Soberón & Peterson (2005), 
Peterson (2006) and Peterson et al. (2011)]. Peterson (2006) explicitly states that ‘ecologi-
cal niche models’ address fundamental niches while ‘distribution models’ address realised 
niches, and Peterson et al. (2011) stress the non-equivalence of these two concepts. Like Elith 
& Leathwick (2009), I find this relationship between type of explanatory variable and type of 
‘niche’ addressed in DM problematic. With reference to the discussion of applicability of niche 
and habitat concepts to DM in the previous chapters, there are at least two reasons for this: 
(1) that no clear distinction can be made between ‘scenopoetic’ and ‘bionomic’ variables; and 
(2) that interspecific interactions contribute to variation in aggregated performance of species 
along almost all major complex-gradients (Fig. 12). When effects of ‘bionomic’ variables cannot 
be separated from effects of ‘scenopoetic’ variables in models of overall ecological responses to 
explanatory variables, no distinction between models of the ‘fundamental’ and models of the 
‘realised’ ‘niche’ can be made.

Araújo & Guisan (2006) argue that models built with environmental explanatory variables 
address potential habitats only while models that include variables of all kinds, also biotic, come 
closer to addressing potential geographic distributions. Their use of the word ‘potential’ rather 
than ‘realised’, which follows Guisan & Zimmermann (2000) and is followed by many other 
authors as well, including Jiménez-Valverde et al. (2008) and Zafra-Calvo et al. (2010), may, 
however, be semantic rather than representing a real difference of opinion. The input to DM is 
a sample of observations of performance of the modelled target, analysed as if it were repre-
sentative for the phenomenon under study. The filtering of information about the phenomenon 
under study implicit in the sampling process (Økland 2007) implies that no guarantee can be 
given that results obtained by analysis of the sample give a correct picture of the properties of 
the studied phenomenon as such. Thus, the simplification implicit in all modelling implies that 
model predictions are estimates with the potential of being close to true values, conditioned 
on a set of assumptions being met. Four important conditions are listed above. If this set of 
four conditions listed above were met, predictions from distribution models would represent 
potential distributions in the meaning of the word ‘potential’: ‘potential realised distribution’ 
= realised distribution under specified conditions. These conditions will, however, never be 
met by real data, which are inevitably burdened with shortcomings such as sampling bias, 
identification errors, detection errors, positioning errors, etc. [e.g., see Barry & Elith (2006), 
Robertson et al. (2010), Wolmarans et al. (2010), Kéry (2011), Niamir et al. (2011) and Rota et 
al. (2011)]. Furthermore, ecosystems are not static and demographic processes are important 
on all spatial and temporal scales. Distribution models use real data and therefore address the 
realised distribution.

Although all distribution models are models of the realised distribution, distribution 
models based upon different sets of explanatory variables will differ with respect to how close 
they come to the theoretically optimal model, given the purpose of modelling. Obviously, the 
explanatory variables, or more precisely, the variables derived from them by transformation, 
which are used to parameterise the model of the overall ecological response, are the most im-
portant single factors influencing how close one specific distribution model comes to the optimal 
model. The statement by Araújo & Guisan (2006), that models with environmental explanatory 
variables address potential habitats while models that include variables of all kinds come closer 
to address potential geographic distributions, can be understood in this context.

A model that only includes environmental explanatory variables might, at a first glance, 
seem to comply with the ERM (ecological response modelling) purpose of DM, i.e., ‘modelling 
the relationship between a target, typically the performance of a species, and a specific set of 
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explanatory variables’, because environmental explanatory variables that represent the main 
ecoclines are more ‘fundamental’ and invariant over time and in space than other kinds of 
explanatory variables. However, this is not necessarily true, as pointed out by Austin (2007) 
and clearly demonstrated in the study by Leathwick & Austin (2001) of the distributions of 12 
tree species in New Zealand. For all tree species, models for the overall ecological responses at 
coarse local spatial scale were strongly dependent on inclusion or exclusion of the density of 
Nothofagus spp., the dominant tree genus in the region, among the explanatory variables. This 
clearly shows that interspecific interactions can contribute to responses to environmental ex-
planatory variables in ways that are hard or impossible to predict. In fact, all ‘non-environmental 
factors’ that co-vary with environmental explanatory variables that are used in DM will, in a 
context-dependent way, confound the interpretation of models as representing generally valid 
overall ecological responses. This is exemplified by a species which is absent from a region due 
to lack of dispersal while this region is distinctively characterised by explanatory variables 
included in the model, e.g., climatic variables, which is likely the case for Picea abies in Norway. 
This tree species has still not reached the oceanic, westernmost parts of the country (Hafsten 
1992). Thus, interpretation of the generality of distribution models will always have to rely 
on sound ecological judgement such as understanding of the mechanisms responsible for the 
observed variation in performance of the studied species with respect to variables included in 
the model (Austin 2007).

Kearney & Porter (2004, 2009) argue that modelling with the aim of understanding dis-
tributions should be based on physiological knowledge, and thereby use the term ‘mechanistic 
niche modelling’ (MNM) for approaches by which physiological responses and constraints that 
determine a species’ distribution are analysed using knowledge of the mechanistic relationships 
between functional traits and environment. MNM is rooted in biophysical animal ecology, by 
which principles of thermodynamics are used to derive mechanistic models for the relationship 
of animals to climatic conditions through exchange of energy and mass (Porter & Gates 1969, 
Porter et al. 1973). Rather than starting with raw and rasterised species data (Steps 2 and 6 
of the 12-step DM process; Fig. 8), MNM starts with a model for the speciesʼ overall functional 
(e.g., physiological) response to a performance-limiting variable, which is assumed to describe 
the relationship well (Step 7,ii in Fig. 8). Using observations of the performance of the focal 
species as a proxy for fitness, this functional relationship is ‘translated into multidimensional 
environmental space’ via a model for variation in the factor in question, e.g., body temperature, 
as a function of rasterised environmental, e.g., climatic, explanatory variables in an alternative 
to Step 8 of the 12-step process. The resulting model of fitness in environmental variables space 
is conceived as ‘a mechanistic depiction of a species’ fundamental niche which can then be used 
to infer distribution limits’ (Kearney & Porter 2009: 339), e.g., by comparison with known dis-
tributional data [the definitions of ‘niche’ and ‘fundamental niche’ used by Kearney (2006) and 
Kearney & Porter (2004, 2009) are discussed above]. Because the response variable in MNM is 
not derived from distributional data, and because the MNM approach does not include steps 2 
and 4 in the DM process, the MNM approach falls outside of the definition of DM adopted in this 
essay review. Nevertheless, the physiological knowledge on which MNM is based in important 
for interpretation and for judging the general validity of DM results (Austin 2007). In particular, 
approaches like MNM are relevant when DM is performed with the purpose of understanding 
relationships between a distribution and all kinds of ‘factors’, environmental and biotic, that 
influence this distribution (the general ERM purpose). 

The specific ERM purpose of DM differs from the general-purpose ERM, SPM and PPM 
purposes by the investigator’s deliberate interest in the response to the specific explanatory vari-
able or variables used in the modelling. The difference between specific-purpose ERM, general-
purpose ERM and SPM in this respect is illustrated by the following example: DM performed with 
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the purpose of modelling the response of a species to annual mean temperature as such is ERM. 
DM performed with the purpose of producing a model of best fit to a set of distributional data, 
that happens to include annual mean temperature as the only significant explanatory variable, 
is general-purpose ERM if identification and understanding of the speciesʼ relationship with 
the environment is the main focus of the study and SPM if the main focus is on predictions in 
geographical space. The general validity of a DM model in the ERM context and transferability 
of a model to areas outside the study area (i.e., its applicability for the PPM purpose) will de-
pend on the strength of the species’ overall ecological response to the explanatory variables 
in the model. Stronger patterns of more general validity can be expected to be associated with 
important complex-gradients with large variation at coarse spatial scales (regional gradients) 
than with less important gradients (local ecoclines and condition or impact ecoclines) with 
large variation at micro or fine local spatial scales (Table 2, Fig. 12). The different roles of ex-
planatory variables in specific-purpose ERM on one hand, and general-purpose ERM and SPM 
on the other, can, to some degree, be compared with the roles of fixed and random factors in 
generalised linear (mixed) modelling, GL(M)M: while explanatory variables in specific-purpose 
ERM and fixed factors in GL(M)M are included in models because the response to them is in 
itself of interest (in specific-purpose ERM because a relationship between the fixed factor and 
a proximal, or causal factor is assumed or inferred), explanatory variables in general-purpose 
ERM are of interest in an exploratory way and in SPM not of interest in themselves. In SPM, the 
explanatory variables are relevant only as far as they can explain significant variation in the re-
sponse. Similarly, random factors are included in GL(M)M mostly to secure appropriate statistical 
handling of samples of observation units that are not fully randomised. PPM is intermediate in 
this respect but perhaps, in practice, often closer to ERM than to SPM: good projections depend 
on the ability of the model to summarise generally valid relationships in ecological space and 
there is rarely any interest in the specific variables included in this model.

The parallel between general-purpose ERM and specific-purpose ERM on one hand and the 
terms general- and specific-purpose ecological studies, used to characterise studies of species 
composition (R. Økland 1996), indicates that the DM method has different roles in the two ERM 
purposes. In general-purpose ERM, the DM method plays an explorative role, parallelling that of 
indirect gradient analysis techniques, i.e., ordination methods, while in specific-purpose ERM it 
parallels that of direct gradient analysis techniques, i.e., constrained ordination methods. 

While in ERM the purpose is to understand distributions, SPM (and PPM) are directed at 
the end product, a best possible prediction (or projection) of performance. SPM and general-
purpose ERM mostly make use of all available explanatory variables (see, e.g., Franklin 2009). 
Typically, the SPM purpose is coupled with intended practical use of the model, e.g., the search 
for new localities of rare species (e.g., Guisan et al. 2006a, Marage et al. 2008, Parolo et al. 2008) 
or efficient, model-based placement of sampling units for monitoring rare natural phenomena 
(Schmieder & Lehmann 2004, Peters et al. 2009, Jones et al. 2010).

The SPM and ERM purposes are not mutually exclusive, but represent a continuum of 
purposes that range from applied interest primarily in obtaining good spatial predictions of 
the distribution of a modelled target, i.e., relationships in geographical space, to interest in 
general aspects of the relationship of the modelled target to specific gradients in ecological 
space. General-purpose ERM takes an intermediate position on this gradient, although sharing 
with specific-purpose ERM the main focus being on Steps 7–8 in the 12-step DM process. ERM 
and SPM may represent different phases in research on distributions, SPM is important in a 
descriptive, or ‘α’, phase, while ERM (and partly also PPM) is important in a ‘β’ phase in which 
understanding of relationships and assessment of their general validity is the main focus. These 
phases may follow each other within one single DM study, in which DM results from analyses 
undertaken to obtain good spatial predictions for the modelled target (the SPM purpose) trigger 
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interest in general patterns of the modelled target’s overall ecological response to distribution-
limiting factors (the ERM purpose). Even more common is the use of DM with a dual purpose, 
i.e., to obtain good spatial predictions and, at the same time, get new insights into the distribu-
tion of the modelled target and its potential causes.

The ‘gradient of DM purposes’ from ERM to SPM is discussed by Jiménez-Valverde et al. 
(2008), who refers to it as ‘the potential-realised distribution gradient’ (cf. discussion of the 
terms ‘potential’ and ‘realised’ above). According to Jiménez-Valverde et al. (2008) the position 
of a distribution model along this gradient is determined by characteristics of the data used for 
DM and the DM approach chosen. In my opinion, the order of these issues should be reversed: 
the purpose should guide choice of data model and statistical model in DM.

Review of some conceptual models for distribution modelling

Conceptual models are diagrams or, more generally, ̒ frameworksʼ, that summarise relationships 
between ‘factors’ that, mostly in complex ways, influence targeted phenomena such as species. 
Such modelling frameworks may be informal (Pearson & Dawson 2003) or built according to 
formalised rules (Grace et al. 2010). Many and widely different conceptual models have been 
proposed for DM (e.g., Franklin 1995: Fig. 1; 2010: Fig. 3.4; Guisan & Zimmermann 2000: Fig. 
3; Pulliam 2000: Fig. 1; Pearson & Dawson 2003: Fig. 4; Guisan & Thuiller 2005: Fig. 1; Soberón 
2007: Fig. 1, 2010: Fig. 1; Hirzel & Le Lay 2008: Fig. 1; Barve et al. 2011: Fig. 1; Peterson et 
al. 2011: Fig. 3.1, Table 3.1). One of the most important roles of conceptual models is to assist 
development of theory (e.g., Guisan & Zimmermann 2000, Austin 2007, Peterson et al. 2011).

A frequently encountered type of conceptual model, also for DM, is a ‘flowchart’ with 
the realised distribution of a species (often termed the ‘fundamental niche’) as its endpoint. 
Flowchart models summarise anticipated (mechanistic) relationships between all factors 
that are assumed to influence the distribution of the target species, directly or indirectly (e.g., 
Franklin 1995, Guisan & Zimmermann 2000, Guisan & Thuiller 2005). Flowchart models, which 
are informal parallels to the structural equation meta-models constructed in initial phases of 
structural equation modelling (SEM), may be useful in initial stages of conceptualisation, but 
fail to address the nature of relationships between explanatory variables and response. SEM 
is a powerful tool for analysis of complex dependencies among explanatory variables which 
may influence a response variable, as demonstrated by Grace & Pugesek (1997), Grace (1999) 
and Grace et al. (2010). However, Austin (2007) concluded that SEM is likely to be of limited 
relevance for DM; because of its restrictive assumptions of linear relationships between inde-
pendent variables used to parameterise the model and the response, and multivariate normal 
distribution of errors; and because large data sets are needed.

Pearson & Dawson (2003) propose a ‘hierarchical modelling framework’ in which the de-
pendence of a species’ distribution on different factors and processes at different spatial scales is 
conceptualised. Their framework is explicitly built on theories of a hierarchical structure of eco-
logical systems. Pearson & Dawson (2003) illustrate the proposed framework by a hypothetical 
example species, the distribution of which is determined by ‘suitable climate’ at regional spatial 
scales, by ‘suitable land-cover’ at some finer scale, and by ‘reduced biotic competition’ at even 
finer scales. The conceptual model shows idealised distributions in geographical space, visual-
ised at two spatial scales. An essential element of the framework of Pearson & Dawson (2003) 
is that higher levels constrain lower levels, i.e., that variation at broader spatial scales constrain 
variation at finer spatial scales. Pearson & Dawson (2003: 369) consider their framework as ‘a 
useful starting point for approaching the extreme complexity of the natural system’ and state that 
‘validating the scale dependencies outlined [and] ... identifying appropriate scales of analysis for 
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different environmental drivers ... should be the focus of further research’. However, except for 
the obvious that climatic factors impact species distributions on regional spatial scales, Pearson 
& Dawson (2003) do not elaborate their framework into a more complete conceptual model 
by incorporating knowledge of responses to other important complex-gradients (or ecoclines) 
with large variation in finer spatial scale intervals. Pearson et al. (2004) apply this hierarchical 
approach to practical DM, starting with modelling of broader-scaled response patterns and 
ending with modelling of finer-scaled patterns nested within the former.

Another conceptual model for DM, first proposed by Soberón & Peterson (2005), has 
been elaborated step by step, first by Peterson (2006), thereafter by Soberón (2007, 2010) 
and, finally, by Peterson et al. (2011). This model is described as ‘a heuristic representation of 
factors affecting the distribution of a species’ (Soberón 2007: 1118) and as ‘a heuristic scheme 
... to describe some of the results of the interacting factors determining a species distribution ... 
[in] an abstract representation of the geographical space’ (Soberón 2010: 161). Soberón (2010), 
Barve et al. (2011), and Peterson et al. (2011) use the name ‘BAM diagram’ for this model, which 
is named after the three intersecting regions A, B and M in abstract geographical space, the size 
of each of which determines the target speciesʼ distribution.

A basic assumption of the BAM model is that the fitness of a population is affected by 
variables of two kinds, ‘scenopoetic’ and ‘bionomic’ (Soberón’s definitions of these terms are 
discussed above). A and B denote regions in abstract geographical space, with combinations of 
scenopoetic and bionomic variables, respectively, in which the species has positive predicted 
fitness. The BAM diagram visualises relationships in abstract geographical space but relies on 
knowledge (or models) of relationships in environmental variables space. The region in abstract 
geographical space in which source populations, i.e., populations with positive fitness (Pulliam 
2000), of the species may possibly occur, is A∩B, the intersection of A and B. The M region is 
included in the model to account for absence of the species from subregions within A∩B due 
to lack of dispersal. Thus, G0 = A∩B∩M is the region in abstract geographical space in which 
source populations of the species are expected to be found, while G1 = (A∩B)|M, the intersec-
tion of A and B, not included in M, is the region outside the actual distributional area in which 
new source populations may establish, and M|(A∩B) is the region in which sink populations 
may be found.

The BAM model is open to criticism for relying on unclear concepts of the niche, and for 
untenable divisions into scenopoetic and bionomic factors on one hand and into resource, direct 
and indirect environmental gradients on the other. Nevertheless, the BAM model represents a 
novel way to conceptualise the influence of important, principally different, factors on a species’ 
distribution. Soberón (2010) [also see Barve et al. (2011)] uses the BAM model as a conceptual 
basis for simulation studies, undertaken to show that, at ‘coarse resolutions’ (corresponding to 
regional spatial scales, cf. Fig. 4), the effects of bionomic variables are adequately ‘explained’ 
by important scenopoetic (environmental) factors. This result, which is in accordance with the 
empirical evidence for low importance of interspecific interactions at regional spatial scales (see 
Fig. 12a), demonstrates a need for conceptual models for DM that take spatial scale intervals at 
which variation is large explicitly into account. 

The need for incorporating more of nature’s complexity into conceptual modelling frame-
works for DM does not stop with scale relationships; much of the knowledge of ecoclines and 
structuring processes summarised in the ̒ natural variationʼ chapter of this essay review is direct-
ly relevant for conceptualising major steps in the DM process. For instance, conceptual models 
should distinguish between effects of interspecific interactions, positive and negative, that vary 
in a systematic manner along important complex-gradients and, thus, that can be predicted from 
values for proxies for relevant ̒ gradientsʼ, and other effects of interspecific interactions that can 
only be predicted from knowledge of the interacting species’ performance as such. Modelling of 
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the performance of species with strong mutualistic or parasitic relationships to other species 
exemplifies a case in which modelling results may be considerably improved by incorporation 
of known presence of the symbiont or the host as explanatory variables. Furthermore, a good 
conceptual model should account for variation due to demographic processes.

HED: a new conceptual framework for species distribution modelling based upon the gradient 
analytic perspective

In order to accord with insights of the gradient analytic perspective and the main conclusions 
in the preceding discussions about ecological models, I argue that a good conceptual model for 
species distribution modelling (SDM) should take the following points into account:

1.	 Variation in species’ performance occurs along several environmental complex-
gradients and is due to the impacts of multiple structuring processes.

2.	 Variation in aggregated performance of a species along each major complex-gradient 
normally results from the impacts of many structuring processes, of which some influ-
ence species’ performance in a context-dependent and some in a context-independent 
manner. Context-dependence here means that variation can be related to each major 
complex-gradient or differs between complex-gradients, while context-independence 
means ‘background’ stress or disturbance, the intensity of which is weakly or not at 
all related to major complex-gradients. Accordingly, major environmental complex-
gradients and ecoclines can therefore not be divided into categories by the structuring 
processes responsible for the variation in aggregated performance along them.

3.	 Each major environmental complex-gradient and the structuring processes responsible 
for variation along them can be characterised by the spatial scale interval in which 
variation in speciesʼ performance is large. Although ecoclines cannot be divided into 
disjunct groups according to scale relationships, there are good reasons to consider 
a tripartition into:

i.	 regional ecoclines with large variation at regional spatial scales;
ii.	 local ecoclines, with large variation at local or micro spatial scales; and
iii.	condition or impact ecoclines, with large variation at fine temporal scales.

4.	 Lack of dispersal into new sites explains speciesʼ distributions on all spatial scales 
while other demographic processes, i.e. within-population demographic processes 
and space limitation, explain absence from otherwise suitable sites mostly at fine local 
and micro spatial scales.

5.	 The impact of interspecific interactions on the performance of immobile organisms 
not obligately dependent on other organisms, e.g., mutualism or parasitism, is mostly 
expressed on moderate or fine local and micro spatial scales.

6.	 Interspecific interactions may enhance (positive interactions) or reduce (negative 
interactions) the performance of an organism compared to its performance in the 
absence of interactions with other species.

7.	 Applied to variation in species’ performance, the hierarchical principle of natural vari-
ation implies that higher levels, such as regional spatial scales, constrain lower levels, 
such as local and micro spatial scales (Kotliar & Wiens 1990, Wu & Loucks 1995). 
This calls for a top-down approach to distribution modelling (Whittaker et al. 2001, 
Pearson & Dawson 2003).
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A new conceptual modelling framework for DM that takes these points into consideration, the 
HED framework, is exemplified in Fig. 13. This modelling framework is inspired by previously 
published conceptual models for GA and for DM, in particular the species response models by 
Ellenberg (1953), Whittaker (1967) and Austin (1980, 1987, 1990, 2005, etc.), by the scale hi-
erarchical framework for DM by Pearson & Dawson (2003), and by the BAM model of Soberón 
(2010) and Peterson et al. (2011). However, the HED framework differs from any of those by 
integrating species’ overall ecological responses to major environmental complex-gradients in 
ecological space over a range of spatial scales with distribution in geographical spaces.

The new conceptual modelling framework makes use of three types of diagrams for each 
spatial scale interval: 

1.	 The heuristic factor diagram, or H-diagram; a heuristic representation of factors that 
affect site suitability and accessibility in abstract geographical space [the heuristic 
factor diagram is a parallel to the BAM model of Soberón (2010)].

2.	 The ecological response curves, or E-curves; one model for the overall response of the 
modelled species to each major complex-gradient, i.e., in ecological space, with indica-
tion of the relative importance of structuring prosesses.

3.	 The distribution map, or D-map; the spatial realisation of the response in concrete, 
rasterised geographical space, upon which model predictions are superimposed.

Coarse regional scales. At coarse regional spatial scales, performance variation is explained 
primarily by regional, climatic, ecoclines (Fig. 13b–c). This important result from gradient analy-
sis is corroborated by several DM studies which unequivocally point to the climatic variables 
contributing to the regional ecoclines ̒ bioclimatic zonesʼ and ʻbioclimatic sectionsʼ (Table 1) as 
the only, or the most important, explanatory variables for explaining performance variation in 
the regional spatial domain (Austin & Leathwick 2001, Pearson et al. 2004, Skov & Svenning 
2004, Parviainen et al. 2008, Wollan et al. 2008). The speciesʼ long-term average maximum 
fitness in grid cells of the conceptualised study area (cf. Step 4 in the 12-step DM process; Fig. 
8) can, if known, be used to divide the observation units into three subsets that are illustrated 
in the H-diagram in Fig. 13a:

ER+ : sites in which the species has positive fitness and thus may maintain source popula-
tions
ER– : sites in which the species has low negative fitness but may occur for shorter or longer 
periods as sink populations
ER0 : sites in which the species has too low negative fitness to establish, even for a shorter 
period, and hence fails to occurs

The idea of illustrating fitness variation in conceptual geometric spaces is borrowed from Hirzel 
& Le Lay (2008: Fig. 1), who show variation in the fitness of a hypothetical species in rasterised 
geographical space, corresponding to the D-map, and in ecological space, corresponding to a map 
representation of relationships which in the HED framework are expressed by the E-curves. 

The important role of dispersal (and lack of dispersal) for the speciesʼ access to habitable 
sites, and hence for occurrence patterns at regional spatial scales, is illustrated in the H-diagram 
(Fig. 13a) by the division of the abstract geographical space into two compartments: D that 
consists of sites accessible to the target species within a relevant time period, and DC, the inac-
cessible complement of D. Criteria for sorting sites into subsets based upon ER and D coincide 
if all habitable sites in the study area are accessible. Fig. 13a illustrates the alternative case of 
non-coincidence between D and ERT, where ERT is the union of ER+ and ER–; ER+ ∪ ER–. The 
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intersection between ERT and D, ERT∩D, is the extent of occurrence of the species. At regional 
spatial scales, the species may be absent from individual grid cells within the extent of occur-
rence because of limited physiological tolerance to background factors or lack of dispersal to all 
accessible and habitable sites (see Fig. 12a). Common species, i.e., species with generally high 
local abundance, are likely to be present in most observation units (regional-scale grid cells) as 
a consequence of the positive abundance-occupancy relationship, while rare species are likely to 
be absent from a higher percentage of grid cells, e.g., due to very specific demands with respect 
to local ecoclines (e.g., Skogen 1973, Elvebakk et al. 1994) and/or condition or impact ecoclines 
(e.g., Lennartsson & Svensson 1996, Kruys et al. 1999, Berglund & Jonsson 2001, Oostermeijer 
et al. 2002). Figs 13b–c show E-curves for a hypothetical species with respect to two regional 
ecoclines. The shapes of these curves depend not only on the speciesʼ relationship with the 
gradient in question, but also on the extent of the study area. Fig. 13d shows the D-map for a 
hypothetical, relatively rare species.

Medium local scales. Within the extent of occurrence of the species, regional ecoclines 
gradually lose importance as explanatory variables for species performance variation when the 
spatial domain is shifted from the coarse regional to finer spatial scales. At medium local spatial 
scales (Fig. 13e–h), local ecoclines (EL sets in Fig. 13e) are the major determinants of species’ 
performance. If the speciesʼ long-term average maximum fitness in grid cells of an appropriately 
conceptualised study area is known (Fig. 13h), and fitness is incluenced by local ecoclines only, 
the sites can be divided into three subsets, EL+, EL–, and EL0, as explained above for regional 
ecoclines (ER). The speciesʼ performance at the medium local spatial scale is, however, in all 
but exceptional cases also influenced by condition or impact ecoclines (ES sets in Fig. 13e). The 
influence from condition or impact ecoclines may be more or less independent of the influence 
by local ecoclines. Assuming that the speciesʼ maximum fitness under favourable local environ-
mental conditions, i.e., positions along local ecoclines near the species’ optimum, is known for 
all grid cells, and that fitness is influenced by condition or impact ecoclines only, the sites can 
be divided into three subsets, ES+, ES–, and ES0. Accordingly, based upon the combined effects 
of local and condition or impact ecoclines, but disregarding eventual effects of interspecific 
interactions, the following regions in the H-diagram can be recognised:

EL+∩ES+: sites in which the species has positive fitness and thus may maintain source 
populations
(ELT∩ES–)∪(EL–∩EST): sites in which the species has low negative fitness but may occur 
for shorter or longer periods as sink populations
(ELT∩EST)C: sites in which the species has too low negative fitness to establish, even for 
a shorter time, and hence fails to occur 

	
At medium local spatial scales, the species’ performance can be influenced by several sub-
categories of interspecific interactions. The magnitude of these influences may, but do not 
necessarily have to, be predictable from positions along major, local and condition or impact, 
ecoclines. The New Zealand trees example of Leathwick & Austin (2001), referred in the section 
ʻImportance of structuring processes at different spatial and temporal scalesʼ, illustrates the 
case of apparent non-predictability. Furthermore, at the medium local spatial scale, distributions 
of species with larger individuals are more likely to be influenced by interspecific interactions 
than distributions of species with smaller individuals. One possible outcome of influence by 
interspecific interactions, illustrated in Fig. 13e, is enlargement of the region in which viable 
populations occur (positive fitness) because of positive interactions with another species, IP. 
The region in the H-diagram in which the species has positive fitness because of this positive 
interaction is denoted I(EL+∩ES+). Two sites in which the species maintains viable populations 
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due to the interaction with IP are shown by blue dots in Figs 13e and 13h. If negative interac-
tions with a species IN are in operation, I(EL+∩ES+) is expected to be reduced compared to the 
situation in which negative interactions are unimportant (this is illustrated for the micro spatial 
scale in Fig. 13i). Furthermore, the region in which the species has low negative fitness but may 
occur for shorter or longer periods as sink populations because of interaction with IP, is denoted 
I(ELT∩EST). The modifying effects of condition or impact ecoclines and interactions with other 
species on the target species’ overall ecological response to one local ecocline are illustrated in 
the E-curves in Fig. 13f, while Fig. 13g shows the E-curves for response to another local ecocline 
for which no such modifying effects are in operation. The species may be present or absent from 
individual grid cells within the extent of occurrence at local spatial scales for several reasons, of 
which within-population demographic processes are expected to be the most important (Fig. 
12b). However, limited physiological tolerance to background factors and lack of dispersal to 
all sites within the area of extent may also contribute to absence at this spatial scale (Fig. 12b, 
Table 2). Fig. 12h shows the D-map for a hypothetical, relatively rare species.

Micro scales. Species with small individuals may also show variation in performance at 
micro spatial scales, e.g., within one cell of the grid used to address variation at the medium local 
spatial scale (Fig. 13h) in which the species is present. At micro spatial scales, local ecoclines 
(EL sets in Fig. 13i) may still be the major determinants of the species’ performance (Fig. 12c); 
several examples of local ecoclines with large variation also at micro scales are given in Table 1. 
If the speciesʼ long-term average maximum fitness in grid cells of an appropriately conceptua-
lised study area is known for all grid cells (Fig. 13l), and fitness is influenced by local ecoclines 
only, the sites can be divided into three subsets, EL+, EL–, and EL0, as explained above for the 
local spatial scale. The performance of the species at micro spatial scales may be influenced by 
condition or impact ecoclines, but such influences are not taken into account in the example 
in Fig. 13. Towards micro spatial scales or, for larger-sized species such as trees, towards local 
spatial scales with grain size approaching the dimension of full-grown individuals, interspecific 
interactions are likely to influence the species’ performance increasingly strongly while at the 
same time the magnitude of this influence becomes less and less predictable from positions 
along major ecoclines. Two possible outcomes of influence by interspecific interactions, illus-
trated in Fig. 13i, are partial enlargement of the region EL+ in which populations with positive 
fitness may occur because of positive interactions with a species IP, and partial contraction of 
this region due to negative interactions with a species IN. An example of complex, interacting 
influences of the two species IP and IN on the fitness of the target species, is illustrated in Fig. 
13i by the regions I(EL+) in which fitness is positive and by the region I(EL–), which is charac-
terised by low negative fitness so that sink populations may be found. The modifying effects of 
interactions with other species on the target species’ overall ecological response to two major 
local ecoclines are illustrated by the E-curves (Figs 13j–k). At micro spatial scales, species are 
absent from grid cells mostly because of space limitation and within-population demographic 
processes. The exact spatial scale interval in which variation is large, at which space limitation 
becomes a major structuring process, depends on the size of individuals of the target species. 
Fig. 13l shows the corresponding D-map for a hypothetical, relatively rare species.

Assessment. The HED framework, illustrated for plants and other low-mobile organisms in 
Fig. 13, summarises patterns of variation in the performance of species in conceptual ecological 
and geographical spaces and also illustrates the major processes expected to be responsible for 
these patterns. The framework can inform several steps in DM studies:

1.	 In Step 1, problem formulation and specification, the framework can guide formulation 
of a realistic meta-model of the main processes supposed to influence the distribution 
of the target species at different scales, and the relationships between these factors.
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2.	 In Step 3, collection of explanatory data, the framework can guide decisions about 
which explanatory variables are important for the modelled target.

3.	 In Step 4, conceptualisation of the study area, the framework can guide decisions about 
study-area extent and grain.

4.	 In Steps 5,ii and 7, the E-curves provided by the framework can provide background 
for decisions about how to transform explanatory variables, for choice of modelling 
method, and how the model should be specified.

5.	 In Step 10, model evaluation, to jugde if modelling results are reasonable from a theo-
retical point of view.

Emphasising the scale dependency of distributional patterns, the HED framework conceptualises 
a top-down hierarchical approach to practical distribution modelling, in line with the proposal 
of Pearson & Dawson (2003), and in line with similar ideas expressed, among others, by Gibson 
et al. (2004), Pearson et al. (2004), Austin (2007) and Franklin (2009).

Extending the HED framework to modelled targets other than species

The HED framework for species distribution modelling rests on solid, empirically based evidence: 
on environmental complex-gradients (and ecoclines) that are important on different spatial 
and temporal scales; on shapes of speciesʼ overall response curves to these gradients; and on 
processes responsible for these patterns. Thus, how far the HED framework can be extended 
to other natural phenomena depends on the degree to which the gradient analytic perspective 
applies to them. In this chapter I address the relevance of the GAP and the HED framework to 
some natural phenomena other than species.

The category of targets, species excepted, which has most often been subjected to DM, is 
nature types or land-cover types in the widest sense, including typologies for communities and 
ecosystems. A multitude of land-cover typologies exist, which are based upon different para-
digms (e.g., Whittaker 1962, Økland 1990a, van der Maarel 2005). Because natural variation 
to a large extent is continuous along continuous environmental complex-gradients (McIntosh 
1967, Whittaker 1967, Økland & Bendiksen 1985, Økland 1990a, Austin 2005), I use the terms 
‘type’, ‘typology’ and ‘typification’ throughout, rather than ‘class’ and ‘classification’.

From the GA perspective, the most important properties of a type system are: (1) how 
predictable the hypervolume in ecological space occupied by each type is, i.e., how predictable 
the aggregated performance of the type is from positions along major environmental complex-
gradients; and (2) how large the hypervolume spanned by each type is. Predictability and 
hypervolume dimensions depend on the criteria used to define the types, i.e., the principles 
of typification on which the system is based. Three different principles of typification, that are 
expected to differ in these respects, can be identified:

Vegetation types defined by dominance of one or a few plant species (dominance types; Whit-
taker 1962, 1978). Species respond to environmental complex-gradients and dominance types 
may therefore, in principle, be restricted to specific intervals along major complex-gradients. 
Dominant species tend to have broad amplitudes along the major environmental complex-
gradients – typically they are core species according to CURS model terminology (Collins et al. 
1993) – and, accordingly, occupy large hypervolumes in ecological space. This is examplified by 
Vaccinium myrtillus along the ʻlime richnessʼ ecocline in boreal non-wetland terrestrial forests, 
which spans more or less the entire gradient (Fig. 14). Dominance by V. myrtillus thus does not 
give very specific information about where along the ecocline the site is situated. Dominance 
types defined by polythetic criteria, i.e., co-dominance by many species, are likely to occur over 
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a narrower range of environmental conditions than types defined by oligothetic (few-species) 
criteria, which are in turn likely to be restricted to a narrower range than types defined by 
monothetic (one-species) criteria. Predictability of dominance types is determined by: the 
magnitude of stochastic variation in the dominant(s)’ performance, e.g., due to demographic 
processes; the number of alternative dominants; and the intensity of interspecific interactions 
with other dominating species.

Vegetation types defined by a characteristic species combination, as typically exemplified 
by plant communities of the Braun-Blanquet or other phytosociological ‘schools’, the types of 
which are defined strictly by the species composition without any opening for taking environ-
mental conditions into account (see Whittaker 1962, Westhoff & van der Maarel 1978, Økland 
1990a). As with dominance types, predictability and hypervolume dimensions in ecological 
space depend on the floristic criteria used to define the types, which vary greatly between type 
systems (e.g., Whittaker 1962, Økland & Bendiksen 1985). However, being defined by dominat-
ing, constant, differential or otherwise characteristic species, plant community types occupy a 
hypervolume of limited extent in ecological space, which to considerable degrees is predictable 
from positions along major environmental complex-gradients. The sharpness of the borders of 
this hypervolume will depend on the strength of the environmental indication by the species 
that define the type. 

Site-types defined by characteristics of the species composition as well as position along 
major complex-gradients, i.e., defined by position along one or more gradients and, typically, 
operationalised by use of species as practical criteria for identification (Cajander 1913, 1921, 
Eneroth 1931, Økland & Bendiksen 1985, Halvorsen et al. 2009). Such site-types by definition 
occupy restricted intervals along one or more ecoclines. Predictability in ecological space de-
pends on the quality and precision of the criteria for separating types (Fig. 14).

Based upon these considerations, I hypothesise that overall ecological response curves 
(E-curves in the HED framework) for nature types will be unimodal and increasingly flat-topped 
(platykurtic), approaching plateau-shaped curves, with increasing emphasis on ecological con-
ditons in the definition of types [i.e., from (1) to (3)]. The dimension of the interval along each 
important environmental complex-gradient occupied by each type will depend on how broadly 
the type is circumscribed, which is, in general, predictable from the typesʼ positions in the hier-
archy of types. Types defined by vegetation, ‘habitats’, sites, land cover, or related phenomena, 
are social contructions [in the sense of Hacking (1999)] and thus cannot be claimed ‘natural’ 
[Whittaker (1951), Økland & Bendiksen (1985), Økland (1990a), Halvorsen et al. (2009); also 
see Austin (2005)]. Accordingly, the concept of structuring processes applies to nature types only 
indirectly via their impact on the species occurring in the types. In terms of the HED framework, 
this implies that the H-diagram and the D-map can be used to visualise patterns of nature-type 
distributions, and the role of environmental complex-gradients in explaining these patterns, in 
abstract and rasterised geographical spaces. The concepts of maximum fitness, accessible area 
(D), and impacts by interspecific processes, do, however, not make sense. Fitness should instead 
be replaced by a relevant measure of predictability, such as probability of presence.

Similar reasoning can be applied to other modelled targets, which I will illustrate by two 
examples. Bryn et al. (2012) used MaxEnt to model the upper potential climatic forest line (UP-
CFL) in Norway by use of environmental explanatory variables. The UPCFL is mainly climatically 
determined, occupying a very restricted interval along regional gradients (Aas & Faarlund 2000). 
This corresponds to a narrow-peaked, i.e., leptokurtic, E-curve. For UPCFL, only the regional 
scale and bioclimatic gradients are relevant. If observations of the empirical forest limit (EFL) 
had been used as response variable in the modelling, variation at local scales would also have 
been relevant. The HED framework might then, with adaptations, be useful for conceptualising 
effects of adverse local environmental conditions on EFL relative to UPCFL.
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The second example is the modelling of periglacial phenomena, i.e., cryoturbation, sporadic 
permafrost and sorted solifluction, by use of a set of environmental explanatory variables by 
Hjort & Marmion (2009), for a study area in N Finland. Because periglacial phenomena result 
from processes governed by variation along regional as well as local environmental complex-
gradients, periglacial phenomena can be expected to occupy a restricted hypervolume in eco-
logical space. The response to most of the relevant gradients is likely to be unimodal because 
periglacial phenomena arise as results of recurrent freezing and thawing cycles. This can be 
implemented as unimodal E-curves in the HED framework. Like for nature types, neither of 
the concepts of maximum fitness, accessible area (D), nor interspecific processes, make sense 
for the forest limit and periglacial processes, and fitness has to be replaced by a meaningful 
measure of predictability.

choice of data model

Collection and preparation of data for the modelled target (Steps 2 and 6)

Collection (Step 2 in the 12-step DM process; Fig. 8) and preparation (Step 6) of response vari-
ables from raw data for the modelled target have been extensively discussed in the literature 
and extensive documentation shows that the quality of response data strongly affects modelling 
results [e.g., see reviews by Franklin (2009) and Peterson et al. (2011)]. Factors that influence 
response-data quality can be divided into general factors and factors which may cause bias 
in the model of the overall ecological response obtained in Step 8 in the 12-step process. The 
former, which will only be briefly commented on here, include: (1) number of presence obser-
vations, more is generally better (Hirzel & Guisan 2002, Loiselle et al. 2008, Feeley & Silman 
2011); (2) detectability of the modelled target (MacKenzie et al. 2005, Kéry et al. 2010, Olea & 
Mateo-Tomás 2011); (3) determination errors (cf. Robertson et al. 2010); (4) other aspects of 
recording quality, i.e., errors in records of presence and/or absence of the target for reasons 
other than those mentioned in (2) or (3); (5) historical bias (Hortal et al. 2008, Feeley & Silman 
2011); and (6) spatial autocorrelation in the response variable (Segurado et al. 2006, Veloz 
2009, Chapman 2010, Merckx et al. 2011).

A gradient analytic perspective is useful for understanding how properties of data for the 
modelled target and response variables derived from these data result in bias in models of the 
overall ecological response. Basically, bias in models may result when the sample of observa-
tions of the response variable is not representative for the modelled targetʼs distribution in 
the study area. Two kinds of representativity, and associated sampling bias, can be discerned 
(Økland 1990a, Kadmon et al. 2003, Franklin 2009): (1) representativity in geographical 
space, i.e., that every potential observation unit in the study area has the same probability for 
being sampled; and (2) representativity in environmental space, i.e., that each interval of 
unit length along each environmental explanatory variable of interest is equally well covered by 
the sample. Sampling bias resulting from lack of representativity of the two kinds are termed 
geographical sampling bias and environmental sampling bias, respectively. Represen-
tativity in geographical space is typically achieved by systematic or random sampling, while 
representativity in environmental variables space can be achieved by stratified sampling, using 
environmental variables for stratification. Several sampling designs may be applied, e.g., gradsect 
sampling (Austin & Heyligers 1989) and restricted random sampling by randomisation within 
selected blocks (Økland 1990a, T. Økland 1996). Representativity in environmental space is 
considered essential in general-purpose gradient analytic studies, i.e., studies with the main 
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purpose to extract species compositional gradients and to interpret these gradients environ-
mentally (Økland 1990a).

Neither geographical nor environmental sampling bias need to result in inferior distribu-
tion models. Most distribution modelling methods are group discriminative methods (Mateo 
et al. 2010) by which environmental characteristics of observed presence observations are 
contrasted with those of background observations, a collective term used for uninformed 
observations, i.e., absences, random grid cells or pseudo-absence observations. Because the 
response variable is modelled as a function of the supplied explanatory variables in Steps 7 
and 8, the decisive factor for bias in models is performance distribution bias, i.e., systematic 
deviation of aggregated performance of the modelled target along environmental gradients, as 
estimated by use of a sample, from the true distribution of aggregated performance (cf. Elith 
et al. 2011). This explains why geographical bias in response data subjected to DM does not 
reduce the predictive performance of the model unless the geographical bias also entails per-
formance distribution bias (Loiselle et al. 2008). Good coverage of variation along important 
environmental variables by a sample of species observations made along unpaved roads, and 
climatic bias in samples of observations made along main roads, explain differences in the 
quality of distribution models built from the respective types of data [compare McCarthy et al. 
(2011) and Kadmon et al. (2004)]. 

Barry & Elith (2006) regard lack of real absence observations as a shortcoming of presence-
only (PO) data, but from a GA perspective it is not the eventual lack of absence observations 
as such, but performance distribution bias in the set of observed presence observations, as 
contrasted with the set used as background observations, regardless of these being real ab-
sences, random grid cells or pseudo-absences, which is the potential source of bias in models. 
Thus, Elith et al. (2011) maintains that the only basic difference between presence/absence 
and presence-only data is that the latter does not provide information about the prevalence of 
the modelled target. Nevertheless, comparative studies of distribution models obtained from 
different sets of response variables for the same modelled target show that models based 
upon random or systematic sampling are generally better than models based upon selectively 
sampled data (Edwards et al. 2006), and that representativity in environmental space affects 
model performance (Kadmon et al. 2003).

Selectively sampled observations of observed presence, e.g., obtained from museum collec-
tion databases, are known to be burdened with geographical and environmental bias as well as 
performance distribution bias (e.g., see Loiselle et al. 2008, Robertson et al. 2010). Theoretical 
reasoning therefore suggests that use of target-group background observations will improve 
distribution models because ‘target-group background may be interpreted as a random sample 
from the (biased) sampling distribution’ (Phillips & Dudík 2008: 173). The term ʻtarget-group 
background observationsʼ is used to denote background observations with similar bias as a set 
of observed presence observations, chosen to reduce performance distribution bias. A typical 
example of a relevant target group (Anderson 2003) from which to pick background observa-
tions is observed presences recorded for all species in the genus to which a targeted species for 
DM belongs, obtained from the same museum collections database. Comparative analyses have 
confirmed that target-group background observations improve distribution models (Phillips 
& Dudík 2008, Phillips et al. 2009, Mateo et al. 2010), and several studies have demonstrated 
that the method used for choosing pseudo-absence observations affect DM results (Lütolf et al. 
2006, Lobo 2008, Stokland et al. 2011). Use of target-group background observations in DM is 
further discussed in the chapter on model evaluation.

Performance distribution bias is likely to be more detrimental to DM when the purpose 
is ecological response modelling (ERM), i.e., to find and understand general patterns in the 
overall ecological response of the modelled target to the supplied explanatory variables, than 
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when the purpose is spatial prediction modelling (SPM), i.e., to optimise the fit between model 
predictions and the true distribution of the modelled target’s performance in the study area. 
Let us assume that the modelling method is good in the sense that it accurately estimates the 
general pattern of variation in aggregated performance of the modelled target. Performance 
distribution bias in the response variable will then, inevitably, result in a biased model of the 
overall ecological response. From an ERM perspective, this is problematic as such, regardless 
of the predictive performance of the model. From an SPM perspective, this is not problematic 
if the predictive performance of the biased model is not lower than that of alternative models. 
Loiselle et al. (2008) found that that the relative predictive performance of DMs could not be 
predicted from type or amount of sampling bias. This should, however, not be taken as an argu-
ment for accepting data for the modelled target that has lower quality than what can possibly 
be achieved. Care should therefore be taken to improve all steps in the process by which raw 
data are filtered to obtain the response variable. Thus, Peterson et al. (2011: 67) state ʻthat oc-
currence data are not simple documentations of speciesʼ presences and absences, but rather 
the result of complex filtering by very diverse processes. This complexity must be considered 
early in the design of each study ... as a means of ... avoiding the classic “garbage in, garbage 
out” situationʼ.

Collection of explanatory data (Step 3)

The choice of explanatory variables strongly impacts the result of DM, as pointed out by Araújo 
& Guisan (2006) and demonstrated by Austin et al. (2006), Coudun et al. (2006), Lassueur et al. 
(2006), Parolo et al. (2008), Syphard & Franklin (2009), Austin & van Niel (2011b) and Synes 
& Osborne (2011). With some noticeable exceptions, e.g., Austin & van Niel (2011b: 9) who 
conclude that ʻexplicit statements justifying the selection of predictors based on ecological 
principles are neededʼ, questions related to the choice of explanatory variables for DM such as 
which variables to choose and which categories of variables are relevant, have received much 
less attention than, for instance, questions related to the quality of data for the response variable 
and the relative performance of modelling methods (Franklin 2009). Because the explanatory 
variables serve different roles in ecological response modelling (ERM) and spatial prediction 
modelling (SPM), all judgements of appropriateness of different explanatory variables need to 
take modelling purpose into account. The role of explanatory variables in projective distribu-
tion modelling (PPM) depends on the specific purpose of the modelling [this will not be further 
addressed here, but see, e.g., Austin & van Niel (2011a) and Synes & Osborne (2011)]. 

In order to be relevant for ERM, an explanatory variable has to satisfy three conditions: 
(1) it represents an ecocline or a proximal structuring process such as an interspecific inter-
action or a demographic process, that is known or assumed to be responsible for variation in 
performance of the modelled target; (2) its relationship with an important ecocline or a proximal 
structuring process is, or is assumed to be, well understood and well-documented and strong; 
and (3) the response to this explanatory variable is of specific interest to the modeller. To be 
included in an SPM model, an explanatory variable has to satisfy one condition only: it must 
account for variation in a sample of rasterised observations of the modelled target that is not 
accounted for by other variables.

I distinguish three categories of explanatory variables which differ with respect to rel-
evance for each of the ERM and SPM purposes:

1.	 Environmental explanatory variables in the strict sense, i.e., variables used to represent 
(i.e., serve as proxies for) regional, local and condition or impact ecoclines. Environmen-
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tal explanatory variables used in DM are often derived from a primary data source, of 
which perhaps the most important is digital elevation models (DEMs). DEMs are used 
to calculate slope and aspect which can, in turn, be used to calculate more complex 
measures such as radiative input or a proxy for radiative input such as a ‘heat index’ 
(Dargie 1984, Parker 1988, Økland & Eilertsen 1993). Furthermore, topographic posi-
tion derived from DEMs can be used to estimate soil moisture, e.g., by the ‘topographic 
wetness index’ (Moore 1991, van Niel et al. 2004). Error is likely to propagate during 
the process of calculating complex indices from DEMs and other primary data sources, 
and the quality of the primary data is therefore critically important for explanatory 
variables derived from these data to be useful for DM (Franklin 1995, van Niel et al. 
2004, Lassueur et al. 2006, van Niel & Austin 2007). Airborne laser scanning (ALS) 
technology (e.g., Lefsky et al. 2002, Anderson et al. 2010, Murphy et al. 2011) may 
open for increased access to considerably improved, while at the same time cost-
efficient, DEMs in the near future. Thus, for instance, Korpela et al. (2009) were able 
to construct a surface topography model for a mire with an accuracy of 5–10 cm which 
comes close to the vertical differences (1–5 cm) at which Sphagnum and liverwort spe-
cies tend to replace each other along the depth-to-the-water-table gradient (Økland 
1986a, 1989b). Recent applications of vertical canopy profile information obtained by 
ALS also show that laserscanning data may be useful for constructing environmental 
explanatory variables for DM at medium local to micro spatial domains. For instance, 
the ability to identify individual trees by ALS (Næsset & Økland 2002, Holmgren & 
Persson 2004, Forzieri et al. 2009, Hill & Broughton 2009) opens for construction of 
good proxies for local radiation gradients. This may also open for improved models 
of variation along the ʻwater saturationʼ ecocline in forests, which is associated with 
the variation from underneath large trees and in dense forest to openings between 
trees (Økland & Eilertsen 1993, T. Økland 1996, T. Økland et al. 2003; also see Austin 
& van Niel 2011a).

I include in the concept of ‘environmental explanatory variable in the strict sense’ 
all explanatory variables that are used as proxies of regional, local and condition or 
impact ecoclines. Many of the local and condition or impact ecoclines listed in Table 
1 have, to my best knowledge, not yet been represented by explanatory variables in 
DM, even when the spatial domain addressed by the modelling and the geographical 
position of the study area suggest that these ecoclines are relevant. The same applies 
to many other ecoclines described in NiN (Halvorsen et al. 2009) The most likely rea-
sons for not including explanatory variables that represent these ecoclines are lack of 
recognition of their importance, difficulties in finding appropriate proxies for them, and 
difficulties in obtaining ‘wall-to-wall’ coverage for such proxies. Nevertheless, many so 
far unexploited opportunities are likely to exist, e.g., by using old data in new and crea-
tive ways. One example is provided by Marage et al. (2008) who combined Napoleonic 
cadastral maps and aerial photographs with information about land-use history and 
current stocking rates to construct management history variables that considerably 
improved SPMs of the rare herb Eryngium spinalba in the French Alps.

For SPM models, the appropriateness of strictly environmental, as well as of other 
types of explanatory variables, is pragmatically determined by each explanatory vari-
able’s ability to explain variation in the performance of the modelled target. For ERM 
models, however, availability of environmental explanatory variables that appropriately 
represent the major environmental complex-gradients is crucial. In many, or most, 
cases, the choice of a particular explanatory variable for ERM can be justified by refer-
ence to correlative studies that demonstrate importance of the ecocline in question, 
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e.g., for the group of organisms to which a targeted species belongs, and/or, in addi-
tion, by reference to a mechanism or process known to be important. Furthermore, an 
environmental explanatory variable that is not a proximal factor may be appropriate 
for ERM if it expresses variation in the intensity of an important structuring process 
that is not directly related to position along a major ecocline or if it can serve as a proxy 
for an important ecocline (e.g., Guisan & Zimmermann 2000, Austin 2007). The use of 
proxies in ERM needs particular attention. For DM results to express general patterns 
in speciesʼ overall responses to environmental complex-gradients, as required by the 
ERM purpose, the explanatory variables used in the modelling have to be good proxies 
for underlying, distribution-limiting factors, in general, and not only within a local area 
(Austin 2007, Austin & van Niel 2011b). This is most typically exemplified by topo-
graphic position, which is locally often strongly correlated with conditioning factors 
such as ʻwater saturationʼ and ʻdrought severityʼ (see the chapter ʻRegional, local and 
condition or impact ecoclinesʼ). However, as expressed in Boykoʼs ‘bio-geoecological 
law’ (Boyko 1947) and exemplified by, e.g., Nordhagen (1943), Økland & Bendiksen 
(1985), Økland (1990d), and T. Økland (1996), speciesʼ aggregated performance along 
such local topographic, e.g., ridge–depression, gradients, varies between regions be-
cause regional complex-gradients modify the relationship between the conditioning 
factors and local topography. Accordingly, modelled relationships with topography need 
to be interpreted within a broader, regional context, based upon good understanding 
of the ecological processes involved (Austin & van Niel 2011a).

2.	 Land-cover explanatory variables, i.e., categorical variables by which each point in the 
study area is uniquely allocated to one land-cover type. In contrast to environmental 
explanatory variables in the strict sense, which are relevant for DM because they di-
rectly represent the factors to which species respond, land-cover explanatory variables 
lack such a direct influence. Land-cover explanatory variables are relevant for SPM if 
they explain variation in the performance of the modelled target, for ERM if they serve 
as good proxies for major environmental complex-gradients or in other ways reflect 
variation in the intensity of an important structuring process. This will be the case if 
and only if the land-cover types, i.e., the ‘levels’ of the categorical land-cover variable, 
can be ‘translated’ into well-defined intervals along specific, major environmental 
complex-gradients. The degree to which this will be the case depends on the criteria 
used to define the land-cover types, as reflected in the principles of typification. The 
division of nature-type systems into three categories in the chapter ʻExtending the 
HED framework to modelled targets other than speciesʼ, is also relevant for land-cover 
variables used as explanatory variables in ERM for the reason that the two properties 
that characterise these categories are decisive for their value as explanatory variables. 
These two properties are: predictability in ecological space, and hypervolume dimen-
sions, i.e., the width of the intervals along major environmental complex-gradients 
spanned by the type.

Vegetation types, defined by dominance of one or a few plant species, constitute the 
least appropriate category of land-cover variables for use in ERM, typically giving an 
imprecise environmental signal (e.g., Odland 2009). Dominance types should therefore 
be used as explanatory variables in DM with great caution. In particular, this applies 
to ERM purposes. Vegetation types (plant communities) defined by a characteristic 
species combination typically give a more precise environmental signal. Because maps 
of vegetation types (vegetation maps) are available for many areas (e.g., Franklin 
1995, van der Maarel 2005, Bryn 2006) and provide ʻwall-to-wallʼ coverage, they are 
potentially attractive as a source of data for DM. The appropriateness of vegetation-
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type variables derived from vegetation maps for ERM depends on the strength of their 
environmental signal, i.e., the extent to which these types can be interpreted in terms of 
well-defined intervals along major complex-gradients which, as with dominance types, 
depends on the floristic criteria used to define the types. From a theoretical point of 
view, site-types defined directly by position along major complex-gradients in addi-
tion to characteristics of the species composition are more appropriate for DM than 
vegetation types because the former are expected to be more sharply characterised 
in environmental terms. Land-cover explanatory variables derived from nature-type 
maps are appropriate for ERM if a strong environmental signal follows from the defini-
tion of types and, in addition, criteria for discriminating between types are clear and 
well documented, and the site-type map has high cartographic precision. Maps based 
on site-types that consistently reflect variation along important local or condition or 
impact ecoclines such as ʻlime richnessʼ and that can be used to derive good proxies 
for important environmental complex gradients, are particularly valuable for ERM, 
because they can be used to provide variables with ʻwall-to-wallʼ coverage that are 
hard or impossible to obtain by direct measurement. Geological maps are typically 
operationalised as proxies for ʻlime richnessʼ in this way (e.g., Parviainen et al. 2008, 
Hemsing & Bryn 2012). 

Land-cover explanatory variables have been shown to improve the predictive power 
of distribution models, e.g., by Tingley & Herman (2009), Platts et al., (2010) and Zafra-
Calvo et al. (2010). For instance, in the study of observational data for 2604 vascular 
plants in Europe, rasterised to the coarse regional spatial scale by use of cells 50 × 50 
km, Thuiller et al. (2004) found that GAM models based upon climatic and land-cover 
explanatory variables explained more of the deviance than models based upon climatic 
data only. However, predictions from models with and without land-cover explanatory 
variables did not differ with respect to precision. This was interpreted by Thuiller et 
al. (2004) as an indication that climate was the main determinant of distributions at 
this spatial scale. Contrasting results have been obtained in studies of vascular plants 
by Parviainen et al. (2008) and Pearson et al. (2004), in which observational data 
rasterised to coarse local (500 × 500 m grid cells) and fine regional (1 × 1 and 10 × 
10 km grid cells) spatial scales, respectively, were used. In both studies, land-cover 
explanatory variables markedly improved distribution models for some species while 
not for others. A noteworthy result of both studies was that models for peatland spe-
cies were particularly strongly improved by incorporation of land-cover explanatory 
variables. This result was interpreted as due to the lack of other explanatory variables 
that ‘captured’ variation along the paludification gradient which is decisive for the pres-
ence or absence of these plants. This indicates that land-cover explanatory variables 
can contribute in important ways to the performance of SPM models, and potentially 
also to ERM models, as surrogates for environmental explanatory variables (in the 
strict sense) that are hard or impossible to measure directly.

‘Wall-to-wall’ coverage of land-cover information may be obtained by field surveys 
(traditional vegetation, or land-cover, mapping) or, in principle, more cost-efficiently, 
by analysis of remote sensing data [RSD; see Franklin (2009) for a comprehensive 
survey of sensor types and data and examples of explanatory variables that can be 
derived from them]. The value of explanatory variables derived from RSD depends on 
their quality (i.e., precision), their interpretability and their relevance, i.e., the degree 
to which they represent, and in the context of ERM can be interpreted as, proxies for 
important environmental complex-gradients. These issues are discussed in detail by 
Bradley & Fleishman (2008) who conclude that land-cover maps derived from RSD 
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are often inappropriate for DM, even if the modelling purpose is pragmatic and ap-
plied (SPM). They give three reasons why maps and explanatory variables derived 
from RSD may perform poorly in DM contexts: (i) they are not sufficiently detailed, 
(ii) they reflect variation along important environmental gradients too poorly, and 
(iii) they reflect important mechanisms too vaguely. Data derived from sensors like 
ALS may escape this criticism in cases where explicit spatial and/or environmental 
interpretation of the primary data is possible. 

3.	 Biotic explanatory variables, i.e., variables representing the performance of other spe-
cies, including information about species richness, production etc., have very rarely 
been used in DM. Noticeable exceptions are: Leathwick & Austin (2001), who studied 
tree species in New Zealand; Heikkinen et al. (2007), who studied four owl species in 
Finland; Araújo & Luoto (2007), who studied the European distribution of the butterfly 
species Parnassius mnemosyne; Meier et al. (2010), who studied tree species distribu-
tion in Switzerland; and Pellissier et al. (2010), who studied N Norwegian vascular 
plant species. 

Biotic explanatory variables are directly relevant for ERM modelling when spatial 
domains are addressed in which the presence of other species is known or suspected 
to influence the presence (or absence) of the modelled target, typically a species, di-
rectly. For small plants and other small organisms with low mobility, biotic variables 
are particularly relevant for ERM at fine local and micro spatial scales (e.g., see Fig. 
13). It should be noted that the expected response of a species to a biotic variable 
(performance of another species) is not unimodal, but monotonous. The monotonous 
relationship follows directly from the nature of interspecific interactions, the effect of 
which is known to be consistently positive, consistently negative or neutral.

The appropriateness of biotic explanatory variables for SPM depends, pragmatically, 
on each variable’s ability to explain variation in the performance of the target species. 
Meier et al. (2010) show that biotic explanatory variables can explain a substantial 
amount of variation in distribution models, and that there is little overlap between 
the variation explained by biotic and abiotic variables. Biotic explanatory variables 
are likely to be particularly relevant for SPM in the following two situations: (i) When 
the presence of one species is known to influence the performance of the target spe-
cies directly, by negative or positive interactions (Araújo & Luoto 2007). As in ERM 
and PPM, this is particularly relevant for SPM at fine local and micro spatial scales. (ii) 
When the presence of one species is a good indicator of sites in which the target species 
is present (e.g., because the indicator species has more or less the same relationship 
to the environment as the target species) or absent (e.g., because the indicator spe-
cies has a more or less complementary relationship to the environment as the target 
species). Use of the observed presence of another species with similar relationship to 
the environment as the target species as explantory variable has the potential, from a 
theoretical point of view, to improve SPM models particularly strongly in cases where 
the relationship of the ‘explanatory species’ to the environment is well known and the 
latter is more common, more throughly searched for, mapped with higher precision, 
or more easily detected, than the target species.

Biotic variables have been used in DM mostly to account for effects of negative 
interspecific interactions. However, as highlighted in the HED framework (e.g., see Fig. 
13), positive interactions should also be taken into account. An example of positive 
impacts by other species accounted for in distribution models, is the study by Heik-
kinen et al. (2007), showing that presence of woodpeckers significantly enhanced 
performance of four owl species in Finland.
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Conceptualisation of the study area: choice of spatial domain (Step 4)

‘Choice of spatial scale’ is stressed in almost all texts on DM methodology as highly important. 
Nevertheless, in practice the spatial domain is very often taken to be the one for which relevant 
rasterised explanatory variables are available. This practice has probably lead to distribution 
models that are in many respects suboptimal, as discussed among others by Guisan & Zimmer-
mann (2000), Austin (2007), Franklin (2009), Anderson & Raza (2010) and Barve et al. (2011). 
From a theoretical point of view and regardless if the purpose is ecological response modelling 
(ERM) or spatial prediction modelling (SPM), the spatial domain or domains to be addressed in 
a specific DM study should be determined after careful consideration of spatial scales at which 
the variation of the studied phenomena is large, and which explanatory variables are likely to 
be important for explaining this variation. The HED framework is likely to prove useful in this 
conceptualisation process.

ERM purposes are typically specific, such as modelling of the climatic envelope of a spe-
cies or modelling of a species’ response to explanatory variables that serve as proxies for local 
ecoclines. The appropriate scale domain (or domains) for specific-purpose ERM studies can 
often be determined directly from knowledge of the spatial scale interval in which variation in 
the modelled target is large and in which potentially relevant explanatory variables have large 
variation. The large majority of DM studies addresses regional spatial domains, some address 
coarse local spatial domains (e.g., Edwards et al. 2005, Marage et al. 2008), while few address 
the medium local domains (e.g., Guisan et al. 2006a, Lassueur et al. 2006, Parolo et al. 2008, 
Edvardsen et al. 2011). DM methodology appears not yet to have been applied to the fine local 
or micro scale domains, although analysis of performance patterns at these spatial scales may 
potentially fill large gaps in our knowledge about species’ responses to specific local ecoclines 
and the importance of interspecific interactions. One obvious reason why DM methods have 
not been used to address domains in the fine local scale intervals is the lack of easily available 
explanatory variables. General-purpose ERM studies require a top-down hierarchical model-
ling framework that starts with analyses of patterns at regional spatial scales and from there 
proceeds towards finer (local or micro) scales, guided by a conceptual modelling framework 
such as the HED framework outlined in Fig. 13.

The SPM purpose is typically associated with applied DM. The choice of spatial domain in 
SPM should therefore be guided by considerations of optimal choice of grain size from the point 
of view of the intended use of predictions from the model. However, in almost all practical cases 
limited resources constrain data availability and data quality and many compromises have to 
be made. The spatial domain therefore has to be chosen as the best compromise between what 
seems optimal from the user’s point of view, what is possible given available data, and what 
is optimal given the distributional properties of the modelled target. VanDerWal et al. (2009) 
and Stokland et al. (2011) show that the goodness-of-fit of SPM models, and the importance 
attributed to different explanatory variables, depends on the extent of the study (also see Barve 
et al. 2011). 

Insights from a carefully prepared framework of conceptual models like the HED frame-
work may provide valuable guidance in the process of finding good compromises with respect 
to choice of spatial domain.

Transformation of explanatory variables (Step 5,ii)

As a consequence of the third fundamental insight of the gradient analytic perspective, that 
species occur within a restricted interval along each major complex-gradient, overall ecological 



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 98

responses of species, nature types and many other natural phenomena with respect to major 
complex-gradients follow unimodal or truncated unimodal curves. Accordingly, distribution 
models have to account for complex, but realistic, response-curve shapes (Guisan & Zimmer-
mann 2000, Guisan et al. 2002, Franklin 2009, Dormann 2011). This task can be accomplished 
in several ways, of which transformation of explanatory variables is one. Some DM methods, 
as exemplified by machine learning methods such as random forests (RF) and boosted regres-
sion trees (BRT), handle complex, non-linear relationships between response and independent 
variables, as well as interactions between explanatory variables, implicitly in the modelling 
process (Elith et al. 2008, Hastie et al. 2009). However, most DM methods are, or are based 
upon, regression-type approaches by which the relationship between response and independ-
ent variables is described by a parameterised mathematical function. 

The two main categories of variable formats usually recognised by DM methods, con-
tinuous and categorical, are transformed by different procedures. Categorical variables can be 
transformed simply by reducing the number of factor levels (categories) to the smallest number 
of ecologically relevant classes (Franklin 2009); see discussion about the use of land-cover ex-
planatory variables in the chapter ̒ Collection of explanatory data (Step 2)ʼ. This transformation 
is, however, only occasionally applied in practical DM [but see, e.g., Parviainen et al. (2008) and 
Edvardsen et al. (2011)]. 

Continuous variables are treated differently by different methods. Some methods, such 
as generalised additive models (GAM) and DM methods derived from GAM, perform piecewise 
linear spline transformations as part of the modelling processes (Wood 2006). The large class of 
regression-based DM methods, to which generalised linear models (GLM) and maximum entropy 
models (MaxEnt) belong, are, however, constrained to parameterise a model by optimising the 
fit to the supplied explanatory variables. In the procedure implemented as default in the soft-
ware for MaxEnt modelling developed by Phillips and colleagues (Phillips et al. 2006, Phillips 
& Dudík 2008), each continuous variable is automatically transformed into a set of derived 
predictors of up to six basic types prior to analysis, as part of an automatted transformation, 
model specification and model selection procedure (Halvorsen in press).

Transformation of explanatory variables into derived variables that facilitate modelling of 
reasonable systematic relationships between response and explanatory variables in a flexible 
way, i.e., resulting in unimodal or truncated unimodal curves that may be skewed and/or kurtotic, 
can be accomplished in two principally different ways: (1) by representing each explanatory 
variable with a representative set of derived variables, and (2) by representing each explanatory 
variable with one more complex, derived variable. The term parametric spline (e.g., Hastie 
et al. 2009) is used for the latter case. The (set of) derived variable(s) are subjected to model 
selection (Step 8,i) followed by model parameterisation (Step 8,iii). A set of derived variables 
which meets the demands for flexibility of realistic response-curve shapes can be obtained in 
many ways, e.g., by deriving a set of polynomial functions of the explanatory variable, the degree 
of complexity of which is determined by the order of the polynomial (Heegaard 1997, Venables 
& Ripley 2002); by deriving a set of monotonous transformations of the explanatory variable, 
such as linear, quadratic, and hinge transformations (Phillips et al. 2006, Phillips & Dudík 2008); 
by using deriving other, non-linear, derived variables such as the zero-skewness transformation 
(R. Økland et al. 2001, 2003); or by including non-linear transformations such as ʻdeviation 
predictorsʼ. ʻDeviation predictorsʼ can, for instance, be obtained as the absolute value of the 
difference between the original value for the explanatory variable and the value at which the 
estimated aggregated performance peaks. Parametric splines are obtained as the fitted values 
of a regression model which specifies the relationship between the targeted response variable 
and the explanatory variable. Several response functions can be used, among others: the two-
parameter gaussian function (e.g., Gauch & Chase 1974, Westman 1980); the three-parameter 
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beta function with fixed species tolerances (Austin et al. 1994, Austin & Nicholls 1997); HOF 
models with up to four parameters (Huisman et al. 1993, Oksanen 1997, Oksanen & Minchin 
2002); and the five-parameter beta function (Oksanen 1997).

The importance of choice of transformation function for the quality of DM models appears 
not to have been systematically explored, despite the frequent recognition in the literature that 
this is an important issue (Guisan & Zimmermann 2000; Austin 2007, Franklin 2009). From a 
gradient analytic perspective, e.g., as implemented in the HED framework, this is most unfortu-
nate because of the core role of Steps 7–8 of the DM process by which overall ecological response 
curves are fit to explanatory variables. Choosing transformations that balance flexibility with 
realism is particularly important in ERM, while in SPM this is important as far at it influences 
the modelʼs predictive performance.

All explanatory variables and variables derived from those by transformation should be 
linearly transformed onto one standard scale before analysis in order to make relative variable 
values and model parameters comparable (Økland 1990a, Økland et al. 2001, Dormann 2011). 
This can be done in several ways, e.g., by standardisation by centering and division with the 
standard deviation, by which mean and standard deviation of the transformed variable are 0 
and 1, respectively, and by ranging (Gower 1967), by which the variable is linearly rescaled 
onto a scale with a minimum value of 0 and a maximum value of 1.

In DM methods of the regression type, choice of transformation is an integrated part of 
model specification (Step 7,ii).

Collection of presence/absence data for model calibration and evaluation (Step 9)

Model calibration (Step 10) requires, and model evaluation (Step 11) benefits strongly from, ac-
cess to a representative sample of presence/absence data that is collected independently of the 
data used to parameterise the model. Reasons for this are extensively discussed in the literature 
(e.g., see Guisan & Zimmermann 2000, Araújo et al. 2005, Araújo & Guisan 2006, Austin 2007, 
Peterson et al. 2011). In the present chapter, I will briefly discuss the meaning of independence 
and representativity in this context, and address some sampling issues.

The term ʻindependenceʼ, applied to two samples of observation units for a modelled 
target, can be understood in different ways. From a purely statistical point of view, independ-
ence means that observation units, of the two samples together, and within each sample, are 
independent replicates drawn from the same population of potential observation units (Pe-
terson et al. 2011). For a calibration/evaluation sample to be independent of the data used to 
parameterise the model addressed, neither the observation units of the calibration/evaluation 
sample itself (Araújo et al. 2005, Dormann et al. 2007, Veloz 2009), nor observation units in the 
data set used for model parameterisation can be spatially or temporally autocorrelated. Avoid-
ance of spatial autocorrelation can be achieved by separating observation units by a distance 
larger than the range of the spatial structure of the response variable used in the modelling 
(Veloz 2009, Stokland & Halvorsen 2011). True statistical independence of biological data sets 
is, however, almost impossible to achieve because spatially and temporally autocorrelated pat-
terns inevitably result from the demographic processes (Legendre 1993, Nekola & White 1999) 
which cause individuals and populations to persist, die or get extinct, and give birth to new 
individuals and populations. Collection of data for model evaluation therefore requires ʻcare 
... taken to assure that independence of samples is sufficient that model evaluation is reliableʼ 
(Peterson et al. 2011: 157). This also applies to data sampled for model calibration.

By relaxing demands on the degree of independence needed, in accordance with the 
suggestion by Peterson et al. (2011) as cited above, our attention is shifted from demands for 
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strict independence to demands for the sample to be representative for test calibration or test-
ing situation, and for the intended use of the model, as also suggested by Vaughan & Ormerod 
(2005). Three different kinds of representativity, corresponding to three different schemes for 
collection of calibration/evaluation data, may, in principle, apply: 

1.	 Representativity in geographical space, i.e., that every potential observation unit 
in the study area has the same probability for being sampled.

2.	 Representativity in environmental space, i.e., that each interval of unit length along 
each environmental explanatory variable of interest is equally well covered by the 
sample.

3.	 Representativity for the range of model predictions, i.e., that, within the range of 
model predictions, each interval of unit width along the scale at which predictions 
are expressed, is equally well covered by the sample.

I argue that it is the third kind of representativity that is relevant for calibration and evaluation 
of distribution models. Only by adequate representation of the entire range of sites along the 
gradient from unsuited to optimal for the modelled target, can the modelʼs full ability to predict 
the real probability of presence, which is addressed in two different ways by model calibration 
and model evaluation, be appropriately assessed (Araújo et al. 2005, Edvardsen et al. 2011). 
Demands for representativity for the range of model predictions can be met by stratified random 
sampling from the study area itself (e.g., Le Lay et al. 2010, Edvardsen et al. 2011, Stokland & 
Halvorsen 2011, Auestad et al. 2011) or, if the purpose is to test transferability of model pre-
dictions, from by use of a sample from another study area [e.g., see Randin et al. 2006)], using 
model predictions as stratification criterion. Le Lay et al. (2010) use the term ʻmodel-based 
field samplingʼ for this sampling scheme. Other sampling schemes, such as the use of selectively 
or preferentially sampled data, collected independently of the data used to parameterise the 
model (e.g., Marage et al. 2008, Newbold et al. 2010, Gogol-Prokurat 2011), come without any 
guarantee that geographical or environmental sampling bias is lacking or that the biases are 
different from those of the data used to parameterise the model. Furthermore, such data are 
unlikely to be representative for the range of modelled predictions. The value of model evalu-
ations based on such pseudo-independent data should be questioned.

STATISTICAL model

Choice of modelling method (Step 7,i)

MaxEnt and BRT are currently among the most popular DM methods (Franklin 2009). Their 
popularity rests on the combination of relative ease of use due to availability of user-friendly 
free software and published tutorials (e.g., Deʼath 2007, Elith et al. 2008, 2011, Phillips 2011), 
and good performance in extensive comparative tests of the methods’ ability to predict distribu-
tions in geographical space; see discussions of criteria for evaluation of DM methods by Elith et 
al. (2006), Hirzel et al. (2006), Lobo et al. (2008), and Franklin (2009), and references quoted 
therein. Reports from such tests indicate that more complex methods, i.e., methods that allow 
more flexible functions to be fit to the data, in general produce models with better predictive 
performance than simpler methods, and that the former produce models that fit the data too 
closely (Elith et al. 2006, Tsoar et al. 2007, Jiménez-Valverde et al. 2008, Santika & Hutchinson 
2009, Gastón & García-Viñas 2011, Michel et al. 2011, Webber et al. 2011). Results of, and recom-
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mendations from, these comparisons, are, however, only valid for the SPM purpose because only 
SPM models can be judged pragmatically by predictive performance in geographical space.

In fact, completely different sets of optimality criteria apply to ERM and SPM. The ERM 
purpose calls for a model that in the best possible way summarises the overall ecological 
response of the modelled target to the gradients(s) of interest, i.e., in ecological space. The ex-
pected overall ecological response to important environmental complex-gradients is a unimodal 
or truncated unimodal curve that may be skewed and/or kurtotic (Fig. 11). The ERM purpose 
thus calls for fitting of relatively simple, smooth functions like those fitted by DM methods of 
the regression type, such as generalised linear models (GLM) and generalised additive models 
(GAM). Austin et al. (2006: 203) list five criteria for judgement of distribution models, which 
were used to evaluate GLMs on a set of realistic, simulated data for species performance and 
explanatory variables: ʻ[1] correct selection of explanatory variables; [2] accurate description 
of species response curves to predictors; [3] correct prediction of species abundance for a 
given value of the predictors; [4] the ecological rationality of the modelled relationships; and 
[5] the level of skills necessary to successfully apply a statistical methodʼ. All of these criteria 
except (5) address performance in the ERM context, and all of the remaining criteria except 
(1), which typically applies to general-purpose ERM, apply equally to the two sub-categories of 
ERM. Demands for response models with shapes that accord with expectations from ecologi-
cal theory, simplicity, and appropriate parameterisation, are also emphasised as important for 
models with the ERM purpose by other authors, e.g., Austin (2007), Tsoar et al. (2007), and 
Jiménez-Valverde et al. (2008).

To comply with criteria (2) and (3), ERM models have to be explicitly parameterised, 
i.e., that the output from Step 8,iii has to be a mathematical function with coefficients that 
are explicitly estimated. Machine-learning methods like boosted regression trees (BRT), and 
other ensemble forecasting methods (e.g., BIOMOD), which are not explicitly parameterised, 
are therefore not appropriate for ERM. MaxEnt, which has been described alternatively as a 
machine-learning method (Phillips et al. 2008, Phillips & Dudík 2008) and as a statistical learn-
ing method (Elith et al. 2011), but which can alternatively be explained by strict application of 
the maximum likelihood principle (Halvorsen in press), is therefore appropriate both for ERM 
and SPM. 

Which method to choose for a particular DM study thus has to be decided after due con-
sideration of the main purpose of the study – whether it is ERM, SPM, or PPM. In addition, the 
specific problem formulated should be taken into account when the method is chosen (Franklin 
2009, Peterson et al. 2011).

Model specification (Step 7,ii)

The model specification step comprises decisions about the mathematical function that relates 
the response variable via the derived variables to the explanatory variables (e.g., Guisan & Zim-
mermann 2000, Franklin 2009). As pointed out in the chapter ʻTransformation of explanatory 
variablesʼ, model specification in methods of the regression type is largely performed implicitly in 
the process of choosing transformation of explanatory variables (Step 5,ii). In machine-learning 
methods, which provide no explicit parameterisation, no mathematical functional relationship 
needs to be specified.

One aspect of model specification which is important in DM methods of all kinds, is the 
treatment of interactions between explanatory variables. In statistical terminology, presence 
of an interaction between two explanatory variables means that the response to a combina-
tion of the two deviates from the expectations from separate models made for each variable. 
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In models of the regression type, interactions up to a threshold degree of complexity (second, 
third, fourth order, etc.) are modelled by including new variables for products of the explanatory 
variables that contribute to the interaction. In BRT, handling of interactions is controlled by the 
tree complexity parameter, the value of which corresponds to the order of allowed interactions 
(Elith et al. 2008). Opening for all combinations of high-order interactions in models with many 
explanatory variables results in extremely complex models. Franklin (2009) therefore recom-
mends that only interaction terms which are meaningful, based upon ecological theory, are 
included in distribution models. This recommendation accords with the ERM purpose while, 
from the SPM point of view, it can be argued that distribution models should be judged prag-
matically by their predictive performance and that interaction terms should be included if and 
only if they improve the modelʼs predictive capability. When interaction terms are included in 
models, also the main terms have to be included because interaction terms measure how the 
response to both variables at the same time deviates from the summed response to each vari-
able, modelled separately (Crawley 2007).

In ecological terminology, the term ̒ interactionʼ is typically used in a much wider meaning, 
to indicate the influence of one explanatory variable or a group of variables on another variable 
or variable group, in some way (e.g., Austin 2007). Existence of interactions in this broad mean-
ing of the term, can be revealed in many ways other than by including product variables in a 
model. Interacting effects of explanatory variables on the distribution of modelled targets can, 
for instance, be quantified by the variation partitioning approach. This is exemplified by Meier et 
al. (2010), who found that tree distributions in Switzerland were affected both by environmental 
and biotic explanatory variables, and that the overlap in the variation explained by these two 
groups of explanatory variables was small. Other examples of DM studies that document effects 
of interacting species on the distribution of modelled target species, are Austin & Leathwick 
(2001) for tree species in New Zealand and Heikkinen et al. (2007) for owls in Finland.

Model selection and overfitting of distribution models (Steps 8,i–iii)

The three tasks involved in modelling of the overall response – model selection (Step 8,i), internal 
model performance assessment (Step 8,ii), and model parameterisation (Step 8,iii) – are often 
integrated into one process by which parameterised models for many different combinations of 
explanatory variables are obtained and compared by internal model performance assessment 
criteria. The outcome of Step 8 is one best model or a set of alternative, good models. A multitude 
of model selection methods, model comparison criteria, and model performance statistics are 
available, many of which are tightly coupled with one specific, or a group of, modelling methods 
(e.g., see Reineking & Schröder 2000, Johnson & Omland 2004, Zuur et al. 2007, Claeskens & Hjort 
2008, Hastie et al. 2009). One example is the ratio of explained to residual deviance, weighted 
by the appropriate degrees of freedom, which is used for internal performance assessment of 
nested maximum likelihood models by the F-ratio test (e.g., Venables & Ripley 2002, Hastie et 
al. 2009), e.g., in combination manual forward stepwise selection of variables.

A general criterion for a good distribution model is that the model describes the phe-
nomena of interest in an efficient way. The exact meaning of this general statement depends on 
the main purpose of the DM study. A good ERM model describes the modelled targetʼs overall 
ecological response to specific explanatory variables (specific-purpose ecological response 
modelling) as adequately as possible, or identifies the most important explanatory variables 
and assists understanding of the distribution of the modelled target (general-purpose ecologi-
cal response modelling). Both sub-categories of the ERM purpose address identification and 
understanding of generally valid patterns, in ecological space. A good SPM model, on the other 
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hand, accurately predicts the performance of the modelled target in geographical space, e.g., 
as evaluated on independent evaluation data (Step 11). These criteria for good models, given 
modelling purpose, can be expressed in terms of internal and external model performance 
criteria as illustrated in Fig. 15: the best SPM model is the model with lowest prediction er-
ror and the best general-purpose ERM model is the model with lowest prediction error that 
fits overall ecological response curves which accord with expectations from gradient analytic 
theory. In terms of number of parameters in the model, the best SPM model is expected to be 
more complex than the best general-purpose ERM model.

The term ʼoverfittedʼ is often used in the literature to denote suboptimal models (e.g., 
Guisan & Zimmermann 2000, Araújo & Guisan 2006, Elith et al. 2006, Phillips et al. 2006, Elith 
& Leathwick 2009, Elith et al. 2011, Peterson et al. 2011). Few authors do, however, define this 
term explicitly. Vaughan & Ormerod (2005: 723) define ʻoverfittingʼ as the situation by which 
ʻidiosyncracies in the training data set are modelled in addition to the underlying species–envi-
ronment relationships ... result[ing] in misleadingly good fit to the dataʼ. Peterson et al. (2011: 
113) characterise a good model as follows: ʻ... fits well to the known data, ... does not overfit 
in ways such that its predictive ability is low when presented with independent dataʼ. These 
quotes pinpoint the combination of unneccessarily many parameters and suboptimal predictive 
performance in geographical space as typical characteristics of overfitted distribution models. 
Such models are indicated by ʻType I overfittingʼ in Fig. 15. Type I overfitted models are more 
complex than, and have higher prediction error than, the best SPM model.

The best SPM model for a given data set is likely not to be the best model as judged from 
an ERM point of view. It follows from the definition of the ERM purpose and the fundamental 
insights of the GA perspective that good ERM models should satisfy the following two criteria 
[cf. model performance criteria (2) and (4) of Austin et al. (2006), listed above]: (1) the shapes 
of overall ecological response curves fitted to the data should accord with GA theory, i.e., be 
unimodal or truncated unimodal, with allowance for variation in skewness and/or kurtosis but 
not for other complex shapes; and (2) fitted response curves should be as simple as possible in 
terms of model parameters and included explanatory variables, in accordance with the second 
insight of the GP perspective stating that few major complex-gradients normally account for 
most of the variation in species composition that can be explained environmentally. The first 
criterion applies to both sub-categories of ERM purposes while the second may be irrelevant for 
some specific ERM purposes. Among models that satisfy criteria (1) and (2), the best general-
purpose ERM model is the one with lowest prediction error on independent data. 

According to criterion (2), a simpler model which differs insignificantly from a more 
complex model in prediction error on independent evaluation data, i.e., with respect to predic-
tive performance in geographical space, is a better general-purpose ERM model. According to 
criterion (1), an even simpler model is better from the perspective of the ERM purpose if the 
more complex models fit overall ecological response curves that are unrealistically complex 
(Jiménez-Valverde et al. 2008). Existence of two criteria for good ERM models, that address 
different intervals along the model complexity axis in Fig. 15, suggest that the concept of an 
overfitted model should be redefined as ʻa distribution model that fits more complex overall 
response curves than appropriate, given the modelling purposeʼ, and that three types of overfit-
ting should be recognised (cf. J. Dirksen et al., unpubl. results):

1.	 Type I overfitting, i.e., that a more complex model has lower predictive performance 
on independent data than a simpler model.

2.	 Type II overfitting, i.e., that a more complex model is similar in predictive perform-
ance on independent data than a simpler model.
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Fig. 15. Overfitting of distribution models with different purposes as a function of residual vari-
ation in response variable and prediction error on independent evaluation data. The best SPM 
model is the model with lowest prediction error, the best general-purpose ERM model is the 
model with lowest prediction error that fits overall ecological response curves which accord 
with gradient analytic theory. Intervals along the model complexity axis which correspond to 
Type I, II and III overfitting are indicated. The horizontal box with red shading indicates models 
with prediction error insignificantly different from that of the best SPM model.

3.	 Type III overfitting, i.e., that a more complex model with higher predictive perform-
ance on independent data than a simpler model fails to fit realistic overall ecological 
response curves.

In a study of swamp forests in SE Norway (J. Dirksen et al., unpubl. results), MaxEnt models 
generated by different model selection methods and different internal model assessment cri-
teria are found to differ strongly with respect to number of parameters, while their predictive 
performance on independent evaluation data are close to similar. This proves existence of Type 
II overfitting (J. Dirksen et al., unpubl. results). No indication of Type III overfitting was, however 
found in that study; the most complex, realistic models were insignificantly inferior to more 
complex models with respect to predictive performance on independent evaluation data.

Type II and III overfitted distribution models ̒ explainʼ more of the variation in the response 
variable than the best, simpler and realistic models (Fig. 15). The difference in variation explained 
between overfitted and simpler, realistic models reflects more or less accidental correlations 
of surplus explanatory variables with, e.g.: effects of interactions between explanatory vari-
ables; effects of historical factors; variation along unrecognised condition or impact ecoclines; 
interspecific interactions; lack of dispersal; or other demographic processes. Type II and III 
overfitted ERM models are likely to fail to express general relationships of the modelled target 
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with the environment, by hiding idiosyncratic variation associated with the modelling context 
(peculariarities of the study area, the time-point the study is carried out, etc.) in a ‘black box of 
explained variation’. Only by retaining variation in the performance of the modelled target in 
the residuals, can this variation be explicitly addressed by further analyses. This line of reason-
ing parallels the arguments why constrained ordination is inapproapriate for general-purpose 
ecological studies: constraining the variation in species composition on supplied explanatory 
variables removes the potential for generating hypotheses about the causes of variation that is 
left unexplained in unconstrained ordination (R. Økland 1996).

Model calibration (Step 10)

Model calibration, by which the numerical accuracy of model predictions in terms of probabili-
ties of presence is improved, implies that a monotonous function is fitted to model predictions 
(Pearce & Ferrier 2000b). Model calibration by use of independent presence/absence data 
is particularly relevant for distribution models parameterised by use of presence-only data, 
the output from which are RPPP values that do not allow estimation of the prevalence of the 
modelled target in the sample (Phillips et al. 2006, Ward et al. 2009). Thus, when the intended 
use of the PO-parameterised distribution model requires conversion of model predictions to a 
predicted probability-of-presence (PPP) scale, and/or an estimate for prevalence is required, 
model calibration by presence/absence data is mandatory (Pearce & Ferrier 2000b, Pearce & 
Boyce 2006, Elith & Graham 2009, Gastón & Garvia-Viñas 2010, Halvorsen in press). Examples 
of such applied uses are estimation of population sizes (Edvardsen et al. 2011) and probability-
based sampling of observation units for monitoring purposes (Halvorsen 2011, Halvorsen & 
Heegaard 2011). Appropriate calibration also improves the value of model predictions for 
model-assisted search for new localities of rare species (Edwards et al. 2005, Guisan et al. 
2006a, Le Lay et al. 2010, Edvardsen et al. 2011). Several statistical modelling methods, e.g., 
logistic regression (Cox 1958), can be used for calibrating RPPP values onto a PPP scale (see 
Pearce & Ferrier 2000b). 

The relevance of model calibration depends on modelling purpose. Model calibration 
generally improves the usefulness of model predictions for applied SPM purposes.

Model evaluation (Step 11)

The purpose of a DM study dictates which evaluation strategy is most appropriate (Araújo & 
Guisan 2006, Austin 2007, Jiménez-Valverde et al. 2008). Differences between ERM and SPM 
in this respect are outlined in this section.

It follows from the SPM purpose, which is to provide the best possible spatial predictions 
for sites in which presence or absence of the modelled target is unknown, that evaluation is 
a necessary and important step in the SPM process. Distribution models can be evaluated by 
several methodological strategies, as explained in the chapter ʻThe distribution modelling 
processʼ, Step 11 (see Fig. 8). The intended use of an SPM model and, in particular the user’s 
demand for precise spatial predictions from the model (Araújo & Guisan 2006), determines the 
level of rigour needed in the evaluation process. SPM models constructed with the intention 
of merely illustrating broad patterns of distribution of the modelled target in the study area 
require less rigourous evaluation than models built to assist systematic search for new locali-
ties of endangered species (Guisan et al. 2006a, Le Lay et al. 2010, Edvardsen et al. 2011) and 
models that shall form the basis for probability-based sampling of monitoring sites (Auestad 
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et al. 2011, Halvorsen & Heegaard 2011).
It is only the modelʼs ability to predict performance in geographical space that can be ap-

proached by an independent evaluation data set (Araújo & Guisan 2006, Jiménez-Valverde et al. 
2008, Braunisch & Suchant 2010, Warren & Seifert 2011): the truth about a modelled target’s 
overall ecological response to all important complex-gradients, in environmental variabler, or 
ecological, space, can hardly ever be fully unravelled (Austin et al. 2006). Accordingly, ERM 
models cannot be formally evaluated by use of field data (Austin et al. 2006). Instead, ERM 
models have to be critically judged for realism by use of theoretical and practical skills (Aus-
tin et al. 2006, Austin 2007). Nevertheless, Fig. 15 indicates that assessment of the predictive 
performance of general-purpose ERM models on independent data is an important element in 
assessment of the appropriateness of such models. The ability of different modelling methods 
and options (rather than specific models) to extract meaningful structure from realistic data 
can, and should, be carefully analysed by use of simulated data with realistic properties, built 
in accordance with GA-based knowledge (Austin et al. 2006).

Independent evaluation data can be used to evaluate transferability of results of projec-
tive distribution models (PPM) to geographical areas outside the study area (Wolmarans et al. 
2010, Anderson & Gonzalez 2011) while transferability of model predictions in time cannot be 
evaluated this way (Araújo et al. 2005).

Independently sampled presence/absence data for the modelled target (Step 9) are 
indispensable for evaluating the predictive performance of SPM-purpose distribution models 
in geographical space. Evaluation by use of independent data is the only strategy for evalua-
tion of DM models that completely circumvents pitfalls related to sampling bias in sets of raw 
observations of the targeted phenomenon (Austin 2007, Veloz 2009). Sampling bias is omni-
present in the observed presence data used for training of distribution models, and arise for 
several reasons (e.g., Araújo & Guisan 2006, Hortal et al. 2008, Loiselle et al. 2008, Robertson 
et al. 2010, Wolmarans et al. 2010, Elith et al. 2011, McCarthy et al. 2011). A typical example is 
accessibility-related recording effort, which may result in distribution models in which distance 
from roads is a significant explanatory variable (Kadmon et al. 2004, Wollan et al. 2008). Impor-
tantly, use of the same data set for training and for evaluation, for instance by resubstitution or 
data-splitting, does not avoid problems related to sampling bias nor to spatial autocorrelation 
of observations (Araújo et al. 2005, Araújo & Guisan 2006, Segurado et al. 2006, Austin 2007, 
Raes & ter Steege 2007, Veloz 2009).

Ecological theory is important, both for fully understanding the implications of choice 
of performance criteria in model evaluation and for appropriate interpretation of evaluation 
results. This is illustrated by two examples.

The area under curve (AUC) of the receiver operating characteristic (ROC) curve (Hanley 
& Mc Neil 1982, Fielding & Bell 1997) is currently the most frequently used criterion for evalua-
tion of SPM distribution models (Franklin 2009). One reason for the popularity of AUC is that it 
can be used with all evaluation strategies. The ROC curve is a graph of the relationship between 
model sensitivity and model commission error, over all possible RPPP thresholds. Commission 
error, or 1 – specificity, or the false positive rate, is the probability that presence is predicted in 
a grid cell from which the target is known to be absent. Sensitivity, the true positive rate, is the 
probability that presence is predicted in a grid cell in which the target is known to be present. 
With presence-only data, AUC can be calculated by replacing true commission error with the 
probability that presence is predicted in a randomly selected grid cell. With presence/absence 
data, AUC can be interpreted as the probability that the model predicts a higher RPPP value 
in a random presence grid cell than in a random absence grid cell, while with presence-only 
data, AUC can be interpreted as the probability that the model predicts a higher RPPP value in 
a random presence grid cell than in a random background grid cell (Phillips et al. 2006, 2009). 
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Even though uncritical use of AUC has been rightfully criticised (e.g., Lobo et al. 2008), AUC 
has retained its position as a good overall indicator of modelling success (e.g., Elith et al. 2006, 
Wisz et al. 2008).

One result from evaluation of DM models by the AUC criterion that has often been 
highlighted in DM literature, is that models for rare species tend to be superior to models for 
common species (e.g., Elith et al. 2006, Jiménez-Valverde et al. 2008, Wollan et al. 2008, Fran-
klin 2009). A species may, however, have low prevalence in a sample, or appear to be rare, for 
many different reasons (Harper 1981). Observed rarity may, of course, reflect real rarity. This 
is the case for typical ‘satellite’ species in the sense of Collins et al. (1993); i.e., species with low 
fractional amplitude with respect to important environmental complex-gradients – restricted 
‘distribution in ecological space’ – and low aggregated performance. Satellite species typically 
also have restricted distributions in geographical space, i.e., small extents of occurrence, due 
to low fractional amplitude with respect to regional ecoclines, i.e., narrow tolerances for cli-
matic factors. Low prevalence then results from the generally positive abundance-occupancy 
relationship. Observed rarity may be real also for species which combine low prevalence and 
wide amplitude along important complex-gradients. Such species, which are ‘rural’ species 
according to the CURS model (Collins et al. 1993), often also have large extents of occurrence. 
Low estimated prevalence may also be an artifact of insufficient or biased sampling. AUC does 
not distinguish between these kinds of rarity, and they are rarely taken explicitly into consid-
eration when DM evaluation results are discussed. This is exemplified by characteristics given 
to species associated with high AUC in the DM literature, by McPherson & Jetz (2007) as hav-
ing ‘smaller range size’ and ‘higher habitat specificity’, by Tsoar et al. (2007) as having ‘more 
restricted niches’, by Jiménez-Valverde et al. (2008) as having ‘lower relative occurrence area’, 
by Wollan et al. (2008) as having ‘restricted distributions’ and by Marmion et al. (2009a) as 
having ‘restricted ranges’ and ‘low prevalence’. Note that the term ‘relative occurrence area’ is 
defined by Lobo et al. (2008) as the ratio between extent of occurrence and the whole extent 
of the region of study, thus corresponding to the extent of occurrence expressed as a fraction of 
the entire study area. Steps 7–8 in the 12-step DM process is the key to unravel which aspects 
of rarity that make models for ‘rare’ species appear ‘better’ than models for common species in 
terms of AUC. The more strongly the model is able to concentrate observed presence grid cells 
to a restricted interval along an important explanatory variable, the lower will the fractional 
amplitude of the species be, and the higher will the probability be that the model predicts a 
higher RPPP value for a random observed presence cell than for a random background cell and, 
hence, the higher will its AUC be. Thus, low fractional amplitude in multidimensional environ-
mental variables space is the most important determinant of the AUC of DM models (Stokland 
et al. 2011). Accordingly, the often claimed tendency for models of targets with small extent of 
occurrence or low prevalence to obtain high AUC values is an indirect effect of the positive, often 
strongly positive, correlation between rarity in geographical space and restricted tolerance in 
ecological space (Preston 1948, Brown 1984, Økland 1989a). All other factors equal, models 
for ʻruralʼ species will not obtain higher AUC values than models for ‘core’ species, i.e., species 
with high occupancy and wide amplitude along important complex-gradients, often also with 
large extent of occurrence (Collins et al. (1993).

The second example is the use of ‘target-group background data’, as implemented in Maxent 
software from version 3 (Phillips & Dudík 2008). Target-group background observations are then 
used instead of all grid cells or a random subsample of all grid cells as background in PO distri-
bution models. In a comparative analysis based upon real data, Phillips & Dudík (2008) found 
that use of target-group background observations considerably improved the AUC of MaxEnt 
models. They ascribed this to counteraction of sample bias in museum collection or atlas data, 
which are known to be biased in specific ways (see Loiselle et al. 2008, Robertson et al. 2010): 
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‘target-group background may be interpreted as a random sample from the (biased) sampling 
distribution’ (Phillips & Dudík 2008: 173). This interpretation is likely to be partly correct, but 
a full understanding of the behaviour of models (and AUC) with different types of background 
data requires knowledge of the distribution of background observations along the axes of the 
environmental variables or ecological space. If observations in the target-group background 
sample fail to span the entire range of variation along a recorded explanatory variable, the 
fractional amplitude calculated by use of target-group background data will be larger than the 
fractional amplitude calculated by use of random background. The ranking of these models by 
AUC will then be shifted in disfavour of target-group background (Stokland et al. 2011). This 
indicates that target-group background observations may improve distribution models even 
more strongly than indicated by the results of Phillips & Dudík (2008).

ConclusionS

My main intentions with this essay review are to summarise major insights of the gradient ana-
lytic (GA) perspective, to show how this perspective can form a firm foundation for describing 
and understanding distribution modelling (DM), and to use this GA-based platform to address 
issues of current interest to distribution modellers. The two main reasons for choosing the GA 
perspective as a fundament for DM are: (1) that DM is unambiguously placed among gradient 
analysis techniques by the crucial step 8 in the distribution modelling process, by which the 
overall ecological response of the targeted phenomenon is modelled as a function of explanatory 
variables; and (2) that the ʻenvironment-centredʼ understanding of natural variation implicit 
in the GA perspective is more appropriate for DM than the ʻspecies-centredʼ understanding 
implicit in ʻniche theoryʼ. Despite many holes still exist in our knowledge of patterns of natural 
variation, the basic insights of the GA perspective provide a firm theoretical platform for further 
development of DM. Important elements of this theoretical platform are: (1) a consistent and 
explicit terminology; (2) knowledge about how speciesʼ performance, in general, varies along 
environmental complex-gradients, which structuring processes are responsible for speciesʼ 
performance patterns, and the spatial (and temporal) scales at which these patterns can be 
recognised; and (3) specific knowledge about speciesʼ performance patterns in different parts 
of the world and in particular ecosystems. A new conceptual modelling framework for DM, the 
HED framework, is proposed. The conceptual modelling framework and insights derived from it 
can be used in initial phases of a DM study to formulate a meta-model for factors that influence 
distributions, and in the analytic phase to guide choices of data model, statistical model and 
interpretation of modelling results. Furthermore, the HED framework can serve as a hierarchi-
cal, top-down framework for practical distribution modelling. A tour on the gradient analytic 
train through the 12-step DM process reveal several issues in need of being scrutinised more 
carefully, and considerable potentials for improvement of DM practice. The main findings can 
be summarised in seven challenges for DM: 

1.	 More knowledge of patterns of natural variation is needed. Most notably, this applies 
to descriptive knowledge such as which ecoclines are most important for differ-
ent organisms in different ecosystems. Basic knowledge of this kind, which can be 
obtained by gradient analysis, e.g., ordination, of species-in-samples data matrices 
followed by interpretation of coenoclines using environmental variables-in-samples 
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data, may bring improvements to several steps in the DM process: choice of explana-
tory variables (Step 3), choice of grain and extent for the study (Step 4), judgement 
of the ecological realism of distribution models (Steps 8, 11), and interpretation of 
modelling results (Step 12). I stress this point as particularly important for three 
main reasons: (i) because much more knowledge of patterns of natural variation is 
needed to strengthen DMʼs theoretical platform; (ii) because research on local or 
regional patterns, which is descriptive and dependent on ‘naturalist’ approaches, is 
currently under strong pressure in a scientific community that honours experimen-
tal research on questions of general interest (Lawton 1996, Økland 2007); and (iii) 
because knowledge of patterns of natural variation is usually not mentioned among 
challenges for DM.

2.	 A better mechanistic understanding of causes of patterns of natural variation is needed. 
In particular, this applies to the role of interspecific interactions, positive as well as 
negative, for species performance patterns. Several studies by DM methods have ad-
dressed this question (e.g., Austin & Leathwich 2001, Heikkinen et al. 2007, Meier 
et al. 2010), the results of which indicate important differences between organism 
groups in the extent to which interspecific interactions give rise to distributional 
patterns on spatial scales broader than the fine local scale. Furthermore, these stud-
ies demonstrate that, by taking biotic explanatory variables into consideration, DM 
can give important contributions to basic ecological knowledge. More studies in this 
direction are encouraged.

3.	 The availability of relevant rasterised explanatory variables needs to be improved. 
Lack of data sets with ‘wall-to-wall’ coverage for potentially important explanatory 
variables rasterised to appropriate grain sizes, is currently one of the most important 
reasons why the precision of distribution models often fail to match the modeller’s 
ambitions, regardless of modelling purpose. While lack of data is no longer a great 
problem in modelling of responses to climatic factors at regional and global spatial 
scales, e.g., due to open access to large data sets such as WorldClim (Hijmans et al. 
2005), lack of explanatory variables rasterised to an appropriate grain size remains 
a major obstacle to modelling of patterns at local and micro spatial scales, i.e., model-
ling by use of grid cells smaller than 1 × 1 km as grain. This challenge appears often 
not to be recognised, as demonstrated by the statement of Franklin’s (2009: 77) that 
‘there is a widely held belief that “GIS data” (digital elevation model) are abundant 
and ubiquitous’. Important reasons why appropriate explanatory variables are often 
lacking are: that the costs of obtaining good explanatory variables data tend to in-
crease with decreasing sample extent because the opportunity for re-use, and hence 
for sharing of costs, decreases; and that many local ecoclines are difficult or expensive 
to measure. Typical examples of such ecoclines are ʻdrought severityʼ, ʻsnow-cover 
stabilityʼ and ʻlime richnessʼ. Huge resources can be saved by building open-access 
archives for layers of explanatory variables, equipped with functionality for interpo-
lation, rasterisation to a widest possible range of grid-cell sizes, and flexibility with 
respect to output data formats.

4.	 More studies of patterns at local and micro spatial scales, and multiple-scale studies 
using DM methods, are needed. A broadening of the range of spatial scales approached 
by DM methods is needed. DM studies of patterns at fine spatial scales are likely to 
complement studies of species composition by ordination methods, fill important gaps 
in our knowledge of distributional patterns at these spatial scales and the ecological 
processes that operate on these scales.

5.	 Evaluation by independent data should be established as a standard in DM. Environ-
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mental sampling bias is a major quality-reducing factor for distribution models. In 
spatial prediction modelling, the resulting performance distribution bias should be 
identified by use of an independently collected sample of presence/absence data 
that is representative for the range of model predictions. Even though a standard 
methodology for evaluation of distribution models was established more than a de-
cade ago (e.g., Pearce & Ferrier 2000b), very few distribution models published so 
far have been subjected to evaluation by these standards [Araújo et al. (2005); but 
see Edwards et al. (2005), Le Lay et al. (2010), and Edvardsen et al. (2011)]. 

6.	 Further insights into statistical modelling methods and their options, with particular 
reference to appropriateness for different types of data and DM purposes, are needed. 
DM methodology has improved considerably over the last years, e.g., due to several 
extensive methods comparison studies, starting with Elith et al. (2006). Nevertheless, 
many important methodological questions still await being addressed. Specifically, 
this is the case for questions in the interface between data properties and methods 
and their options. Of particular urgency is demands for careful analysis of interac-
tions between transformation of explantory variables, choice of method for model 
specification, and criteria for model comparison and internal model performance 
assessment, in addition to how these interact with modelling method and data prop-
erties. Assessement should be made of the extent to which different choices result in 
overfit models, relative to different modelling purposes.

7.	 DM methods should be incorporated in studies with a broader scope. DM methods 
have proved their usefulness for finding general patterns in distributions and for 
understanding how explanatory variables influence distributions. Integration of DM 
approaches into studies with broader perspectives are likely to give new important 
insights (Guisan & Thuiller 2005). In particular, integration with studies of demog-
raphy and dispersal are likely to have considerable potentials, e.g., for understanding 
the roles of source-and-sink dynamics, including migration processes and extinction 
debt, and interactions between species.

Distribution modelling is established as an important part of the conservation biologist’s toolbox 
and distribution modelling approaches are now recognised as useful for a wide range of applied 
purposes (Franklin 2009). By addressing the variation in performance of one target phenom-
enon at a time, such as a species, and by relating this variation to one or several explanatory 
variables, DM approaches complement multivariate approaches such as ordination methods. 
Together, DM methods and methods for multivariate gradient analysis equip spatial ecologists 
with a versatile toolbox with considerable potential for improving our understanding of pat-
terns of natural variation and their causes.
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APPENDIX I: DEFINITIONS

absence — failure of the modelled target to occur in an observation unit, as contrasted with 
presence

abstract geographical space — a set of grid cells, which corresponds to a specific rasterisation 
of geographical space, the collective properties of which being addressed without taking 
geographical co-ordinates into account

abundance — number of individuals of a species or, for other modelled targets, discrete units, 
or, for clonal organisms, organismal units

aggregated performance — collective term for performance, recorded by some performance 
measure, aggregated for sets of observations units

allelopathy — the mechanism by which plants release chemicals that affect other plants
amensalism — (0,–) interactions, the outcome of which is neutral for one and negative for the 

other organism
amplitude response — effect on tolerance limits for a species along a gradient
area of occupancy — the total area of grid cells in which a species is recorded as present
background observations — collective term used for uninformed observations, i.e., absences, 

random grid cells or pseudo-absence observations
background stress or disturbance — processes that reduce the performance of a species com-

pared to its physiological potential situations, without variation in the magnitude of effects 
along the complex-gradient

basic ecocline — collective term for regional and local ecoclines
biotic variable — descriptor of potential influences from other organisms
broad scales — spatial scales comparable with those that are addressed by samples with extent-

grain ratio of 16 and linear grain > 103, i.e., > 1 km
calibration model — model used for calibration of a distribution model
calibration plot — graph of frequency of presence plotted against model predictions, typically 

with subsets of observation units in calibration the data set as data points
categorical variable — variable that can take a finite number of positive integer values, each of 

which indicate affiliation to a class, type, etc.
coarse local scale — spatial scales comparable with those that are addressed by samples with 

extent-grain ratio of 16 and linear grain of 102−103 m, i.e., 100−1000 m
coarse regional scale — spatial scales comparable with those that are addressed by samples 

with extent-grain ratio of 16 and linear grain of 104.5−106  m, i.e., 32−1000 km
coenocline — gradient in species composition
competition — (–,–) interactions, the outcome of which is negative for both organisms
complex-gradient — (= environmental complex-gradient)
commensalism — (0,+) interactions, the outcome of which is neutral for one and positive for 

the other organism (= facilitation)
community — organisms which live together at the same time within a restricted area (= biotic 

component of the ecosystem)
condition or impact ecocline — parallel variation in species composition and important environ-

mental factors, typically with large variation at temporal scales of decades [(6–)10–100 
years]

continuous environmental variables space — an environmental variables space in which other 
observation units than grid cells are shown

continuous variable — variable that can take every value in the real domain
contramensalism — (+,–) interactions, by which no direct dependence exists between the 
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interacting organisms
cover — vertical projection of biomass
data-splitting — dividing one data set into subsets
data resubstitution — collective term for bootstrapping, jackknifing and crossvalidation
demographic processes — processes, often with a strong stochastic element, that cause varia-

tion in a species’ performance not possible to explain as the response to environmental 
complex-gradients or as the outcome of interactions with other organisms

density — abundance per unit area
derived (explanatory) variable — variables derived from explanatory variables by transforma-

tion
destabilising processes — mechanisms which limit biomass by causing its partial or total de-

struction (= ʻdisturbanceʼ sensu Grime)
discrete environmental variables space — an environmental variables space in which charac-

teristics of grid cells are shown
dispersal into new sites — transportation and successful establishment of propagules in sites 

previously unoccupied by the species in question
distal factor — environmental factor that do not, as such, impact speciesʼ performance, but 

which serves as a surrogate or proxy, for more proximal factors
distribution — the physical arrangement of objects of that belong to a specific type category
distribution modelling — research with the purpose of modelling the distribution of observable 

objects of a specific type
disturbance (sensu stricto) — sudden and unpredictable events leading to biomass destruc-

tion
ecocline — the parallel, more or less gradual, co-variation of species composition, i.e., a coeno-

cline, and a major complex-gradient
ecological response modelling — distribution modelling with the main purpose of modelling 

the relationship between a target, typically the performance of a species, and a set of 
explanatory variables, to find and understand general patterns in the overall ecological 
response of the modelled target to the supplied explanatory variables

ecological space — the conceptual space with the major complex-gradients as axes
environment — all external factors that may potentially influence organisms
environmental sampling bias — sampling bias due to lack of representativity in environmental 

variables space
environmental complex-gradient — a set of more or less strongly correlated environmental 

variables (= complex-gradient)
environmental gradient — the more or less gradual variation in any environmental ‘factor’ 
environmental sampling bias — sampling bias due to lack of representativity in environmental 

variables space
environmental variable — descriptor of environmental variation in the widest sense, i.e., an 

external factor that may potentially influence organisms
environmental variables space — the conceptual geometric space with selected, measurable, 

environmental variables as axes
explanatory variable — a variable that may potentially account for some variation in a response 

variable 
extent of occurrence —  the area which lies within the outermost geographic limits to the oc-

currence of a species
extent-grain ratio —  the linear dimension of the extent divided by the linear dimension of the 

grain
extinction debt — expected future extinction of species due to events in the past



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 142

fine local scale — spatial scales comparable with those that are addressed by samples with 
extent-grain ratio of 16 and linear grain of 100−101 m, i.e., 1−10 m

fine regional scale — spatial scales comparable with those that are addressed by samples with 
extent-grain ratio of 16 and linear grain of 103−104.5 m, i.e., 1−32 km

fine scales — spatial scales comparable with those that are addressed by samples with extent-
grain ratio of 16 and linear grain < 103 m, i.e., < 1 km

fitness — the average number of descendants in the next generation per individual in the cur-
rent generation

fluctuations — more or less predictable events leading to biomass destruction
fractional amplitude — tolerance, expressed as the ratio of the species’ amplitude along a gradi-

ent and the length of the entire gradient, expressed in relevant units
fractional area — the fraction, by area, of an observation unit that is occupied by a modelled 

target such as a nature type
frequency of observed presence — the fraction of observed presences in a PO data set
frequency of presence — the fraction, or percentage, of observations units in a set, in which 

the modelled target is present
general-purpose ecological response modelling — to describe and understand distributional 

variation at relevant scales, without regard to a specific set of explanatory variables
general-purpose ecological study — to summarise the main structure in a species-by-sample 

data matrix, to relate structure in species composition to external factors, and to generate 
hypotheses about the processes and mechanisms responsible for these relationships

geographical sampling bias — sampling bias due to lack of representativity in geographical 
space

geographical space — the conceptual geometric space with geographical co-ordinates x, y and 
eventually also z, as its dimensions

global scale — spatial scale comparable with that addressed by samples with extent-grain ratio 
of 16 and linear grain of > 106 m, i.e., > 1000 km

gradient — the more or less gradual variation of a property of the environment, or of a specific 
type category of natural phenomena

gradient analytic perspective — explanations of natural variation based upon knowledge about 
environmental gradients and species’ responses to these gradients

gradient analysis — interpretation of community composition in terms of species’ responses 
to environmental gradients in the broadest sense

gradient-dependent stress or disturbance —  processes that reduce the performance of a spe-
cies compared to its physiological potential situations, with variation in the magnitude 
of effects along the complex-gradient

grain = spatial grain
grid cell — one out of a set of contiguous quadrats of equal size into which the geographical 

space, or a subspace thereof, is divided
group discriminative method — method that contrast environmental characteristics of presence 

or observed presence data points with properties of absence, random or pseudo-absence 
points

importance value — index obtained by combining two or more quantitative performance 
measures

independent variable — a variable actually used to parameterise a model; independent vari-
ables may include raw explanatory variables themselves and/or variables (derived vari-
ables) derived from raw explanatory variables by transformation (= predictor, predictor 
variable)

internal model performance assessment — calculation of model performance statistics directly 
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by the same data that are used to parameterise the model (= ʻverificationʼ)
interspecific interactions — interactions between individuals of different species that bring 

about change in the performance of one or both species relative to their physiological 
potential

limited physiological tolerance — extrinsic processes which reduce the performance of a spe-
cies compared to its physiological potential

local ecocline — parallel variation in species composition and important environmental factors 
(edaphic, moisture-related etc.), typically with large variation at spatial scales of 1 km 
or finer; under the assumption of no change in type or magnitude of human influence, 
or other condition or impact ecoclines, patterns will remain more or less unchanged for 
centuries or millennia

local scales — spatial scales comparable with those that are addressed by samples with extent-
grain ratio of 16 and linear grain of 100−103 m, i.e., 1−1 000 m

magnitude response — effect on the value for aggregated performance at each point along the 
gradient within the tolerance limits of the species

major complex-gradient — the few, usually one, two or three, complex-gradients that account 
for most of the variation in species composition that can be explained environmentally

mean abundance —  the average of abundance values for a set of observation units
medium local scale — spatial scales comparable with those that are addressed by samples with 

extent-grain ratio of 16 and linear grain of 101−102 m, i.e., 10−100 m
micro scale — spatial scales comparable with those that are addressed by samples with extent-

grain ratio of 16 and linear grain < 100 m, i.e., < 1 m
migration — massive and/or long-term dispersal into new sites which brings about changes 

in a speciesʼ extent of occurrence
model — a description – in words, by diagrams, or in mathematical or statistical terms – of how 

one phenomenon (in statistical terms, represented by the response variable) is related to 
one or more other phenomena (represented by one or more explanatory variables)

model calibration — assessment of the numerical accuracy of model predictions
model evaluation — assessment of model performance by use of data not directly used to 

parameterise the model (= external model performance assessment, = ʻvalidationʼ sensu 
some authors)

model parameterisation — estimation of model parameters (= model estimation, = training of 
the model, = model ʻcalibrationʼ sensu some authors)

model selection — application of procedures that assist choice among alternative models
model specification — specification of a mathematical function that expresses how the response 

variable is related to the independent variables
modelled target — a specific type of observable objects, subjected to (distribution) modelling
mutualism — (+,+) interactions to the benefit of both organisms
observation unit —  (de)limited areas or volumes in a field site or in the laboratory for, or within 

which, information about a phenomenon is collected (= raw observation units)
observed presence — occurrence of the modelled target in an observation unit, as contrasted 

with observation units in which nothing is known about eventual presence or absence 
of the target

optimal distribution model — distribution model which summarises all variation in the distri-
bution of the modelled target and thus perfectly predicts its distribution

optimum — the gradient position at which the response curve peaks
overall ecological response — variation in a species’ aggregated performance with respect to 

any variable that may be used as axis in the discrete or continuous ecological variables 
spaces or in ecological space
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overfitted model — a distribution model that fits more complex overall response curves than 
appropriate, given the modelling purpose

parametric spline — one derived predictor variable which is used to represent an explanatory 
variable to which the response variable may have a complex, non-linear relationship

parasitism — symbiotic (+,−) relationships by which one organism (the parasite) is dependent 
on another (the host) for nutrient supply and the outcome for the host is negative but 
not lethal

performance — collective term for the quality (presence or absence) and, eventually also, the 
quantity, of a natural phenomenon within one observation unit

performance distribution bias — systematic deviation of aggregated performance of the mod-
elled target along environmental gradients, as estimated by use of a sample, from the true 
distribution of aggregated performance

performance measure — variable used to record performance
predicted probability of presence — predictions from a distribution model, expressing the 

probability (on a 0-1 scale) that the modelled target is present
prediction modelling — collective term for ecological response modelling and spatial predic-

tion modelling
presence — occurrence of the modelled target in an observation unit, as contrasted with ab-

sence
presence/absence data — sample of observation units in which presence or absence of a mod-

elled target is recorded
presence-only data — samples of observation units in which presence is recorded for some 

observation units while nothing is known about eventual presence or absence in the 
remaining, uninformed background, observation units

prevalence — the modelled targetʻs frequency of presence in a study area (= occupancy)
profile technique — methods that make predictions from properties of presence data points 

alone
projective distribution modelling — distribution modelling with the main purpose to transfer 

model predictions to a spatiotemporal setting different from the one at which the data 
used for modelling were collected

proximal factor — environmental factor which brings about variation in speciesʼ perform-
ance

ranging — linear rescaling of a variable onto a scale with minimum value = 0 and maximum 
value = 1

rasterisation — the process of dividing geographical space, or a subset of this space, into grid 
cells

rasterised geographical space — geographical space, or a subset thereof, divided into grid 
cells

regional ecocline — parallel variation in species composition and macroclimatic factors, typi-
cally with large variation at spatial scales of 1 km or broader; under the assumption of no 
change in type or magnitude of human influence, or other condition or impact ecoclines, 
patterns will remain more or less unchanged for centuries or millennia

regional scales — spatial scales comparable with those that are addressed by samples with 
extent-grain ratio of 16 and linear grain of 103−106 m, i.e., 1−1 000 km

regular hexadecadal grid — grid with 256 grid cells in a 16 ×16 pattern
relative predicted probability of presence — predictions from a distribution model, expressed 

on an arbitrary scale
representativity for the range of model predictions — that, within the range of model predic-

tions, each interval of unit width along the scale at which predictions are expressed, is 
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equally well covered by the sample
representativity in environmental variables space — that each interval of unit length along each 

environmental explanatory variable of interest is equally well covered by the sample
representativity in geographical space — that every potential observation unit in the study area 

has the same probability for being sampled
resilience — rate by which initial values of a relevant variable is restored when former pertur-

bation of environmental conditions is reversed
resistance — the magnitude of change in a speciesʼ performance in response to a certain amount 

of perturbation of environmental conditions
response curve — model for a modelled targetʼs overall ecological response with respect to a 

gradient 
response variable — a variable used to characterise a modelled phenomenon (= training data, 

dependent variable)
reversibility — the tendency for a speciesʼ performance to return to the initial magnitude when 

a former perturbation of environmental conditions is reversed
sample — set of observation units collected to represent a phenomenon under study
sampling — methods and procedures used to acquire information about the phenomenon 

under study
shrinkage method — model selection method by which the model coefficients are shrunk by 

imposing a penalty on their magnitude
space limitation — stochastic effects brought about by limitations on the number of individu-

als, of the same or different species, that can co-occur in an observation unit of a given, 
small, size

spatial domain — the range, along the scale of metric units, that can be addressed by analysis 
of a given sample

spatial extent — the size, in geographical space, of the area within which observation units that 
make up a sample are collected

spatial grain — the size, in geographical space, of one observation unit (= grain)
spatial interpolation — use of models to estimate unknown variable values from observations 

in georeferenced points
spatial prediction modelling — distribution modelling with the main purpose of optimising the 

fit between model predictions and the true distribution of the modelled target’s perform-
ance in the study area in the time interval data were collected

spatial scale — linear grain sizes in samples with extent-grain ratio of 16, typically exemplified 
by regular hexadecadal grids

spatial scale interval in which variation is large — the range of spatial scales, within which, by 
analysis of samples with extent-grain ratio of 16, the variation in a variable of interest is 
distinctly larger than in samples with smaller or larger grain sizes

species response curve — model for a speciesʼ overall ecological response with respect to a 
gradient 

specific-purpose ecological response modelling — to describe and understand distributional 
variation at relevant scales, with regard to a specific set of explanatory variables

stability — the tendency for initial values of a relevant variable to be restored when former 
perturbation of environmental conditions is reversed

stress — external constraints which limit the rate of dry matter production
structuring process — ecological process which influences speciesʼ overall ecological responses 

to important environmental complex-gradients
subplot frequency — fraction, or percentage, of subplots into which an observation unit is 

divided, in which a species is present
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subset selection method — model selection method by which a discrete subset of predictors is 
selected and the rest discarded

targeted response variable — a variable used in (distribution) modelling to characterise the 
modelled target

target-group background observations — background observations with similar bias as observed 
presence observations, chosen to reduce performance distribution bias

temporal extent — the length of the time interval represented in a sample of observation 
units 

temporal grain — the length of the time interval during which data from one observation unit 
are collected

threshold response — the situation by which a small change in an environmental factor triggers 
a large but predictable response

tolerance — the range along a gradient in which the modelled target occurs
transformation — the mathematical operation by which one of several independent variables 

are derived from a raw explanatory variable
Type I overfitting —  that a more complex model has lower predictive performance on inde-

pendent data than a simpler model
Type II overfitting — that a more complex model is similar in predictive performance on inde-

pendent data than a simpler model
Type III overfitting — that a more complex model with slightly higher predictive performance 

on independent data than a simpler model fails to fit realistic overall ecological response 
curves

uninformed background observation unit — observation unit in which nothing is known about 
eventual presence or absence of a target

units subjected to analysis — units derived from a set of (raw) observation units, subjected to 
data analysis

variation component — the variation associated with each unique source of variation in a vari-
ation partitioning analysis

within-population demographic processes — processes which determine the fate of individuals, 
which give rise to occurrence patterns at spatial scales finer than the normal patch size 
of populations of the species in question

APPENDIX II: INDEX

Bold-face terms and numbers refer to definitions in Appendix I.

12-step process (for distribution modelling)	 9, 37, 39, 49, 74, 76, 77, 84, 90, 107, 108
abandonment (of agricultural use)	 47
absence	 7, 17, 18, 
		  21–23, 25, 26, 32–35, 50, 69, 71, 72, 79, 80, 86, 90–92, 95, 96, 99, 105, 106, 110, 140
absence point (observation unit)	 7, 17, 28, 32, 33, 91, 92, 106
abstract geographical space	 14, 79, 81–84, 140
abundance	 7, 21, 22, 29, 36, 52, 53, 59, 85, 101, 107, 140 
abundance-occupancy relationship (AOR) 	 53, 85, 107
accessibility-related recording effort	 106
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accessible area	 72, 89, 90 
acid, calcium-poor to alkaline, calcareous and carbonbate-rich gradient	 44 
acidification ecocline	 47
aggregated performance	 22–24, 
		  33, 49–51, 53, 54, 64, 66, 67, 71, 74, 75, 80, 87, 91, 92, 94, 98, 107, 140
air humidity ecocline	 61
airborne laser scanning (ALS)	 93, 96
arctic	41
algae		  24 
allelochemical	 56
allelopathy	 56, 140
all-terrain vehicle impact ecocline	 47
alpine heath	 46, 62, 72
ALS, see airborne laser scanning
alvar limestone grassland	 58
amensalism	 55, 56, 61, 64, 65, 67, 70, 71, 140
amplitude response	 67, 71, 140
AOR, see abundance-occupancy relationship   	
apparent random variable (or factor)	 56
area of occupancy	 22, 140
area under the ROC curve (AUC)	 35, 106–108
area-occupancy relationship (AOR)	 53
aspect	 41
association	 7, 62
asymmetric interspecific interaction	 55, 70
asymmetric response curve	 50–52
atlas data	 107
AUC, see area under the (ROC) curve
azonal gradient	 43
background observations	 22, 91, 107, 108, 140
background stress or disturbance	 55, 59, 64, 67, 80, 140
BAM diagram	 79, 84
basic ecocline	 43, 140
bedrock	 4, 21, 40, 44, 53, 61
beetle	 16, 17
behavioral property (of organisms)	 73
beta function	 99
Betula	 62
Betula pubescens	 58
bimodal response curve (shape)	 51
binary variable (or factor)	 17, 25, 26, 18, 31, 59 
binomial distribution	 26, 27
BIOCLIM, see bioclimatic envelope model
bioclimatic envelope model (BIOCLIM)	 5
bioclimatic gradient (or variable, or factor, or ecocline)	 42–44, 46, 48, 55, 59, 61, 66, 84, 89
bioclimatic section	 15, 41, 48
bioclimatic variation	 42
bioclimatic zone	 15, 41, 48, 55, 59, 66, 84
biogeoclimatic variable (or factor)	 16, 31
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bio-geoecological law (of Boyko’s)	 46, 94
biogeographic processes	 58,  60
biogeography	 5, 6, 61, 84 
biological invasion	 57, 62
biomass destruction	 55
biome	 5, 68
bionomic variable (or factor)	 26, 69
biophysical animal ecology	 76
biospatial variable (or factor)	 29
biostatistics	 8
biotic explanatory variable (or factor)	 96, 102, 109
biotic factor	 11, 64, 76
biotic interaction	 56, 69, 71, 78
biotic phenomenon	 68, 74
biotic process	 60
biotic variable (or factor)	 4, 75, 140
biotope	 68, 69
bird		  24
black box of explained variation	 105
bog		  48, 56, 58, 59, 63
boosted regression trees (BRT)	 5, 98, 100–102
bootstrapping	 35
boreal forest	 44, 45, 47, 48, 55–58, 60, 63, 66, 72
boreal non-wetland terrestrial forest	 87, 88
boreal−alpine forest limit	 45
boreal−arctic forest limit	 45
Braun-Blanquet (phytosociological) school	 89
broad scales	 18, 19, 44, 140
broad-leaved deciduous forest tree	 62
BRT, see boosted regression trees
bryophyte	 19, 53, 55, 56, 61, 105
burial	 42
cadastral map	 93
calibration	 33, 35, 99, 100, 105
calibration model	 33, 35, 140
calibration plot	 35, 140
calibration/evaluation data	 35, 99, 100
Calluna vulgaris	 45
canonical correspondence analysis	 13
Carex pauciflora	 58
carousel model	 58
categorical variable (or factor)	 31, 94, 98, 140
CCA, see canonical correspondence analysis
central species	 53
centrifugal model	 72
characteristic species combination	 89, 94, 95
choice of modelling method	 30, 32, 38, 49, 87, 100, 110
circumboreal zone	 40, 43, 48
Cladonia	 63
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climate change	 6, 39, 47, 54, 72
climatic gradient	 43, 44, 89
climatic variable (or factor)	 5, 31, 43, 76, 79, 84, 107, 109
clonal fragment	 15
clonal growth	 57
CO, see  constrained ordination
coarse local scale	 18, 20, 47, 60, 63, 65, 76, 95, 97, 140 
coarse regional scale	 18, 20, 48, 54, 60–65, 77, 79, 81, 84, 85, 95, 140
coastal dune ecosystem	 46
coenocline	 14, 21, 27, 50, 108, 140
cold climate	 43, 45, 55
collection of presence/absence data for model calibration and evaluation	 33, 99, 100
commensalism	 56, 62, 64, 65, 67, 71, 140
commission error (of models)	 106
community	 7, 11, 48, 54, 56, 63, 69, 89, 109, 140
competition	 55, 56, 61, 64, 65, 67, 69–71, 78, 140
competitor	 61, 62
competitor−stress tolerator−ruderal (CSR) model	 71
complex response curve (shape)	 103
complex-gradient	      12–14, 22, 25, 39, 42, 44, 46, 47, 49–51, 53, 54, 56, 59–61, 
		  64, 66, 71, 74, 75, 77, 79, 80, 84, 87, 89, 90, 93–95, 97, 98, 101, 103, 106–108, 140
component of variation	 24, 25
components needed for statistical modelling	 11, 36
compositional turnover	 52, 53, 67
conceptual framework (or model)	 4, 7–9, 11, 47, 67, 73, 78–84, 97, 108
conceptualisation	 8, 13, 30, 31, 78, 79, 84–87, 89, 97
condition or impact ecocline	 40, 42, 43, 47–49, 77, 80–83, 85, 86, 92–95, 104, 140
Conocephalum conicum 	 56
conservation biogeography	 6
constrained ordination (CO)	 13, 24, 25, 77, 105
continental climate	 43, 46
continental plate movement	 18
continental scale	 18, 20
continuity	 none
continuous environmental variables space	 14, 22, 34, 140
continuous variable (or factor)	 22, 31, 98, 140
contramensalism	 56, 140
core species	 87, 107
core-urban-rural-satellite (CURS) model	 87, 107
correlative (scientific) approach	 37, 73, 93
Corydalis	 63
count variable	 31
cover	11, 21, 141
crossvalidation	 35
cryoturbation	 90
CSR model, see  competitor−stress tolerator−ruderal model
cumulative values (output format)	 33
CURS model, see core-urban-rural-satellite model
data model	 10, 11, 30, 36, 38, 78, 90, 108
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data resubstitution	 35, 106, 141
data-splitting	 35, 106, 141
DCA, see detrended correspondence analysis
deciduous forest	 62, 63
deglaciation	 57
degree of freedom	 102
degree of presence	 12, 13, 14, 21
Delphinium uliginosum	 62
DEM, see digital elevation model
demographic processes	 56–58, 60, 63–65, 67, 70–72, 74, 75, 80, 86, 89, 92, 99, 104, 141
demographic property	 73
density	 21, 61, 62, 76, 141
density-independent mortality	 55, 59
dependent variable (or factor)	 32
derived variable	 31, 32, 33, 74–76, 90, 98, 99, 101, 141
descriptive statistic	 24
destabilising processes	 55, 58, 59, 64, 71, 141
detectability (of a modelled target)	 90
determination error	 90
detrended correspondence analysis (DCA)	 22, 53, 67
deviance	 26, 27, 33, 34, 95, 102
deviant response curve (shape)	 51, 52
deviation predictor	 98
Didymodon tophaceus	 62
differentiation into acidic vs calcareous sites	 44
digital elevation model (DEM)	 93, 109
direct gradient	 47, 48, 68, 71, 79
direct gradient analysis	 36, 37, 77
discrete environmental variables space	 14, 33, 141
discrete variable	 22, 31, 33
dispersal	 56, 57, 58, 60, 63–65, 72, 76, 79, 80, 82, 84–86, 104, 110
dispersal into new sites	 56, 57, 58, 60, 64, 65, 67, 72, 80, 141
distal factor (or variable)	 47, 48, 141
distance decay of floristic similarity	 63
distribution	    4–6, 8, 9, 11, 15, 16, 18, 21, 22, 27, 29, 36–38, 43, 44, 49, 50, 53, 
		  54, 57, 58, 60, 61, 63, 72–80, 84–86, 89–92, 95, 96, 100, 102, 105, 107, 108, 110, 141
distribution map (D-map)	 81–84
distribution model	 4, 7, 8, 29, 34–38, 61, 62, 74–76, 78, 91, 95–98, 100–110
distribution modelling (DM)	 4–9–12, 
		  14, 15, 25, 29, 36–38, 49, 67, 69, 70, 73, 78, 80–83, 87, 91, 105, 108, 110, 111, 141
distributional range	 21
distribution-limiting factor	 37, 78, 94
disturbance (sensu stricto)	 41–43, 45, 47, 55, 59–61, 64, 67, 71, 72, 141
disturbance severity	 11
DM, see distribution modelling
D-map, see distribution map
dominance type	 87, 89, 94, 95
dominant species	 87
drought	 37, 43, 45, 46, 55, 56
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drought severity ecocline	 66
dune stabilisation ecocline	 46
duration of inundation ecocline	 42
earthslide	 4
ecocline  	 14, 24, 27, 
		  40–50, 53, 55, 59–61, 71, 72, 76, 77, 79, 80–87, 89, 92–95, 97, 104, 107, 108, 109, 141
ecological model	 10, 11, 30, 36, 67, 80
ecological niche factor analysis (ENFA)	 5
ecological niche modelling (ENM)	 7, 29, 38, 48, 75
ecological prosess	 4, 43, 71, 94, 109
ecological response curve (E-curve)	 49, 81–84
ecological response modelling (ERM)	 38, 39, 74–78, 91–97, 99, 101–106, 141
ecological science	 8, 9
ecological space	 13–15, 22, 38–40, 
		  59, 61, 68, 71, 73, 74, 77, 81–84, 86, 87, 89, 90, 94, 101, 103, 106–108, 141
ecological theory	 6, 8, 9–11, 101, 102, 106
ecosystem	 4, 8, 11, 18, 24, 40, 43–46, 48, 49, 53, 55, 56, 68, 71, 75, 87, 108
ecosystem degradation	 59
ecotope	 70
E-curve, see ecological response curve
edaphic gradient	 42–44
EFL, see empirical forest limit
Eltonian niche	 8, 69–73
Empetrum nigrum	 56
empirical forest limit (EFL)	 89
ENFA, see ecological niche factor analysis
ENM, see ecological niche modelling
ensemble modelling (ensemble forecasting method)	 5, 6, 101
environment	 4, 9, 12, 14, 21, 39, 45, 54, 60, 62, 68, 71, 74, 76, 77, 96, 105, 141
environmental complex-gradient	 12, 22, 39, 
		  47, 51, 53, 54, 56, 60, 66, 74, 80, 84, 87, 89, 90, 93–95, 101, 107, 108, 141
environmental explanatory variable	 63, 69, 75, 76, 89, 90, 92–95, 100, 102
environmental change	 39, 57
environmental conditions	 9, 15, 21, 44, 47, 53, 55, 58, 59, 62, 69, 72, 85, 89
environmental data	 60
environmental gradient	 9, 12, 21, 22, 47, 53, 54, 79, 91, 96, 141
environmental layer	 31
environmental niche modeling	 7
environmental sampling bias	 90, 91, 100, 110, 141
environmental variable (or factor)	 4, 5, 9, 12–15, 18, 24, 27, 30, 
		  37–40, 42, 45, 47, 50, 53, 59, 60, 64, 65, 68–70, 73, 74, 76, 79, 90, 91, 108, 141
environmental variables space	 13, 14, 22, 33, 38, 73, 79, 90, 106–108, 141
environmental variables-in-samples data (matrix)	 108
environmental variation	 4, 9, 12, 21, 51, 52, 71
epilithic species	 61
epiphytic species	 15, 61, 62
Epirrita autumnata	 58
Erica tetralix	 58
ericaceous species	 56
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ERM, see ecological response modelling
erosion	 43, 47, 48, 55
error part (of statistical model)	 32
Eryngium spinalba	 93
establishment (in formerly unoccupied sites)	 43, 56–59, 63
Eucalyptus	 67
EUNIS, see European habitat classification system
European habitat classification system (EUNIS)	 68
eutrophication ecocline	 42, 47, 48
evaluation	 33, 35, 36, 38, 87, 91, 99, 100, 103–107, 109, 110
evenness	 6
evolution	 13, 37, 54, 71, 74
evolutionary process	 54
expert knowledge	 36
explained deviance	 26, 33
explanatory variable	   4, 5, 7, 12, 14, 15, 22, 
		  24–27, 29, 31–33, 36–40, 49, 50, 52, 53, 62, 63, 69, 73–78, 80, 84, 85, 87, 89–110, 141
extent of occurrence	 17, 21, 53, 57, 62, 63, 85, 86, 107, 141
extent-grain ratio	 18, 20–23, 26, 27, 31, 41, 44, 52, 65, 66, 81–83, 141
external model performance assessment	 35, 103
extinction debt	 58, 110, 141
extraction of model predictions	 30, 33
extrinsic process	 54, 64
F-test		 34
facilitation	 56, 62
factor (factor-type) variables	 31
factor level	 98
facultative mutualism	 56, 64, 65
false positive rate	 106
falsification	 37
feedback mechanism	 59
field data (properties of)	 106
fine local scale	 18, 20, 45, 48, 55, 61–65, 72, 77, 80, 96, 97, 109, 142
fine regional scale	 18–20, 44, 60, 62, 63, 65, 95, 142
fine scales	 18, 44, 45, 46, 63, 64, 67, 72, 77, 79, 85, 109, 142
fitness	 13, 69, 72, 73, 76, 79, 84–86, 89, 90, 142
fitted value (of model)	 33, 98
flat-topped (platykurtic) curve (shape)	 67, 89
flooding	 46
flooding in an alluvial site ecocline	 43
floristic criteria	 89, 95
flowchart (model)	 78
fluctuations	 55, 142
fluvial process	 44
forest understorey vegetation	 11, 17, 24, 48, 55
forest-floor gap	 55
formalised conceptual framework	 78
forward hinge (variable type)	 52
fractional amplitude	 24, 107, 108, 142
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fractional area	 21, 46, 142
fragmentation	 58
F-ratio test	 102
frequency of observed presence	 22, 142
frequency of presence	 22–24, 35, 50, 53, 142
freshwater shores	 46
freshwater (systems)	 24, 41, 42, 44
frost		  41, 45, 55, 60
fundamental niche	 69–72, 74–76, 78
fungi		  6, 12, 40–42, 63
GA, see gradient analysis
GAM, see generalised additive models
gamma species richness	 73
GAP, see gradient analytic perspective
gap dynamics	 57
GARP, see genetic algorithm for rule-set production
gaussian function	 98, 99
GBIF, see Global Biodiversity Information Facility
generalisation level	 24
generalised additive models (GAM)	 5, 50, 61, 95, 98, 101
generalised linear mixed models (GLMM)	 77
generalised linear models (GLM)	 5, 25, 26, 77, 98, 101
general-purpose ecological response modelling (ERM)	 38, 39, 
		  76, 77, 97, 101–103, 106, 142
general-purpose ecological study	 14, 39, 105, 142
genet		 15
genetic algorithm for rule-set production (GARP)	 5
geographic information system (GIS)	 5, 31
geographical co-ordinates	 14, 15, 24, 68
geographical range	 21
geographical sampling bias	 90, 91, 100, 142
geographical space	 14–17, 21, 22, 24, 
		  31, 33, 36, 38, 39, 68, 69, 73, 74, 77–79, 84, 86, 89, 90, 100, 101, 103, 106, 107, 142
geological map	 95
geological process	 4, 18
geological richness	 44
geological variable (or factor)	 31, 44
geophysical process	 18, 45, 53
georeferenced data	 5, 14, 29, 31
geostatistical method	 14, 24
germination	 56, 58
GIS, see geographic information system
glacial cycle	 18
glacial process	 44, 48
glacier retreat	 43
glaciofluvial process	 44
GLM, see generalised linear models
GLMM, see generalised linear mixed models
Global Biodiversity Information Facility (GBIF)	 5
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global scale	 18, 20, 63, 65, 109, 142
goodness-of-fit statistic	 35, 97
gradient 	 9, 11–15, 21, 22, 
		  24, 36, 43–49, 51–56, 59–62, 64, 67–72, 77–79, 85, 87, 89–91, 93–96, 100, 101, 142
gradient analysis (GA)	 9, 11, 12, 14, 24, 25, 36, 37, 40, 49, 77, 84, 90, 103, 108, 110, 142
gradient analytic perspective (GAP)	 9, 10–14, 
		  22, 25, 29, 36, 38, 40, 46, 49, 53, 67, 80, 87, 90, 97, 99, 104, 108, 142
gradient-dependent stress or disturbance	 59, 61
gradsect sampling	 90
grain 	 16–18, 21, 22, 24, 26, 27, 31, 36, 41, 43–45, 50, 60, 63, 65, 66, 86, 87, 97, 109, 142
grid cell	 14, 16, 18, 22, 25, 26, 31–34, 36, 43, 62, 63, 84–86, 91, 95, 106, 107, 109, 142
Grinnellian niche	 8, 69–73
ground-dwelling beetles	 19
ground-dwelling organisms	 42
group discriminative method	 32, 91, 142
habitable site	 84, 85
habitat	 7–9, 68–70, 73, 75, 89
habitat breadth	 53
habitat distribution modelling	 7
habitat hyperspace	 68, 70
habitat hypervolume	 68
habitat modelling	 8
habitat specificity	 107
habitat suitability modeling	 7
hay-meadow	 46
H-diagram (heuristic factor diagram)	 81–84, 85, 89
heat index	 93
HED modelling framework	 80–84, 86, 87, 89, 90, 94, 96, 97, 99, 108
Herbivore	 55, 58
heuristic factor diagram (H-diagram)	 84
hierarchical modelling framework	 78, 84, 97, 108
hierarchy	 7, 48, 60, 89
high-intensity management	 46
hinge transformation	 98
hinge-shaped response curve (shape)	 50, 52
historical bias	 90
historical variable (or factor)	 11, 24, 37, 56, 70, 72, 73, 104
HOF models, see Huisman-Olff-Fresco models
hole-nester	 62
host		  56, 63, 71, 80
Huisman-Olff-Fresco (HOF) models	 5, 99
human influence	 11, 42
human-induced climatic change impact	 47
hydrological variable (or factor)	 44
Hylocomium splendens	 60
hyperhumid climate	 61
hypervolume dimensions	 68, 69, 87, 89, 90, 94
hypothetico-deductive (scientific) approach	 37
idiosyncracy (of species)	 54, 64
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importance value	 22, 142
independence (of observations)	 99, 100
independent data	 35, 100, 103–106, 109
independent evaluation data	 103, 104, 106
independent variable (or factor)	 16, 18, 26, 30–32, 33, 61, 63, 78, 98, 142 
indeterminate response curves (shape)	 52
indirect GA (gradient analysis)	 25, 77
indirect gradient	 47, 48, 71, 77, 79
inductive (scientific) approach	 37
informal conceptual framework (or model)	 78
intensity of current agricultural use ecocline	 42, 46, 47
interactions (between explanatory variables in models)	 7, 98, 101, 102, 104, 110
internal model performance assessment	 30, 32, 33, 35, 102–104, 110, 142
interpolation	 29, 31, 109
interspecific interactions	 55, 60–63, 
		  65–67, 69–72, 75, 76, 79, 80–83, 85, 86, 89, 92, 96, 97, 104, 109, 143
invasive species	 6
inventory database	 29
invertebrate	 40
irreversibility	 59
jackknifing	 35
judgement of distribution models	 101, 109
kurtosis	 24, 64, 98, 101, 103
land-cover explanatory variable (or factor)	 94, 95, 98
land-cover type	 6, 19, 24, 53, 87
landform	 4, 18, 21, 53, 54
landscape	 4, 18, 24, 45, 47, 48, 53, 68, 73
landscape scale	 20
land-use history	 21, 93
latent, or constructed, variable	 25
law of relative site constancy	 46
LC, see linear combination
Ledum groenlandicum	 56
lee side	 45
level of biological diversity	 48
lichen	 19, 53, 58, 61
LiDAR, see airborne laser scanning
life strategy	 71
life-history property	 73
light detection and ranging (LIDAR), see airborne laser scanning
lime richness ecocline	 13, 41, 44, 46–48, 87, 88, 95, 109
limited physiological tolerance (LPT)	 54, 56, 58, 60, 61, 64–67, 71, 85, 86, 143
line (object type)	 17
linear aspect of correspondence analysis	 25
linear combination (LC)	 13, 14
linear extent	 16–18, 20
linear grain size	 18–20, 44, 45, 63, 65, 66
linear regression (LM)	 50
linear transformation	 98, 99
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liverwort	 56, 93
local ecocline (or gradient)	 40,  41, 42–49, 
		  53–55, 59, 61, 66, 77, 80, 85, 86, 88, 90, 92–95, 97, 109, 143
local scales	 18, 20, 
		  43, 45, 47, 48, 55, 57, 60–64, 72, 76, 77, 80, 85, 86, 89, 93, 95–97, 109, 143
logging	 47
logistic regression	 26, 34, 105
long-term agricultural management intensity ecocline	 42, 46
long-term (average maximum) fitness	 73, 84–86
long-term population trend	 73
long-term study	 17
loss	 33, 37
low-intensity management	 46
low-mobile organisms	 61, 64, 80, 86
LPT, see lack of physiological tolerance
machine learning	 5, 98, 101
macroclimatic variable (or factor)	 42
macroecological rule	 53
magnitude response	 67, 71, 143
major complex-gradient	 12–14, 
		  42, 46, 49, 53, 61, 64, 71, 74, 75, 80, 84, 87, 89, 93–95, 97, 98, 103, 143
management history variable (or factor)	 93
management intensity level	 46
manual forward stepwise variable selection	 102
map representation (of predictions in geographical space)	 30, 34, 36, 84
marginal species	 53
mass effect	 73
MAUP, see modifiable area unit problem
Maxent software	 107
MaxEnt, see maximum entropy model
maximum entropy model (MaxEnt)	 5, 89, 98, 100, 101, 104, 107
maximum entropy principle	 5
maximum likelihood principle	 101
maximum likelihood models	 102
mean abundance	 22, 143
mechanism	 6, 11, 12, 39, 40, 46, 55, 56, 58, 59, 63, 73, 76, 94, 96
mechanistic niche modelling (MNM)	 39, 76
median depth to the water table	 61
median soil moisture	 45
medium local scale	 18, 20, 45, 47, 48, 61, 63, 65, 66, 82, 85, 86, 93, 97, 143
meta-model	 78, 86, 108
metapopulation dynamics	 57
micro scale	 18, 20, 21, 43, 49, 58, 60–66, 72, 77, 80, 83, 86, 93, 96, 97, 109, 143
microbial community	 56
micro-landslide	 60
microsite limitation	 57, 72
microsite preference	 63
microtopographic pattern	 45
migration	 48, 57, 69, 74, 110, 143
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minerogenous peat	 58
mire		  13, 44, 45, 53, 57, 58, 61, 66, 72, 93
MNM, see mechanistic niche modelling
mobile organism	 41, 62
model 	 4–7, 11, 21, 22, 25–27, 
		  29, 31–33, 35–39, 47, 53, 57, 58, 61, 62, 64, 67, 73–79, 84, 87, 90–93, 95, 97–108, 143
model calibration	 30, 33, 35, 99, 100, 105, 143
model comparison	 32, 33, 36, 102, 110
model estimation	 33
model evaluation	 30, 33, 35, 36, 38, 87, 91, 99, 100, 105–107, 109, 110, 143
model evaluation by data resubstitution	 35, 106
model evaluation by data-splitting	 35, 106
model evaluation by independent data	 35, 103, 105, 106, 109, 110
model evaluation by repeated resubstitution of data	 35
model parameterisation	 30, 32, 33, 35, 75, 78, 98–102, 105, 143
model performance	 6, 21, 33, 35, 91, 95, 102, 103, 110
model selection	 30, 32, 98, 102, 104, 143
model specification	 30, 32, 49, 98, 99, 101, 110, 143
model training	 33, 106
model-assisted search for new localities of rare species	 105
model-based field sampling	 77, 100
modelled target	  4, 6, 11, 12, 15, 17, 18, 21, 
		  22, 24, 25, 29–35, 37–39, 49, 54, 64, 73–75, 77, 78, 87, 89–94, 96, 97, 99–107, 143
modelling of the overall ecological response	 30, 32, 33, 36, 38, 39, 74–76, 90, 92
modifiable area unit problem (MAUP)	 15, 40
monitoring	 6, 77, 105
monothetic criterium	 89
monotonous (species) response (model)	 53
monotonous transformation	 98
morphological property	 55, 73
moss	59, 62
mountain-chain upfolding	 18
movement-related process	 58, 60
multimodal response curve (shape)	 51
multiple-scale study	 109
multivariate (modelling) method
multivariate gradient analysis (method)	 12, 15
multivariate variation partitioning (VP) approach	 24, 25
museum collection data	 5, 91, 107
mutualism	 56, 63, 64, 67, 70, 71, 80, 143
mycorrhiza	 12, 56, 63
narrow-peaked (leptocurtic) curve (shape)	 67, 89
natural variation	 7–9, 11, 24, 37, 40, 48, 79, 80, 87, 108–110
nature reserve	 16
nature type	 21, 40, 53, 54, 87–90, 94, 98
nature-type map	 95
negative (interspecific) interaction	 55, 56, 61–64, 67, 71, 72, 79, 80, 86, 96, 109
neighbour interaction	 61, 62
nested maximum likelihood models	 102
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niche hyperspace	 69–71, 73
niche modelling	 7, 29, 38, 39, 71, 75, 76
niche theory	 8, 29, 108
niche-based  modelling	 7
NiN, see Norwegian nature types
nitrogen	 42
noise		 57
nonconcept	 7, 16
non-environmental variable (or factor)	 76
non-linear overall response	 25
non-linear transformation	 52, 67, 98
non-wetland terrestrial system	 44, 87
normal soil moisture	 45
Norwegian nature types (NiN)	 42, 44, 93
Nothofagus	 61, 76
null model	 53
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observation unit	 14, 15–18, 21, 22, 
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observed presence	 22, 25, 35, 91, 96, 106, 107, 143
observer bias	 35
occupancy dynamics	 58, 60, 64
oceanic climate	 43, 46, 76
ombrogenous peat	 58
optimal distribution model	 74, 75, 97, 143
optimality criteria	 101
optimum	 22, 49, 50, 52, 59, 64, 67, 85, 143
ordered factor variable	 31
ordination	 12–14, 21, 22, 24, 25, 31, 36, 40, 43, 44, 53, 67, 77, 105, 108–110
organismal unit	 21
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overall ecological response 	 21–26, 32–34, 36, 38–40, 
		  46, 49–54, 59, 64, 67, 71, 72, 74–78, 84, 86–92, 94, 97, 99, 101–104, 106, 108, 143
overfitted model	 103, 104, 110, 144
overfitting	 102–104
owl		  62, 96, 102
P/A data, see presence/absence data
paludification (gradient)	 45, 46, 95
paradigm	 7, 37, 87
parameterisation	 32, 33, 35, 75, 78, 98–102, 105
parametric spline	 98, 144
parasitism	 56, 63, 65, 71, 80, 144
Parnassius Mnemosyne	 63, 96
particle size (of mineral substrates)	 41
pathogen	 55, 63
PCA, see principal component analysis
peak model for intraspecific patterns	 53
Pearson’s product-moment correlation coefficient	 53
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		  40, 44, 45, 47, 49, 51, 52, 54–62, 64, 65, 67, 71, 73–77, 79, 80, 84–87, 89, 91–110, 144
performance distribution bias	 91, 92, 110, 144
performance measure	 21, 22, 52, 144
periglacial process	 54, 90
permafrost	 90
perturbation	 59
phenolic compound	 56
physiological potential (of species)	 54, 55, 59
physiological property	 54–56, 58–61, 64–66, 71, 73, 74, 76, 85, 86 
phytosociology	 7, 53, 89
Picea abies	 57, 62
piecewise linear spline	 98
Pinus sylvestris	 62
pitfall trap	 16
plant community	 89
plant population ecology	 58
plant unit size	 61
plateau-shaped (response) curve	 89
PO data, see presence-only data
point (object type)	 14, 15, 17, 31, 32, 35, 54, 67, 68
polygon (object type)	 17
polynomial function	 98
polythetic criteria	 87
positive (interspecific) interaction	 55, 56, 62, 63, 67, 71, 72, 79, 80, 85, 86, 96, 109
positive abundance-occupancy relationship	 53, 85, 107
potential realised distribution	 75
potential-realised distribution gradient	 78
PPM, see projective distribution modelling	
PPP, see predicted probability of presence
predictability	 85, 87, 89, 90, 94
predicted probability of presence (PPP)	 33, 34, 105, 144
prediction	 6, 9, 31–33, 
		  35, 36, 38, 39, 62, 63, 67, 74, 75, 77, 78, 84, 92, 95, 97, 100, 101, 105, 106, 110
prediction error	 74, 103
prediction modelling	 39, 144
predictive distribution modelling	 7
predictive habitat distribution modelling	 7
predictive performance	 21, 38, 91, 92, 99–104, 106
predictor (variable)	 32, 92, 98, 101
presence	 12–14, 17, 21–26, 32–35, 
		  50, 53, 55, 56, 60, 62, 63, 70, 71, 80, 89–92, 95, 96, 100, 101, 105–107, 144
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principal component analysis (PCA)	 12, 31, 44
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probability-based sampling	 105
problem formulation	 29, 31, 67, 86
problem specification	 29, 31, 67, 86
process	  4–6, 9, 11, 14, 18, 29, 31, 32, 36–40, 43–49, 
		  53–64, 67, 70–80, 84–87, 89, 90, 92–94, 97–99, 101, 102, 104, 105, 107–110
profile technique	 32, 144
projection	 21, 39, 74, 77
projective distribution modelling (PPM)	 38, 74, 92, 144
propagule	 57
proximal factor	 37, 47, 48, 77, 94, 144
proxy (for environmental variable)	 12, 49, 53, 61, 76, 93, 94
pseudo-absence point (observation)	 7, 32, 91
pseudo-independence (of observations)	 100
pyrenomycete	 15, 62
quadratic transformation	 98
qualitative response variable	 31, 32
quantitative performance	 21
quantitative response variable	 32
radiation	 11, 42, 55, 71, 93
rainfall	 45, 46, 55
ramet	15
random point (observation)	 32, 91, 106
random sampling	 90, 91, 100
randomisation within selected blocks	 90
range shift	 6, 72
ranging	 99, 144
rare species	 6, 61–63, 77, 85, 86, 93, 105, 107
raster data	 17, 22, 31
rasterisation	 14, 17, 21, 30, 31, 109, 144
rasterised explanatory variable	 31, 76, 97, 109
rasterised geographical space	 14, 17, 31, 33, 34, 36, 50, 81–84, 89, 95, 144
rasterised study area	 22, 36
raw species data	 29
raw values (output format)	 33
RDA, see redundancy analysis
realised distributional data	 72, 74
realised niche	 69–72, 74, 75
receiver operating characteristic (ROC) curve	 35, 196
re-colonisation	 42
reduced growing-season due to prolonged snow-lie ecocline	 41, 45, 47, 55, 59
redundancy analysis (RDA)	 13
regional ecocline (or gradient)	 40, 41, 42–44, 
		  46–49, 53,–55, 61, 66, 77, 80, 84, 85, 89, 90, 92–94, 107, 144
regional scales	 12, 18, 20, 
		  21, 43, 44, 47, 48, 54, 57, 60–64, 67, 78–80, 84, 85, 95, 97, 109, 144
regression	 26, 37, 98, 99, 101, 102, 105
regrowth succession of tree stands ecocline	 42, 47
regrowth succession on agricultural land ecocline	 42, 43, 47
regular hexadecadal grid	 18–21, 23, 26, 27, 41, 50, 65, 66, 144



SOMMERFELTIA 35 (2012)  Halvorsen: A gradient analytic perspective on distribution modelling 161

relative occurrence area	 107
relative predicted probability of presence (RPPP)	 33, 35, 105–107, 144
relative relief	 44, 45
relative variation	 25, 26
remnant population	 57, 73
remote sensing data (RSD)	 95
representativity	 90, 91, 99, 100
representativity for the range of model predictions	 100, 144
representativity in environmental variables space	 90, 91, 100, 145
representativity in geographical space	 90, 100, 145
residual deviance	 102
resilience	 59, 145
resistance	 59, 145
resource gradient	 47, 48, 69–71, 79
resource in short supply	 55, 62, 97
response curve (shape)	 5, 22, 24, 
		  39, 49, 51, 52, 59, 64, 67, 84, 87, 89, 98, 99, 101, 103, 104, 145
response variable	 4, 5, 15, 21, 24–26, 29, 30, 32–38, 76, 78, 89–92, 98, 99, 101, 104, 145
restoration	 59
restricted random sampling	 90
reverse hinge (variable type)	 52
reversibility	 59, 145
rheogenous water	 41
richness	 6, 13, 14, 44, 46–48, 54, 58, 62, 73, 87, 95, 96, 109
rich-to-poor edaphic gradient	 44
ridge−depression gradient	 45, 46, 94
ROC curve, see receiver operating characteristic curve
rock outcrop	 46
rock surface	 61
rodent grazing	 60
RSD, see remote sensing data
ruderal	 71
rural species	 107
salinity	 46
Salix		  15, 43, 62
Sambucus racemosa	 62
sample	 15–18, 21, 22, 24–27, 32, 33, 
		  35, 39, 43, 44, 50–52, 62, 63, 72, 74, 75, 77, 90–92, 99, 100, 105–110, 145
sampling	 6, 14, 15, 17, 24, 51, 67, 73, 75, 77, 90, 91, 99, 100, 105, 108, 145
sampling bias	 75, 90–92, 100, 106–108, 110
sampling design	 90
SAR (species richness–area relationship)
satellite species	 107
scaling (of gradients) in physical units	 67
scaling (of gradients) in units of compositional turnover	 52, 53, 67
scaling of gradients	 67
scenopoetic variable (or factor)	 60, 61, 68, 69, 74, 75, 79
school formation	 7, 8, 29, 53, 89
SD, see standard deviation
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SDM, see species distribution modelling
sea-level changes	 18
secondary metabolite	 56
sectional ecocline	 43, 44
seed limitation	 57, 72
selective sampling	 91, 100
SEM, see structural equation model
semi-natural grassland	 46, 58, 72
semivariance analysis	 24
sensitivity (of model)	 106
serpentine wetland	 62
sessile organisms	 41, 42
severity of drought ecocline	 41, 43, 45, 46, 48, 55, 94, 109
sexual reproduction	 57, 58
shallow-soil ridge	 55
shared component of variation	 24
shrinkage method	 33, 145
simulated data	 101, 106
sink population	 57, 58, 73, 79, 84, 85, 86, 110
site	   	 14, 15, 18, 43–46, 53, 56–61, 63, 64, 67, 68, 72, 73, 80, 84–87, 89, 95, 96, 100, 105
site scale	 20
skewness	 24, 27, 39, 52, 67, 98, 103
slope		 46, 59, 93
snow distribution pattern	 45
snowbed	 45
snow-cover stability ecocline	 41, 45, 109
social construction	 7
soil depth	 41
soil-dwelling invertebrates	 41
soil-swelling microorganisms	 42
soil reaction	 44
solifluction	 90
source population	 57, 79, 84, 85
source-sink population dynamics	 57
space limitation	 58, 63–65, 67, 72, 80, 86, 145
spatial autocorrelation	 90, 99, 106
spatial dimension	 16, 18
spatial domain	 18, 40, 53, 72, 84, 85, 93, 96, 97, 145
spatial extent	 16, 18, 19, 145
spatial extrapolation	 30, 36
spatial grain	 16, 19, 145
spatial interpolation	 31, 145
spatial prediction modelling (SPM)	 38, 74, 92, 97, 110, 145
spatial scale 	 7, 12, 16, 18–21, 24, 26, 
		  27, 40–49, 54, 55, 57, 58, 60–67, 72, 76–80, 84–86, 95, 96, 97, 109, 145
spatial scale interval in which variation is large	 21, 24, 27, 40, 
		  41, 43–49, 60, 62, 64, 79, 80, 86, 97, 145
spatially inconsistent patterns	 40
species composition	 7, 9, 12, 14, 15, 
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		  24, 25, 40, 42–44, 46–48, 55, 60, 61, 63, 71, 72, 77, 89, 91
species distribution modelling (SDM)	 8, 9, 29, 38, 73, 74, 80, 87
species response curve	 5, 22–24, 52, 101, 145
species richness–area relationship (SAR)	 58
species−environment relationship	 54
species-in-samples data	 108
specificity (of model)	 106
specific-purpose ecological response modelling (ERM)	 38, 76, 77, 97, 102, 145
Sphagnum	 45, 93
Sphagnum balticum	 56
Sphagnum fuscum	 56
Sphagnum papillosum	 58
spline	 98
SPM, see spatial prediction modelling
spring water	 41
SS, see sum of squares
stability	 59, 145
standard deviation (SD)	 99
standardisation by centering and division with the standard deviation	 99
statistical learning	 101
statistical model	 4, 5, 10, 11, 25, 26, 30, 32, 36, 38, 49, 78, 100, 105, 108, 110
statistical model formulation	 30, 32, 49
stochastic variation	 14, 56–59, 63, 74, 89
stocking rate	 93
stress	 54, 55, 59, 61, 62, 64, 67, 71, 72, 80, 145
stress tolerator	 71
structural equation model (SEM)	 78
structure	 8, 9, 12, 36, 39, 44, 57, 58, 63, 71, 78, 99, 106
structuring process	 46, 54, 58, 60, 61, 64–66, 71, 79, 80, 84–86, 89, 92, 94, 108, 145
study area	 14, 16–18, 21, 22, 24, 27, 
		  31, 33, 36, 38, 40, 49, 53, 64, 77, 84–87, 90, 92–94, 97, 100, 105, 106, 107
subplot frequency	 21, 145
subset selection method		

33, 146
substrate stability	 41
successional ecocline	 43, 47, 61
sum of squares (SS)	 25–27
surrogates (for environmental explanatory variables)	 37, 47, 95
swamp forest	 19, 44, 63, 104
symbiotic relationship	 56
symmetric interspecific interaction	 55, 70
symmetric response curve (shape)	 52, 67
symmetry of response curves	 52
synchronous dieback	 58
systematic part (of statistical model)	 32
systematic sampling	 90, 91
target species	 60, 67, 74, 78, 79, 84, 86, 96, 102
targeted response variable	 4, 98, 145
target-group background observations	 91, 107, 108, 145
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taxonomic entity	 6, 18
taxonomic heterogeneity	 51
temperate climates	 43
temporal dimension	 16, 18
temporal extent	 16, 17, 145
temporal extrapolation	 30, 36
temporal grain	 16, 17, 145
temporal scale	 12, 16, 29, 40, 42, 43, 48, 49, 52, 60, 61, 73, 75, 80, 85, 87, 108
temporally inconsistent patterns	 40
terminology	 8, 9, 11, 21, 37, 53, 58, 60, 68–70, 74, 75, 87, 101, 102, 108
terrain shape	 41, 44
terrestrial arthropods	 24
terrestrial ecosystems	 41, 42
theoretical foundation	 6, 8
theoretical maximum deviance	 26
theoretical platform	 8, 29, 108, 109
threshold response	 59, 145
throughfall precipitation	 11, 71
tidal shore	 46
Tilia cordata	 57
time interval	 24, 38, 40, 47, 62, 74
tolerance	 13, 22, 24, 45, 49–52, 54, 56–62, 64, 67, 71, 74, 85, 86, 99, 107, 145
tolerance of submergence	 42
top-down (hierarchical) approach to distribution modelling (DM)	 80, 87, 97, 108
topographic gradient	 46, 94
topographic position	 41, 45, 93, 94
topographic wetness index	 93
topographical variable (or factor)	 31, 44
topography	 21, 43, 44, 45, 61, 93, 94
topsoil development	 44
total niche	 73
training variable	 32
trampling and associated erosion ecocline	 43, 47
transfer of modelling results	 30, 38, 77, 100, 106
transformation	 27, 30, 31, 32, 52, 74, 75, 97, 98, 99, 101, 110, 145
tree complexity parameter (in BRT)	 102
tree line	 46
tree uprooting	 11, 55, 60
tree		  15, 42, 47, 55–57, 59, 61, 62, 71, 76, 85, 86, 93, 96
Trientalis europaea	 45
trimodal response curve (shape)	 51
true positive rate	 106
true probability scale	 35
truncation of response curve	 50, 52, 98, 101, 103
Type I overfitting	 103, 145
Type II overfitting	 103, 104, 145
Type III overfitting	 104, 145
unimodal (species) response (model)	 26, 49, 51–54, 71, 90, 96
unimodal function	 49
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unimodal relationship	 50, 53
uninformed background observation unit	 22, 91, 145
unique component of variation	 24
units subjected to analysis	 15–18, 39, 43, 145
univariate (modelling) method	 12, 25, 32, 37
Universal Transverse Mercator (UTM) grid reference	 16
UPCFL, see upper potential climatic forest line
upper potential climatic forest line (UPCFL)	 6, 89
UTM, see Universal Transverse Mercator grid reference
Vaccinium myrtillus	 56, 87
validation	 35
variance	 25, 33
variation component	 24, 25, 145
variation partitioning (VP)	 24, 25, 27, 102
vascular plant	 19
vegetation	 7, 11, 14, 16, 17, 24, 39, 40, 43, 45, 54, 63, 89, 95
vegetation mapping	 94, 95
vegetation section	 43
vegetation type	 6, 87, 89, 94, 95
vegetation zone	 43
vegetative propagule	 57
verification	 33, 37
vertebrate	 62
VP, see variation partitioning
WA, see weighted average
wall-to-wall coverage	 31, 93, 94, 95, 109
water saturation ecocline	 41, 45, 46, 48, 61, 66, 71, 93, 94
water supply to bedrock ecocline	 61
watercourse regulation ecocline	 47
water-table gradient	 13, 48, 93
weak hypothesis	 37
weathering	 44
weighted average (WA)	 14
wetland systems	 41, 44, 62
wind disturbance	 41
wind-exposed ridge	 45
windthrow	 4
within-population demographic processes	 58, 60, 63–65, 67, 80, 86, 145
woodpecker	 62, 96
WorldClim data	 31, 109
zero-skewness transformation	 27, 98
zonal ecocline	 43
zonal gradient	 43, 44
zooplankton	 24


