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Terrestrial Monitoring of boreal birch forest ecosystems (TOV) was initiated in 1989 by the Directorate 
for Nature Management. The programme has a multidisciplinary approach and integrates studies of 
precipitation, soil water, soil, understorey vegetation composition, lichens on birch trunks, population 
studies of birds and mammals and environmental pollutants in plants and animals. Here we present 
studies of forest floor vegetation at establishment, which supplements and complements two studies 
established in boreal coniferous forests in 1988: ‘The effect of acid precipitation on forest and forest 
understorey vegetation in Gjerstad, South Norway’ and ‘Vegetational and environmental monitoring 
of boreal spruce forest in ten reference areas’, the latter initiated by the Norwegian Institute of Land 
Inventory (NIJOS) as part of a forest health monitoring programme. 

The reference areas were selected to span regional gradients in climatic conditions and deposition 
of airborne pollutants, in old-growth bilberry-dominated birch forest in Norway. Ten macro plots in 
each reference area were located to span differences in nutrient and soil moisture conditions, terrain 
features, etc. by a sampling design similar to the one used in coniferous forests. Fifty 1×1 m meso 
sample plots, randomly chosen within the ten macro plots, were subjected to vegetation analysis, 
using frequency in subplots as well as percent cover as species abundance measures. 

The main vegetational gradients were found by parallel use of DCA and GNMDS ordination 
methods; the results of which were subjected to environmental interpretation by means of non-para-
metric correlation and split-plot GLM analyses. Both ordination methods gave to large degree similar, 
interpretable, vegetation gradients. The most important ecoclines were related to variation in nutrient 
conditions, best expressed by pH, Ca, K and S. Tree influence, topographic (un)favourability, soil 
moisture and soil depth were other factors which were correlated with one of the two main vegeta-
tion gradients (ecoclines). 

The main vegetational gradients and environmental/climatic/geographical complex gradients 
in the total data set were found by DCA and subsequent interpretation of the axes. The main complex 
gradient corresponded to the variation in the vegetation from sites with low pH and low content of 
nutrients (low concentrations of macro nutrients like C, Ca, Mn, S and Total N) and high loss on igni-
tion to vice versa. The  second gradient corresponded to variation in the vegetation from sites with 
high effective temperature sums at low latitudes and high soil concentrations of Mn and S, to sites 
with opposite characteristics. Most of the variation (> 80%) in the vegetation compositions could be 
ascribed to the between macro plots scale level, leaving a small residual variation on the between 
area and in the plots within macro plot scale level.
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INTRODUCTION

Acid rain has been one of the major impact factors on the South Norwegian environment since the 
1970s (Anonymous 2006). The problem has for a large part been linked to deposition of long distance 
airborne sulphur, to which areas in south-western Norway dominated by Precambrian rocks with low 
buffer capacity have been regarded as the most vulnerable. In the 1970s and 1980s the main focus was 
on freshwater systems and fish populations, but concern for terrestrial systems originated soon after. 
In later years, airborne sulphur pollution has declined and some improvement of the environmental 
status has been reported for Norwegian ecosystems (http://www.miljostatus.no). 

There has been an ongoing discussion regarding what impact acid rain has had on understorey 
vegetation and soil conditions. Possible damages to forest vegetation were first addressed around 
1985 when vegetation changes that might be related to ‘acid rain’ were first recorded (Wittig & Neite 
1985, Falkengren-Grerup 1986). As a response to this, several Norwegian projects were initiated with 
the aim to study possible changes in forest floor vegetation composition and chemical variables, like 
OPS (‘Overvåkingsprogram for skogskader’, [Norwegian monitoring programme for forest damage]) 
(Hylen & Larsson 2007) and ICP Forest (Intensive forest monitoring) (Andreassen et al. 2006). The first 
projects addressing ground vegetation in Norwegian boreal forests were ‘The effect of acid precipita-
tion on forest and forest understorey vegetation in Gjerstad, South Norway’ (R. Økland & Eilertsen 
1993) and ‘Vegetational and environmental monitoring of boreal spruce forest’ (T. Økland 1996). 
These monitoring projects were both initiated in 1988 and are still running (Framstad 2008). 

The main methodological framework for vegetation monitoring in Norway (Lawesson et al. 
2000) and also for this study (see Bakkestuen & Erikstad 2002) was established during the initial 
phases of ground vegetation monitoring. The framework was designed for early detection of vegeta-
tion changes related to long-distance airborne pollutants and other broad-scale impact factors, such 
as climatic change. A few important success factors were assumed to be: (1) Selection of reference 
areas that were minimally influenced by successions after local disturbances, e.g. wildfire, previous 
timber harvests and burn-and-slash cultivation. Such successions tend to obscure changes due to 
regional impact factors such as deposited airborne pollutants and climatic change. (2) Establishment 
of plots in each reference area along the main local complex gradients in a standardized way that 
ensured a comparable range of variation due to local environmental factors to be included from all 
areas. (3) Comprehensive sampling of environmental variables that in some way might have an effect 
on the species composition (R. Økland 1990). In practice collection of environmental variables was 
restricted to measurements of chemical characteristics in soil, e.g. organic matter content (humus) 
and chemical properties such as pH, C, N and exchangeable cations and physical characteristics 
such as relative elevation, soil depth, inclination, slope etc. Furthermore, data on biological charac-
teristics such as e.g. the cover of different vegetation layers and species richness of different groups 
were also collected. (4) Use of two different species abundance measurements, subplot frequency 
and percentage cover, which ensured that demands for observer independence were fulfilled (by 
the subplot frequency method) while at the same time facilitating detection of temporal changes for 
frequent species (with high subplot frequency; see Aarrestad et al. 2008). (5) A sampling scheme that 
facilitated analysis of univariate as well as multivariate patterns of change. (6) Supplementary plant 
demography studies conducted in permanent vegetation plots, e.g. a parallel demography study (see 
R. Økland 1995, 2000).

The monitoring project ‘TOV’ (terrestrial monitoring) was initiated one year after the corre-
sponding activities in boreal coniferous forests, i.e. in 1989, with focus on birch forest ecosystems 
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as a supplement to the two monitoring programmes in coniferous forests (Løbersli 1989). Unlike the 
coniferous forest investigations, TOV is a larger multidisciplinary project that integrates studies of 
precipitation, soil water, soil chemical and physical properties, ground vegetation species composi-
tion, lichens on birch trunks, population studies of birds and mammals, and direct monitoring of 
environmental pollutants in plants and animals, into one monitoring approach. 

Six reference areas for intensive monitoring of ground vegetation in birch forest were estab-
lished between 1990 and 1993 (five of these in mountain birch forests). The first four reference areas, 
established in 1990–1992, were designed to cover a small part of the local floristic variation in the 
vegetation. Only species-poor bilberry-dominated birch forests sites were included, and the vegetation 
gradients identified by ordination methods were accordingly short in terms of compositional turnover 
(Brattbakk et al. 1991, 1992, Brattbakk 1993). However, the first results from the boreal coniferous 
forests monitoring projects indicated that changes due to airborne pollutants mainly occurred in more 
species-rich bilberry-dominated vegetation types (R. Økland 1994). It was thus decided to change 
the design of birch forest monitoring to cover roughly the same amount of variation in vegetation 
and environmental factors as in coniferous forests (i.e. include variation along a nutrient gradient 
from oligotrophic to medium eutrophic vegetation and a soil moisture gradient from dry to moist 
soil), and hence to make adjustments to the sampling design of the first four reference areas. The 
two areas established in 1993 were established according to the new protocol. The three long-term 
monitoring studies in Norwegian boreal forests were then thus methodologically co-ordinated with 
respect to: (1) the range of within-area environmental conditions sampled; (2) selection of areas with 
few and/or small signs of human-induced successions; (3) plot size; (4) interval between re-analyses; 
(5) species abundance measures; (6) environmental variables recorded at the start; and (7) analysis 
of vegetation-environment relationships at establishment (see T. Økland et al. 2001, 2004).The focus 
of this publication is to present the results of the baseline investigations of vegetation-environment 
relationships in the six reference areas after adjustment of methodology in 1993, i.e. results of field 
work performed in the period 1993–1997. 

Even if TOV, as well as the two sister projects in coniferous forests, as a monitoring program, 
was basically designed to reveal effects of acid rain, the design and the long duration of the program 
underpins it importance in a more general monitoring context. In addition, the results from these 
studies have contributed, and will continue to contribute to increased understanding of the most 
important structuring processes in boreal forests (R. Økland & Eilertsen 1993, T. Økland 1996). The 
sub-alpine vegetation types between the boreal spruce forest and the alpine region have a considerable 
vertical distribution in Fennoscandia (Hämet-Ahti 1963, Wielgolaski 1997), and they are considered 
to be of great importance for biodiversity with high conservation value (Odland et al. 1992). It is a 
national task for Norway, due to its geographical position, to monitor the eventual change of these 
ecosystems, which are unique in a European context. The last years focus on biodiversity and climate 
change issues makes these birch forest investigations even more interesting because the monitoring 
concept makes it possible to study possible changes in amount and cover of field- and ground layer 
species along the zonal and sectional (i.e. regional) gradients (see Moen 1999).

The aims of this study is to identify variation in ground vegetation composition (‘ecoclines’) 
in six birch forests in Norway by use of multivariate statistical methods; and to interpret these eco-
clines in terms of environmental variation. These two aims serve the main objective to understand 
the vegetation-environment relationships of boreal birch forests. This knowledge will be foundation 
for interpretation of eventually vegetation changes in the ongoing monitoring project. 
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THE STUDY AREAS

The six reference areas for monitoring boreal birch forest vegetation in Norway are Lund, Møsvatn, 
Gutulia, Åmotsdalen, Børgefjell and Dividalen, listed from south to north in Norway (Fig. 1 and Table 
1). They were all located in areas protected by law (except Lund). The areas were selected in order 
to span the gradient in deposition of long-range transboundary air pollutants from south-southwest to 
the north of the country. The six areas cover the main climatic and geographical variation of (middle) 
and north boreal birch forest in Norway. Most of the reference areas are situated in forests developed 
by natural regeneration with minor human influence ( ‘naturskog’ according to Rolstad et al. 2002). 
However, grazing pressure by sheep and domestic reindeer have, in some areas, brought about veg-
etation changes in direction of semi-natural vegetation. The reference areas comprise a comparable 
range of variation in natural vegetation, e.g. lichen-dominated, bilberry dominated, small fern and 
tall herb dominated vegetation, related to local variation in soil moisture and soil richness. 

Fig. 1. Map of Norway showing the localisation of the 6 monitoring reference areas.
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The reference area in Børgefjell was established in 1990 (Brattbakk et al. 1991) and methodi-
cally revised in 1995 (Eilertsen & Stabbetorp 1997). Lund was established in 1991 (Brattbakk et 
al. 1992) and the sampling revised in 1996 (Stabbetorp et al. 1999). Åmotsdalen was established in 
1991 (Brattbakk et al. 1992), revised in 1994/96 (Bakkestuen et al. 1999a). Møsvatn was established 
in 1992 (Brattbakk 1993) and revised in 1994/97 (Bakkestuen et al. 1999b). Gutulia and Dividalen 
were established in 1993 (Eilertsen & Often 1994, Eilertsen & Brattbakk 1994).

GEOLOGY

Precambrian bedrock dominates in all reference areas, however, to variable extents influenced by 
tectonic movements and metamorphosis linked to the Caledonian mountain formations (Sigmond 
et al. 1984). 

In the Lund area the bedrock consists of gneiss rich in biotite (mica), which give rise to soils 
relatively poor in mineral nutrients, while the bedrock in the Møsvatn area consists of metarhyolite 
and metamorphic tuffs belonging to the Rjukan group, which give rise to soils slightly richer in 
mineral nutrients (Dons & Jorde 1978, Dons et al. 1990). 

In Åmotsdalen the Precambrian rocks consist of metamorphic shales rich in quartzitic and 
granitic materials, feldspar and with elements of deformed basal conglomerates (Krill 1987). The 
bedrock of Gutulia belongs to the Kvitvola nappe unit (Nystuen & Trømborg 1972, Nystuen 1979), 
which consists of deformed and metamorphic sandstones rich in quartz and feldspar, normally pro-
ducing nutrient poor soils. Locally more mica-rich rocks outcrops give rise.to soils somewhat richer 
in mineral nutrients.

In the Børgefjell area the bedrock is dominated by granites and granitic gneisses poor in mineral 
nutrients, but with some gneisses richer in feldspar minerals. The investigation area in Dividalen has 
a higher geodiversity, situated on three main geological units (Osland 1974). The lowest lying part 
consists of an autochtonous, locally metamorphic granite or granitic gneiss with veins of dark mica 
and amphibole. The steep intermediate area consists of conglomerate, clay schists and sandstones, in 
some places with thin zones of limestone. At higher altitudes, the bedrock belongs to a nappe com-
plex, locally with zones with shattered mica rich rocks and marble. The Dividalen reference area is 
thus very different from the other areas with bedrocks that give rise to soils richer in base minerals, 
i.e. with high values of pH, Ca and Mg.

QUATERNARY DEPOSITS, LANDFORMS AND TOPOGRAPHY

The Lund reference area is situated 320–420 m a.s.l. in a relatively steep mountain side facing north-
east. One of the investigated sites is situated on a gravel deposit between two small lakes. The moun-
tain side varies between even slopes and small gully-like depressions with periodic small streams. 
In the upper parts, where the terrain is less steep, small fens occur, but most of the mountain side is 
well drained with a thin layer of till, often with a high block content and with considerable variation 
in the size of the stone blocks. 

The Møsvatn reference area is situated between the high mountains on the Hardangervidda 
mountain plateau and the deep valleys south of this. The monitoring area (1000–1050 m a.s.l.) is 
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located on the north and east slopes of a small hill, above a mire surrounded by a mountain meadow 
landscape. The till deposits are thin and discontinuous and contain several bedrock outcrops. In the 
northern low-lying parts of this reference area the till has a very high content of blocks, compared 
with the rest of the area. 

The Åmotsdalen reference area (900–925 m a.s.l.) is situated on kame terraces and till depos-
its on the south facing slopes of the valley. Glacifluvial sandy deposits dominate the lower parts of 
the area. The glacifluvial deposits are linked to a glacier directed drainage system which extends up 
the valley to passpoints to the west and north-west in the mountains (Sollid et al. 1980a, 1980b). At 
higher altitudes, thin and discontinuous deposits of till dominate together with mires and bedrock 
outcrops. 

In the Gutulia reference area (770–865 m a.s.l.) till dominates with variable thickness, normally 
thin at higher altitudes and thicker in the mountain slopes and the valleys. The till contains some 
limestone and dolomite erratics, originating from sedimentary rocks found between the Precambrian 
basement and the nappe rocks above. 

The Børgefjell reference area is situated between 520 and 580 m a.s.l. A coarse till deposit 
dominates the area, which contains few bedrock outcrops partly situated on the east slopes of a 
U-shaped valley, one on weakly convex terrain in between mires and the other on a medium steep 
valley side. 

The Dividalen reference area extents across a wide U-shaped valley in the lower part of the 
valley side, between 385 and 615 m a.s.l. Glacifluvial deposits are found at middle levels in the valley 
side. These are linked to a glacier directed drainage system going up the valley to pass points towards 
the east. Block-rich tills dominate the valley floor. The till is also rich in clay and consolidated, which 
does not favour drainage. The terrain is therefore locally paludified. At higher elevations the till cover 
is thin and discontinuous.

CLIMATE

The reference areas span a geographical gradient from south to north Norway with major differences 
in tempeartures and precipitation (Table 1). The southernmost area, Lund, differed strongly from the 
other areas (Table 1). Lund has the highest summer temperature (> 11.5 °C) and the winter tempera-
ture is rather mild (> –1.4 °C) (Førland 1993). The other areas have lower summer temperatures, 
ranging between 11.4 and 8.0 °C. Gutulia has the lowest winter temperature (–11.4 °C). Lund is also 
the area with far the highest precipitation, while Dividalen to the north has the lowest mean annual 
precipitation.

VEGETATION ZONES AND SECTIONS

The six reference areas span natural climatic and geographical gradients of Norwegian birch forests 
(Table 1, Fig. 1) as well as gradients in deposition of major long-distance airborne pollutants (Tørseth 
& Semb 1997, Aas et al. 2002). The areas span almost the entire oceanicity gradient from the mark-
edly oceanic section (O2) at Lund to the slightly continental section (C1) at Dividalen (terminology 
of vegetation zones and sections in accordance with Moen 1999). All areas are situated in the north 
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boreal vegetation zone, except Lund which is situated in the lower part of the middle boreal zone, 
close to the more termophilous south boreal zone (Table 1). 

HISTORICAL BACKGROUND OF BOREAL BIRCH FOREST INVESTIGATIONS 

Boreal birch forests have been described from central and southern parts of Norway by e.g. Nord-
hagen (1928, 1943), Mork & Heiberg (1936), Dahl (1957), Aune (1973) and Moen (1990). Several 
associations in the hierarchical plant sociological system (Braun-Blanquet 1928, 1965, Dierschke 
1994) have been proposed by Nordhagen (1943), Kielland-Lund (1972, 1973, 1981) and Aune (1973). 
Overviews of the relations of birch forests to syntaxonomy have been given by Vevle (1986), Dahl 
(1986), Kielland-Lund (1994) and Fremstad (1997). Relevés and vegetation descriptions from birch 
forests spread over Norway have been used to classify the boreal birch forests into vegetation types 
by Fremstad (1997). These vegetation types are, to a large extent, based on environmental gradients 
(climate, soil related and long-term human impact). R. Økland & Bendiksen (1985) classified up-
per boreal and middle boreal vegetation types on poor soils in the Grunningsdalen area in Telemark 
according to positions along the complex gradient topographic moisture–snow cover into xeric, 
subxeric, submesic and mesic series. This accord with Finnish studies, e.g.  Kalela (1961), Hämet 
Ahti (1963) and Kielland Lund (1967, 1973, 1981). However, counting the mentioned studies above 
as well, hardly any environment-vegetation relationships studies using gradient analyses techniques 
(sensu R. Økland 1990) has been performed in Fennoscandian boreal birch forests. This knowledge 
gap has been one of the main drivers to complete this monograhy.  

AREA HISTORY AND INFLUENCE OF GRAZING

Lund

The Lund reference area is not protected by law, but privately owned. It is situated just outside the 
Førland/Sletthei landscape Protection area (Fig. 2). The investigated area is located far from built-up 
areas and only to a small degree influenced by human activity (Brattbakk et al. 1992, Stabbetorp et 
al. 1999). A sheepwalk occurs in the main valley, Urdalen, and heathland has periodically been burnt 
on ridges in the vicinity of the reference area until recently. The sheep have access to the investigated 
area. However, no visual signs of grazing have been recorded from the reference area. The area is 
used for hunting elk and deer, but it is not heavily used for recreation. 

Møsvatn

The reference area is situated on Merakkhaugen on privately owned land within the Møsvatn-Austfjell 
Landscape Protection Area, protected by law since 1993 (Fig. 3). Summer farming has earlier been 
common in the area, but at the time of establishment summer farming only took place in Hjerdalen 
(Brattbakk 1993). Today there is a weak grazing pressure by cattle and sheep in and around the 
investigated plots, and frequent cutting of woods have been observed. Merakkhaugen is visited by 
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some hikers, and in autumn the area is often used by people collecting berries, especially cloudberry. 
However, it is assumed that the investigated area, due to its position in the north facing slope away 
from the main pathways, is more protected from grazing, wood cutting and human trampling than 
the surrounding areas (Bakkestuen et al. 1999a, Bakkestuen & Erikstad 2002). 

Fig. 2. Map of the reference area Lund with positions of macro plots 1–10. Based on digital N50 
maps from the Norwegian Mapping Authority. Map sheet Ørsdalsvatnet 1312 III. 

Fig. 3. Map of the reference area Møsvatn with positions of macro plots 1–10. Based on digital N50 
maps from the Norwegian Mapping Authority. Map sheet Frøystul 1514 I.
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Gutulia

The investigated area (Fig. 4) is state owned land, protected as a part of the Gutulia National Park 
since 1968. Summer farming was performed regularly in Gutulia until 1949 (Kielland-Lund 1972, 
Wold 1989). Later on, to restore some of the original mountain dairy farming environment, the pas-
ture has been grazed again by cattle for some years. Only a small area within the investigation area 
is considered to be influenced by grazing for the last hundred years (O. Vangen pers. medd, Eilertsen 
& Often 1994). However, the influence from grazing by domestic reindeer was at the time of analysis 
significant in the whole area, particularly above the tree limit, where also the trampling effect is larg-
est. The national park is also much visited by tourists and hikers, but these mainly follow the main 
tracks outside the reference area. According to Godal & Hauge (1964) and Ø. Aas (1989) there has 
been some wood cutting in Gutulia, and at least four forest fires have occurred in historical times 
(Wold 1989). However, traces of forest fires were most abundant in pine forests in the area.

Two other vegetation monitoring projects have been established in Gutulia. Boreal coniferous 
forests are monitored in Gutulia as one of the ten reference areas in ‘Vegetational and environmental 
monitoring of boreal spruce forest’ by the Norwegian forest and landscape institute (formerly NIJOS; 
T. Økland 1993, 1996). The coniferous forest sites are situated just to the south-east of the birch forest 
reference area. In 1992, NIJOS also established a monitoring project within low alpine vegetation in 
Gutulia (Rydgren 1994) which has, however, so far not been re-analysed. 

Fig. 4. Map of the reference area Gutulia with positions of macro plots 1–10. Based on digital N50 
maps from the Norwegian Mapping Authority. Map sheet Elgå 1719 IV.
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Fig. 5. Map of the reference area Åmotsdalen with positions of macro plots 1–10. Based on digital 
N50 maps from the Norwegian Mapping Authority. Map sheet Snøhetta 1519 IV.

Åmotsdalen

The investigated area is privately owned, but from 2002 included in the Åmotsdalen Landscape 
Protection Area (Fig. 5). Five summer farms have occured in the vicinity of the reference area, while 
none of these were still in active use at the time of the establishment of the reference area (Brattbakk 
et al. 1992). The forests close to the summer farms have earlier been considerably affected by grazing 
by cattle and sheep, and by removal of shrubs to improve the grazing land. Furthermore they have 
been affected by wood cutting and hay harvesting. However, the reference area is situated in the least 
affected parts of the forests, and at the time of analysis the vegetation appeared only slightly affected 
by grazing. A tourist path runs through the area, but it is not much in use. Some sheepwalks were 
observed in the investigation area during fieldwork in 1996 (Bakkestuen et al. 1999b).

Børgefjell

The investigated area (Fig. 6) is state owned land and protected as a part of Børgefjell National Park 
since 1963. A sámi camp is situated close to the reference area, and the whole area was influenced by 
summer grazing by domestic reindeer. By 1996 the number of reindeer was estimated to be approxi-
mately two thousand individuals (Eilertsen & Stabbetorp 1997), and the vegetation in the reference 
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Fig. 6. Map of the reference area Børgefjell with positions of macro plots 1–10. Based on digital N50 
maps from the Norwegian Mapping Authority. Map sheet Børgefjellet 1925 IV.

area was likely to be affected by the grazing pressure. Snow scooters were extensively used also 
within the borders of the national park. Few signs of wood cutting occurred in the area, and no signs 
of hay harvesting and grazing of farm animals could be observed. No summer farms exist (or have 
existed) in the area; just some privately owned cottages and a tourist cottage were present. Hikers 
get access to the area by a taxi boat across the lake Store Namsvatn. This has resulted in a low but 
continuous flow of hikers into the area, but this activity seemed not to have any significant influence 
on the vegetation in the monitored area. 

Dividalen

The investigated area is state owned land and is protected as a part of Dividalen National Park since 
1971. The National Park is used in the summer by the Swedish sámi villages (sidas) of Lainiovouma 
and Saarivuoma (Eilertsen & Brattbakk 1994). The area south of Skaterdalen have been utilized by 
the reindeer management of Saarivuoma (Kalstad 1974). No summer farms have existed in the area 
and the only traces of fellings in the investigation area occurred along Hagembekken (Fig. 7). Three 
hiker cabins were situated in the national park, and the area was much visited by locals and tourists. 
Some human impact occurred along the main tracks, but the major part of the national park is little 
affected by trampling. Previously there has been military activity in the area (Munch 1974).  
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Fig. 7. Map of the reference area Dividalen with positions of macro plots 1–10. Based on digital N50 
maps from the Norwegian Mapping Authority. Map sheet Altevatn 1532 II.
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MATERIAL AND METHODS

Data were collected from Gutulia and Dividalen in 1993 (soil data for Dividalen sampled 1998), from 
Børgefjell in 1995, from Lund and Åmotsdalen in 1996 and from Møsvatn in 1997. These data rep-
resents the first analyses of each of the six reference areas with common methodology (see below).

SAMPLING DESIGN 

Early phase methodology

When the first four reference areas (Børgefjell in 1990, Lund in 1991, Åmotsdalen in 1991, and 
Møsvatn in 1992) were established, sites of slightly variable shape and size (approximately 50 m2) 
were placed subjectively in homogenous bilberry-dominated birch forests. The vegetation was at that 
time analysed in sample plots subjectively distributed along transects within each site. At Børgefjell 
10 sites were established, with ten 0.5×0.5 m sample plots in each site, 100 in total (Brattbakk et al. 
1991). At Lund six sites were established with six to ten 1×1 m sample plots in each site, 50 sample 
plots in total (Brattbakk et al. 1992), while at Åmotsdalen and Møsvatn 10 sites each containing five 
1×1 m sample plots were established (Brattbakk et al. 1992, Brattbakk 1993). All sample plots were 
permanently marked.

New methodology

In 1993 it was decided to include vegetation over a wider range of variation in soil moisture, soil 
mineral nutrient richness and microclimate within each reference area. In Gutulia and Dividalen, 
established in 1993, a restricted random sampling procedure was used.

Ten macro plots, each 5×10 m, were placed subjectively in each reference area in order to 
represent the main floristical and ecological gradients within the birch forest. Five meso plots for 
vegetation analysis, each 1×1 m, were randomly distributed within each of the macro plots. A meso 
plot was rejected if containing a tree taller than 2 m or if more than 20% of the plot was covered by 
stones or fallen tree logs. All plots were placed at least one meter from to the nearest plot to avoid 
trampling destruction of the vegetation within the plots. The corners of the macro plots and the 
lower left corner of each meso plot were marked by wooden poles. All corners of the meso plot were 
permanently marked with subterranean eloxed aluminium tubes. This restricted random sampling 
procedure is regarded as an optimal compromise between objectivity and time consumption in veg-
etation monitoring (cf. R. Økland 1990, T. Økland 1996).

Adjustment of early methodology

The field sampling design used in Børgefjell, Lund, Åmotsdalen and Møsvatn reference areas 1990–92 
was changed before first re-analysis (in Børgefjell in 1995, in Lund and Åmotsdalen in 1996, and in 
Møsvatn in 1997).
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Thirty of the original sample plots from each reference area were retained, while 20 new 1×1 
m sample plots (meso plots) were established within four new macro plots, using the same methods 
as described for Gutulia and Dividalen. The new macro plots were subjectively positioned within 
the birch forest of each reference area, to ensure that all 1×1 m sample plots together represented the 
main floristical and ecological gradients within the reference area.

At Børgefjell the original 0.5×0.5 m sample plots were expanded to 1×1 m plots. After ad-
justment all reference area contains fifty 1×1 m sample plots (meso plots) for vegetation analyses 
distributed within ten macro plots (or sites). The total number of meso plots within the TOV birch 
forest monitoring programme is therefore 300.

RECORDING OF VEGETATION IN THE SAMPLE PLOTS

Each of the 300 meso plots (50 in each reference area) was divided into 16 equally large 0.0625 
m2 subplots. Presence/absence of all species of vascular plants, bryophytes and macrolichens was 

Table 2. Environmental variables; abbreviation, unit of measurement and potential range of scale. 
Mmol: millimoles, ddu: day-degree unit.

Abbrev. Variable Unit Pot. range
  
Local macro plot variables
    
Ma Slo Macro plot slope ° 0–90 
Ma Asp  Macro plot aspect unfavourability °, recalc 0–180
Ma HI Macro plot heat index  -∞ – +∞
Ma Ter Macro plot terrain form  -2 – +2
Ma Une  Macro plot terrain unevenness  0–5
TBA Tree basal area m3/ha 0–∞

Local meso plot variables

Me Slo Meso plot slope ° 0–90
Me Asp Meso plot aspect unfavourability °, recalc 0–180
Me HI Meso plot heat index  -∞ – +∞
Me Ter Meso plot terrain form  -2 – +2
Me Une Meso plot terrain unevenness  1–5
Smi Minimum soil depth cm 0–105
Sme Medium soil depth cm 0–105 
Sma Maximum soil depth cm 0–105
Mme Soil moisture % 0–100
LOI Loss-on-ignition % 0–100
Total N Kjeldahl nitrogen mmol(+)/kg/LOI 0–∞
pHH2O pH (H2O – extraction)  0–14
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Table 2 (continued). Environmental variables; abbreviation, unit of measurement and potential range 
of scale. Mmol: millimoles, ddu: day-degree unit.

Abbrev. Variable Unit Pot. range

pHCaCl2
 pH (CaCl2 – extraction)  0–14

H Exchangeable hydrogen mmol/kg/LOI 0–∞
Al NH4NO3 extractable aluminium mmol/kg/LOI 0–∞
C NH4NO3 extractable carbon mmol/kg/LOI 0–∞
Ca NH4NO3 extractable calsium mmol/kg/LOI 0–∞
Fe NH4NO3 extractable iron mmol/kg/LOI 0–∞
K NH4NO3 extractable potassium mmol/kg/LOI 0–∞
Mg NH4NO3 extractable magnesium mmol/kg/LOI 0–∞
Mn NH4NO3 extractable manganese mmol/kg/LOI 0–∞
Na NH4NO3 extractable sodium mmol/kg/LOI 0–∞
P NH4NO3 extractable phosphorous mmol/kg/LOI 0–∞
S NH4NO3 extractable sulphour mmol/kg/LOI 0–∞
Zn NH4NO3 extractable zink µmol/kg/LOI 0–∞

Regional parameters

Prec. Annual precipitation mm 0–∞
T Mean annual temperature °C 0–∞
ETS Effective temperature sum ddu 0–∞
Tamm’s H Tamm’s humidity index mm 0-∞
Lat. Latitude ° -90 – 90
Long. Longitude °C -180 – 180
Alt. Altitude m

recorded in each subplot and frequency in subplots calculated as a measure of abundance. A species 
was recorded as present when any part of the plant was positioned within (over) the subplot. The per-
centage cover of every species was estimated within each 1×1 m meso plot as an additional measure 
of abundance. An aluminium frame of 1×1 m was used for exact delineation of subplots.

RECORDING OF ENVIRONMENTAL VARIABLES

A total of 38 explanatory variables including local topography, forest structure, soil properties and 
regional climatic and geographic variables, were measured or calculated for each of the 300 plots. A 
summary of explanatory variables with abbreviations is given in Table 2. The term ‘explanatory’ is 
used in the statistical meaning of the word to indicate the variables’ potential for explaining variation 
in other data sets (e.g. R. Økland et al. 2001). Causal relationships are discussed a posteriori by taking 
correlations with the explanatory variables as well as other relevant material into account.
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Thirty-one local environmental variables were recorded in each reference area at specific scales 
(macro or meso plot). A local macro plot variable is considered to represent the entire area around 
(and encompassing) a meso plot, recorded for a 5×5 m around each plot or for the entire macro plot. 
Meso plot variables represent the area within the 1×1 m plot.

Local macro plot variables

All macro plot variables, except tree basal area, were measured for each meso plot in a 5×5 m area 
with the meso plot in the centre. Macro plot slope (Ma Slo), representative for the 5×5 m area, was 
measured by a clinometer The aspect of the 5×5 m area was measured by a 360 ° compass; values were 
read off to nearest degree. Macro plot aspect unfavourability (Ma Asp) expressed as deviation from 
SSW [202.5 °, cf. T. Økland (1990, 1996), R. Økland & Eilertsen (1993)], was calculated from the 
aspect measurements. SSW is considered to be the most favourable aspect (Dargie 1984, Heikkinen 
1991) due to high incoming radiation at times of day with high temperatures. The Macro plot heat 
index (Ma HI), similar to Parker’s index (Parker 1988) was calculated by the following formula:

Ma Hi = tan (Ma Slo) × cos (Ma Asp)

Increasing Ma Hi values reflects increasing solar radiation.
Macro plot terrain form (Ma Ter) was estimated subjectively on a scale from –2 to +2; where 

–2 indicates a distinctly concave recession in the terrain, –1 indicates a weak concavity, 0 corresponds 
to an even surface or a balance between concave and convex micro-forms (at scales considerably 
finer than the macro plot), +1 indicates a weak convexity and +2 indicates a distinct convex ridge 
or protruding land form at the relevant scale. Macro plot unevenness (Ma Une) was estimated sub-
jectively on a scale from 1 to 5, where 1 represents an even surface and 5 represents a surface with 
many convex and/or concave parts, with high relative altitude differences.

Tree basal area (TBA) was measured at breast height at each meso plot by means of a rela-
scope. The basal area expresses the tree density (m2/ha) around the plot and thus reflects the supply 
of light to the understorey vegetation. 

Local meso plot variables

Meso plot slope (Me Slo) was measured by placing a clinometer on the metal frame, adjusted to fit the 
slope of the terrain. The aspect was measured by a 360 ° compass. Meso plot aspect unfavourability 
(Me Asp) was calculated in the same way as for macro plot unfavourability (see above). Meso plot 
heat index (Me HI) was calculated as for macro plot heat index:

Me HI = tan (Me Slo) × cos (Me Asp) 

Increasing Me Hi values reflects increasing solar radiation.
Microtopographic indices were calculated from assessments within each of the 16 subplots 

within the meso plot. The terrain form was assessed on the scale from –2 to +2 for each subplot, where 
–2 represents a distinct concave terrain and +2 a distinct convex terrain (on the rekevant scale). The 
mean value for the 16 subplots was termed meso plot terrain form (Me Ter), while the variance provides 
an estimation of the unevenness in the meso plot, the meso plot terrain unevenness (Me Une).

Meso plot soil depth was measured by recording the soil depth at eight fixed sites; two on 
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each side of the meso plot approximately ten cm outside the plot. The following three variables were 
derived: Minimum soil depth (Smi), median soil depth (Sme) and maximum soil depth (Sma).

Soil moisture (Mme) was determined in a volumetric bulk sample collected from the upper 5 
cm of the soil, 10 cm outside the meso plot, using a 100 cm3 metallic soil corer with a lower cutting 
egde. All samples from one reference area were collected on the same day, after a period of some 
days without rainfall, with the aim of representing median soil moisture conditions (cf. T. Økland 
1990, R. Økland & Eilertsen 1993). The samples were stored in tightly sealed polythene bags. The 
samples were weighed fresh and oven-dried at 110°C to constant weight, and the water content was 
calculated as weight percentage of fresh soil and used as a measure for soil moisture.

Soil samples were collected from the upper 5 cm of the humus layer (Oh) for chemical analy-
ses. If the humus layer was less than 5 cm thick, the whole layer was sampled. Several subsamples 
were collected outside the border of each meso plot and the subsamples were mixed in order to 
counteract fine-scale spatial variation in physical and chemical properties of the humus. All samples 
from one reference area were collected on the same day and oven-dried at 25°C as soon as possible 
after sampling.

The soil samples were analysed at the Norwegian Forest and Landscape Institute according to 
methods described in Ogner et al. (1991). Loss-on-ignition (LOI) was determined by ignition in muf-
fle furnace at 590°C and expressed as weight percentage of dry soil. Digestible organic nitrogen and 
NH4 was analysed by the Kjeldahl-nitrogen method (Total N). pH was analysed by H2O extraction, 
(pHH2O) and CaCl2 extraction (pHCaCl2

). Ammonium nitrate extractable elements (Al, C, Ca, Fe, K, 
Mg, Mn, Na, P, S, Zn) were analysed by a simultaneous ICP technique (Inductively-Coupled Plasma 
Emission Spectroscopy) and exchangeable acidity/hydrogen (H) by titration of an ammonium nitrate 
extract. The concentrations of extractable elements and Kjeldahl nitrogen were expressed as fractions 
of loss on ignition as recommended by T. Økland (1988).

Regional climatic and geographical variables

Seven region-scale, climatic and geographical variables (regional variables) were used in the numerical 
and statistical analyses of the total dataset, comparing the reference areas. Mean annual precipitation 
(Prec.) [normal period 1961–90; Førland (1993)] and mean annual temperature (T) [Aune (1993), 
corrected for altitude according to Laaksonen (1976)] were taken from the nearest weather observation 
stations. For some reference areas, several weather stations were combined to produce an integrated 
estimate of precipitation and temperature. Effective temperature sum (ETS) according to Laaksonen 
(1979) and Tamm’s index of humidity (Tamm’s H) (Tamm 1959) were calculated for each macro plot. 
Latitude (Lat.) and longitude (Long.) for each reference area and altitude (Alt.) for each macro plot 
were taken from digital N50 maps from the Norwegian Mapping Authority. 

NUMERICAL AND STATISTICAL ANALYSES OF DATA SETS FROM EACH REFERENCE 
AREA

Data manipulation: transformation of variables

For all variables (Tables 2), skewness and kurtosis standardised by division with their expected stand-
ard deviations, (6/n)0.5 (Sokal & Rohlf 1995), were calculated. Acceptable homogeneity of variances 
(homoscedasticity) was achieved by transforming all variables to zero skewness [transformation 
formulae of R. Økland et al, (2001) were used]:
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 y´kj = 
kjk xce  (1)

 y´kj = ln(ck + xkj) (2)

 y´kj = ln[ck + ln(ck+xkj)] (3)

where xkj is the original value of variable k in plot j and ck is a variable-specific parameter determined 
so that the transformed variable Y´ = {ykj´} has zero skewness. Eq. (1) was applied to left-skewed 
variables (standardised skewness < 0), eq. (2) to right-skewed variables and eq. (3) was applied to 
right-skewed variables for which no value of ck could be found by eq. (2) that resulted in standardised 
skewness = 0. After transformation, all variables Y´ were ranged to obtain new variables Y = {ykj} 
on a 0–1 scale:

 ykj = [y´kj – min(y´kj)]/[max(y´kj) – min(y´kj)] (4)

Ordination of vegetation-sample plot matrices

Detrended Correspondence Analysis (DCA; Hill 1979, Hill & Gauch 1980) ordination was used to 
extract the main gradients of the frequency in subplot abundance data sets from the six reference areas. 
The calculations were performed by means of CANOCO 4.5 (ter Braak 1987b, 1990, ter Braak & 
Smilauer 1998, 2002). Detrending by segments and non-linear rescaling options were used to avoid 
arch and edge effects of corresponding correspondence analysis (CA) ordinations (R. Økland 1990). 
The DCA ordination axes are scaled in standard deviation (S.D.) units. 

 Global Non-metric Multidimensional Scaling, GNMDS (Kruskal 1964a, 1964b) was used to 
ordinate frequency in subplots data sets from each reference area. GNMDS were run using R Version 
2.4.1 (Anonymous 2004a), including packages vegan Version 1.9–13 (Oksanen 2007, Oksanen et al. 
2007) and MASS, the latter included in package cluster stats (Anonymous 2004b), using functions 
vegdist, initMDS, isoMDS and postMDS, with options: dimensionality = 2; dissimilarity measure 
= percentage dissimilarity (Bray-Curtis), standardized by division with species maxima: minimum 
number of starting configurations = 100, of which one was the DCA; maximum number of iterations = 
1000; stress reductions ratio for stopping iteration procedure = 0.99999. Solutions were not accepted 
unless reached from at least two different starting configurations. 

The degree of correspondence between the axes obtained by DCA and GNMDS was tested 
by calculating Kendall’s rank correlation coefficients between scores along the first two DCA axes 
and the two GNMDS axes. The GNMDS ordination axes were overall very strongly correlated (see 
results from each reference area) with the corresponding DCA axes. We therefore present only the 
DCA ordination results which have advantage (over GNMDS) that the ordination axes are scaled in 
standard deviation (S.D.) units (e.g. R. Økland 1990).

 All ordination diagrams were made by ArcView 3.2 (Anonymus1999a).

Methods for correlating ordination axis with environmental data and interpretation of ordination 
results

DCA ordinations were interpreted by split-plot GLM analysis (Crawley 2002) combined with Kend-



SOMMERFELTIA 34 (2010) 27

all’s rank correlation coefficient τ calculated between plot scores along DCA axes and environmental 
variables. Parallel use of these two methods has proved useful because scale-dependent vegetation-
environment relationships are revealed and relationships are evaluated by use of appropriate degrees 
of freedom (Auestad et al. 2008, Liu et al. 2008). 

GLM was chosen because it allows flexible handling of data over a wide range of statistical 
properties (Venables & Ripley 2002). By split-plot analysis each axis, the ordination plot score was 
used as response variable and one or more environmental variables were used as predictors. The 
aov function of R version 2.4.1 was used with identity link function and normal errors (Anonymous 
2004a). Statistical inference was obtained by considering species (plot) as nested within macro plot. 
The parameters of SSexpl/SSmacro plot (fraction of variation explained by variable at the macro 
plot), model coefficient r, F (measurement of fit between predictor and response variables at a given 
hierarchical level) and P value for F (for a test of no relationship against the two-tailed alternative) 
were used to determine the contributions of the measured environmental variables to explaining 
variation in species composition.

Correlation analyses were performed between pairs of local explanatory variables and between 
these variables and the DCA-ordination sample plot scores. Kendall’s τ was used as a measure of 
correlation in both analyses (Conover 1980). Kendall’s τ is a non-parametric measure (it only takes 
the ranks of variables into account), recommended by Fenstad et al. (1977) whenever the underlying 
distribution is unknown (or conditions of homogeneous variances and normal distribution of errors 
not expected to be satisfied). Kendall’s τ and the corresponding statistical test of deviation from 0 
were performed in SPSS 11.0 (Anonymous 1999b).

Ordination of environmental data by means of PCA

PCA (Principal Component Analysis) ordination (Pearson 1901, ter Braak & Prentice 1988) was run 
on a correlation matrix (on centred and standardised transformed variables and conjugate variables), 
using the 31 local variables from each reference area. Correlation biplot scaling of axes was used to 
optimise the fit of angles between variable vectors to inter-variable correlations. The resulting PCA 
axes summarise the correlation structure between the environmental variables. All PCA analyses 
were performed by means of CANOCO 4.5

Distributions of species abundances in the DCA ordination

Frequencies in subplots for species that occur in more than 5 meso plots were plotted onto the meso 
plot positions in the DCA ordination diagram for each reference area. This gives valuable information 
about the autecology of each species (T. Økland 1996). The resulting diagrams were used to make 
isoline diagrams for environmental variables. Isolines were constructed by block kriging interpola-
tion using kriging interpolation version 3.2 for ArcView 3.2 (Anonymous 1999a). Plot scores in the 
two-dimensional space spanned by ordination axes 1 and 2 were used as geographic co-ordinates and 
an isotropic semi-variance analysis of the transformed explanatory variable was performed, using an 
active lag of 4 S.D. units and steps of 0.25 S.D. units. Interpolation was performed from a grid with cell 
size of 0.25×0.25 S.D. units. Goodness-of-fit of the three-dimensional surface (and the isolines) was 
assessed by a cross-validation, jackknifing procedure (Anonymous 1998) whereby r2 was calculated 
between the original and the predicted values for the variable. Interpolations were made by use of 
12 neighbouring plots. After analysis, the fitted values for the explanatory variable were de-ranged 
and back transformed to the original scale. De-ranging was performed by solving 
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for ykj´, and back-transformation was performed by solving (1)–(3) for ykj:

 
  (5)

    (6)

    (7)

Isolines were smoothed by using a B-spline function (Pavlidis 1982) and visualised as a line theme 
in ArcView 3.2 (Anonymous 1999a) to fit the de-ranged and back-transformed interpolated values.

NUMERICAL AND STATISTICAL ANALYSES OF THE TOTAL DATA SET FROM ALL REF-
ERENCE AREAS

DCA ordination of the total data set

DCA was performed on the total data set consisting of 300 meso plots from the six reference areas. 
The same options were used as in the DCA of the data from each reference area.

A second DCA ordination of the total data set was also performed, using 7 covariables for 
the regional climatic/geographical environmental variables not shared with the local environmental 
variables (C | E in the terminology used for variation partitioning; see below). These covariables 
were found as follows:

A Canonical Correspondence Analyses, CCA (ter Braak 1986, 1987a), with the 31 local en-
vironmental variables as covariables and the seven regional environmental variables as explanatory 
variables, was performed on the total data set. The resulting (maximally constrained) seven CCA axes 
(with sample scores that are linear combinations of the environmental variables, cf. Palmer 1993) sort 
the variation in species composition that is exclusively attributable to climatic/geographical variables 
({C | E}) on axes of decresing importance for variation in species composition.

DCA ordinations of the total data set were interpreted by split-plot GLM analysis (Crawley 
2002) combined with Kendall’s rank correlation coefficient τ calculated between plot scores along 
DCA axes and environmental variables.

The DCA ordination with covariables was used to study regional variation in the response of 
vegetation to main complex-gradients, cf. T. Økland (1996). For selected species, occurrences were 
plotted at meso-plot positions by using different symbols for each reference area.
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NOMENCLATURE

The nomenclature of vascular plants follows Lid & Lid (2005). Alchemilla spp. may include several 
species of the genus, except A. alpina. Dryopteris expansa agg. may include Dryopteris expansa 
(C.Presl.) Fraser-Jenk. & Jermy, D. dilatata (Hoffm.) A. Gray, and D. carthusiana (Vill.) H.P.Fuchs. 
Euphrasia spp. and Taraxacum spp. may include several species. Hieracium is identified to the sec-
tion level.

The nomenclature of bryophytes follows Frisvoll et al. (1995). Bryum spp. is determined to the 
genus level. Dicranum fuscescens agg. may include D. flexicaule Brid. and D. fuscescens Sm. Hypnum 
cupressiforme agg. may include H. andoi A.J.E.Sm., H. cupressiforme Hedw., H. jutlandicum Holmen 
& Warncke and H. resupinatum Spruce. Plagiothecium laetum includes also P. denticulatum (Hedw.) 
Schimp. and P. laetum var. secundum (Lindb.) Frisv. et al. (= P. curvifolium Schlieph.). Rhytidiadel-
phus squarrosus agg. includes R. squarrosus (Hedw.) Warnst. and R. subpinnatus (Lindb.) T.Kop. 
Chiloscyphus coadunatus refers to C. coadunatus var. rivularis (Raddi) Frisv. et al. (= Lophocolea 
bidentata (L.) Dum.). Scapania spp. may include several species of the genus. Lophozia ventricosa 
agg. may include L. silvicola Buch, L. ventricosa (Dicks.) Dum. and L. longiflora (Nees) Schiffn.

The nomenclature of lichens follows Krog et al. (1994). Cladonia arbuscula agg. may include C. 
arbuscula (Wallr.) Flot. and C. mitis Sandst. Cladonia chlorophaea agg. may include C. chlorophaea 
(Flörke ex Sommerf.) Spreng., C. cryptochlorophaea Asah., C. grayi Merr. ex Sandst., C. fimbriata (L.) 
Fr., C. merochlorophaea Asah., and C. pyxidata (L.) Hoffm. Cladonia coccifera agg. may include C. 
borealis S.Stenroos, C. coccifera (L.) Willd., and C. pleurota  (Flörke) Schaer. Cladonia coniocraea 
agg. may include C. coniocraea (Flörke) Spreng. and C. ochrochlora Flörke.
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RESULTS

LUND REFERENCE AREA

Correlations between environmental variables

There were strong pairwise correlations between several of the topographical variables, between 
topographical and chemical variables and between soil chemical variables (Table 3).

Macro and meso plot slope and heat indices were negatively correlated. Macro and meso plot 
aspect unfavourability were negatively correlated with heat indices and positively with macro plot 
terrain unevenness and meso plot slope. Macro plot slope was further positively correlated with me-
dian and maximum soil depth. The topographical variables terrain unevenness and terrain form and 
tree basal area, however, hardly showed significant correlations with other variables.

Macro and meso plot slope and the macro plot heat index were also positively correlated to 
pH, C and Mn and negatively correlated with Ca, Mg, Zn, P and soil moisture.

Soil moisture was positively correlated with LOI, Ca, Mg and Na and negatively correlated 
with pH. LOI was positively correlated with Ca, Mg, P and Zn.

pH showed an unexpected, positive, correlation with variables reflecting soil acidity such as 
exchangeable hydrogen (H) and extractable Fe and Al concentrations, and was negatively correlated 
with concentrations of elements that are typically abundantly present in base-rich soils, such as Ca 
and Mg. Ca, Mg, P and Zn were, however, positively correlated with each other and negatively cor-
related with H.

PCA ordination of environmental variables

The first PCA axis accounted for 31.6 % (eigenvalue of 0.316) of the variance in the matrix of standard-
ised transformed environmental variables, and the second axis for 15.5 % (eigenvalue of 0.155).

pHH2O, pHCaCl2
, extractable Al, S, Fe and C, exchangeable H and macro plot slope obtained high 

loadings on PCA axis 1 (Fig. 8). Low loadings were obtained by extractable Mg, P, Ca and Zn, LOI 
and macro- and meso plot heat indices. This negative correlation between the two groups of variables 
was consistent with the pairwise rank correlation values of the variables in Table 3. Several of the 
topographical variables that were significantly correlated with the variables mentioned above also 
had a similar distribution pattern in the PCA ordination duiagram.

Macro plot aspect unfavourablility, minimum soil depth and soil moisture obtained high load-
ings on PCA axis 2 while extractable K, Fe, Mn and C obtained low loadings.  

DCA ordination

The gradient length of DCA axis 1 was 2.37 S.D. units, and the length of DCA axis 2 was 1.15 S.D. 
units. The eigenvalue of the first axis was 0.230. The next three axes had decreasing eigenvalues of 
0.126, 0.073 and 0.046, respectively. 

The sample plots were distributed relatively evenly in the DCA ordination diagram, although 
slightly more plots were located on the left hand side (Fig. 9). Two plots were somewhat separated 
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Fig. 8. Lund: PCA ordination of 31 environmental variables. Abbreviations in accordance with Table 
2, axes 1 (horizontal) and 2 (vertical). Positions of variables in the ordination space give the head of 
variable vectors. Tickmarks indicate 0.1 units along both axes.

from the other plots on the right hand side of the diagram. These plots were removed, and a new DCA 
ordination was performed on the remaining 48 sample plots. As the new ordination did not change 
the overall distribution pattern of sample plots in the diagram, we decided to use the ordination of 
all sample plots for further analyses.

GNMDS ordination

The GNMDS ordination diagram (Fig. 10) was visually similar with the DCA diagram (Fig. 9b), 
although plot 43 obtained a higher score along axis 2 in the GNMDS ordination. The correlation 
between GNMDS axis 1 and DCA axis 1 was τ = 0.784 and for GNMDS axis 2 and DCA axis 2 τ 
= 0.628 (both P < 0.001). 

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 84.49 % at the macro-plot scale (i.e. 
between macro plots) and 15.51 % at the (between) meso plot scale within macro plots (Table 4). 
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Fig. 9. Lund: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). Meso 
plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig. 10. Lund: GNMDS ordination biplot diagram of 50 meso plots (indicated by their number).
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Table 4. Lund: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ between 
DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of freedom for 
the residuals; SS: total variation; FVE: fraction of total variation attributable to a given scale (macro 
plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in question, explained 
by a variable; r: model coefficient (only given when significant at the α = 0.05 level, otherwise 
blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. Split-plot 
GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s nonparametric 
correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for names of 
environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 12.1733) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 10.2848 SSmeso plot = 1.88852 
 FVE = 0.8449 of SS FVE = 0.1551 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.2219  2.2815 0.1694  0.0084  0.3302 0.5688 0.270
Ma Asp 0.4466 0.9461 6.4551 0.0346  0.0098  0.3866 0.5377 0.400
Ma HI 0.2699  2.9570 0.1238  0.0105  0.4142 0.5236 –0.337
Ma Ter 0.0011  0.0084 0.9293  0.0208  0.8292 0.3681 –0.125
Ma Une 0.0367  0.3050 0.5958  0.0212  0.8430 0.3642 0.099
TBA 0.0214  0.1747 0.6870  0.0481  1.9706 0.1683 –0.086
Me Slo 0.2717  2.9843 0.1223  0.0033  0.1294 0.7210 0.322
Me Asp 0.2464  2.6161 0.1444  0.0107  0.4236 0.5190 0.294
Me HI 0.2440  2.5821 0.1467  0.0000  0.0003 0.9955 –0.293
Me Ter 0.4894 3.0151 7.6669 0.0243  0.0010  0.0382 0.8460 0.210
Me Une 0.0055  0.0441 0.8389  0.1737 –0.3918 8.1997 0.0067 –0.080
Smi 0.3257  3.8641 0.0849  0.0815  3.4594 0.0705 0.239
Sme 0.1569  1.4890 0.2571  0.1256 0.4043 5.6031 0.0230 0.218
Sma 0.1183  1.0738 0.3304  0.0352  1.4224 0.2402 0.056
Mme 0.0013  0.0102 0.9222  0.0022  0.0862 0.7706 –0.096
LOI 0.0008  0.0065 0.9379  0.0002  0.0076 0.9308 –0.053
Total N 0.5568 2.0410 10.050 0.0132  0.0001  0.0055 0.9410 0.273
pHH2O 0.6956 2.2347 18.283 0.0027  0.1753 0.5774 8.2895 0.0064 0.511
pHCaCl2

 0.7261 2.2714 21.208 0.0017  0.1588 0.5124 7.3636 0.0098 0.500
H 0.5077 2.3715 8.2486 0.0208  0.1406 0.4577 6.3826 0.0157 –0.298
Al 0.5783 1.9645 10.972 0.0107  0.0706  2.9642 0.0931 0.309
C 0.0551  0.4670 0.5137  0.0092  0.3604 0.5518 0.184
Ca 0.5188 –2.3164 8.6251 0.0188  0.0964 –0.3769 4.1628 0.0481 –0.251
Fe 0.0015  0.0123 0.9146  0.0002  0.0061 0.9384 0.290
K 0.0193  0.1570 0.7023  0.1399 –0.5058 6.3454 0.0160 –0.082
Mg 0.5321 –2.3242 9.0990 0.0167  0.1211 –0.4074 5.3728 0.0258 –0.293
Mn 0.0117  0.0948 0.7660  0.0030  0.1187 0.7323 0.228
Na 0.0084  0.0682 0.8006  0.0421  1.7140 0.1981 –0.091
P 0.4680 –1.9429 7.0384 0.0291  0.1497 –0.4073 6.8654 0.0125 –0.298
S 0.3645  4.5884 0.0646  0.0433  1.7644 0.1918 0.309
Zn 0.8342 –2.4589 40.254 0.0002  0.0213  0.848 0.3628 –0.339
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Table 5. Lund: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ between 
DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of freedom for 
the residuals; SS: total variation; FVE: fraction of total variation attributable to a given scale (macro 
plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in question, explained 
by a variable; r: model coefficient (only given when significant at the α = 0.05 level, otherwise 
blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. Split-plot 
GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s nonparametric 
correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for names of 
environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 12.1733) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 5.5784 SSmeso plot = 1.50473 
 FVE = 0.7876 of SS FVE = 0.2124 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.1084  0.9730 0.3528  0.0303  1.2184 0.2764 0.170
Ma Asp 0.4576 –0.7053 6.7504 0.0317  0.0139  0.5497 0.4629 –0.381
Ma HI 0.0008  0.0068 0.9365  0.0298  1.1990 0.2802 –0.075
Ma Ter 0.1384  1.2846 0.2899  0.0070  0.2753 0.6028 0.133
Ma Une 0.2716  2.9830 0.1224  0.0086  0.3392 0.5637 –0.297
TBA 0.0186  0.1517 0.7070  0.0029  0.1128 0.7387 –0.051
Me slo 0.0774  0.6710 0.4364  0.1128 –0.0650 4.9587 0.0318 0.054
Me Asp 0.2764  3.0565 0.1185  0.0585  2.4240 0.1276 –0.255
Me HI 0.0055  0.0446 0.8380  0.1966 0.5199 9.5450 0.0037 0.053
Me Ter 0.0280  0.2301 0.6443  0.0037  0.1448 0.7056 –0.092
Me Une 0.0646  0.5526 0.4785  0.0060  0.2358 0.6300 0.019
Smi 0.1121  1.0100 0.3443  0.0045  0.1770 0.6763 –0.148
Sme 0.1349  1.2472 0.2965  0.0000  0.0011 0.9742 –0.158
Sma 0.2085  2.1079 0.1846  0.0013  0.0515 0.8217 0.135
Mme 0.5780 –1.0537 10.958 0.0107  0.0357  1.4454 0.2365 –0.402
LOI 0.4372 –0.9283 6.2146 0.0376  0.0394  1.6016 0.2132 –0.291
Total N 0.0303  0.2496 0.6308  0.0063  0.2455 0.6230 0.179
pHH2O 0.0164  0.1337 0.7241  0.0000  0.0000 0.9770 0.030
pHCaCl2

 0.0040  0.0320 0.8625  0.0011  0.0430 0.8368 –0.012
H 0.0895  0.7867 0.4010  0.0023  0.0909 0.7646 0.063
Al 0.1066  0.9545 0.3572  0.0167  0.6642 0.4200 0.104
C 0.3010  3.4446 0.1006  0.0463  1.8942 0.1766 0.213
Ca 0.2323  2.4207 0.1584  0.0027  0.1039 0.7490 –0.149
Fe 0.3904  5.1225 0.0535  0.0406  1.6495 0.2066 0.179
K 0.5131 1.6687 8.4307 0.0198  0.0146  0.5776 0.4518 0.358
Mg 0.1925  1.9078 0.2046  0.0109  0.4315 0.5151 –0.215
Mn 0.0696  0.5981 0.4615  0.0041  0.1614 0.6900 0.136
Na 0.4694 –1.6676 7.0773 0.0288  0.0024  0.0928 0.7623 0.087
P 0.1185  1.0755 0.3300  0.0441  1.8010 0.1874 –0.040
S 0.2200  2.2570 0.1714  0.0362  1.4643 0.2335 –0.040
Zn 0.0566  0.4804 0.5079  0.0124  0.4916 0.4874 –0.064
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Figs 11-12. Lund: isolines for environmental variables in the DCA ordinations of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso plots’ 
positions. Scaling in S.D. units. Fig. 11. Ma Asp (R2 = 0.491). Fig. 12. Ma HI (R2 = 0.573). R2 refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2. 
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Figs 13-14. Lund: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 13. Me Slo (R2 = 0.493). Fig. 14. Mme (Soil moisture) 
(R2 = 0.503). R2 refers to the coefficient of determination between original and smoothened values as 
interpolated from the isolines. Names of environmental variables in accordance with Table 2. 
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Figs 15-16. Lund: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 15. pHH2O (R2 = 0.605). Fig. 16. Al (R2 = 0.508). R2 refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.
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Figs 17-18. Lund: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 17. K (R2 = 0.437). Fig. 18. S (R2 = 0.564). R2 refers to 
the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.
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Fig. 19. Lund: isolines for environmental variables in the DCA ordinations of 50 meso plots, axes 1 
(horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso plots’ 
positions. Scaling in S.D. units. Fig. 19. Zn (R2 = 0.585). R2 refers to the coefficient of determination 
between original and smoothened values as interpolated from the isolines. Names of environmental 
variables in accordance with Table 2.

For the second ordination axis, 78.76 % of the variation was explained at the macro plot scale and 
21.24 % at the meso plot scale (Table 5).

At the macro plot scale, eleven environmental variables were significantly (at the α = 0.05 
level) related to DCA 1 while five variables (also at the α = 0.05 level) were related to DCA 2. At the 
plot scale level, nine environmental variables were significantly related to DCA 1 and two variables 
to DCA 2 (Tables 4 and 5). 

At the macro plot scale, soil concentrations of Ca, Mg, P and Zn decreased significantly along 
DCA 1 while pH and the concentrations of Total N, H and Al, macro plot aspect unfavourability and 
meso plot terrain form increased. At the meso plot scale, many of these variables showed the same 
tendencies. Predictors with additional significant relationship at the meso plot scale were meso plot 
unevenness which decreased (at the α = 0.05 level) while medium soil depth (Sme) increased. Macro 
plot aspect unfavourability, meso plot terrain form and the concentration of Zn were, however, not 
significantly related to DCA 2 on the meso plot scale.

At the macro-plot scale, DCA 2 was positively related to the concentration of K and negatively 
related to aspect unfavourability, soil moisture, loss on ignition and the concentration of Na in soil. 
At the meso plot scale, DCA axis 2 was significantly negatively related to meso plot slope and sig-
nificantly positively related to meso plot heat index (Table 5).
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Figs 20-25. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 20. Sorbus aucuparia. Fig. 21. Calluna vulgaris. Fig. 22. 
Vaccinium myrtillus. Fig. 23. Vaccinium vitis-idaea. Fig. 24. Anemona nemorosa. Fig. 25. Blechnum 
spicant.



SOMMERFELTIA 34 (2010)44

Figs 26-31. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 26. Chamepericlymenum suecicum (syn. Cornus suecica). 
Fig. 27. Gynmocarpium dryopteris. Fig. 28. Linnaea borealis. Fig. 29. Lycopodium annotinum. Fig. 
30. Maianthemum bifolium. Fig. 31. Melampyrum pratense.
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Figs 32-37. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 32. Phegopteris connectilis. Fig. 33. Potentilla erecta. 
Fig. 34. Pteridium aquilinum. Fig. 35. Trientalis europaea. Fig. 36. Agrostis capillaris. Fig. 37. 
Avenella flexuosa.
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Figs 38-43. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 1 
(horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional to 
quadrate size. Scaling in S.D. units. Fig. 38. Carex pilulifera. Fig. 39. Deschampsia cespitosa. Fig. 40. 
Luzula pilosa. Fig. 41. Molinia caerulea. Fig. 42. Dicranum majus. Fig. 43. Dicranum scoparium.
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Figs 44-49. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 1 
(horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional to 
quadrate size. Scaling in S.D. units. Fig. 44. Hylocomium splendens. Fig. 45. Leucobryum glaucum. 
Fig. 46. Plagiothecium laetum. Fig. 47. Plagiothecium undulatum. Fig. 48. Pleurozium schreberi. 
Fig. 49. Polytrichastrum formosum.
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Figs 50-55. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 50. Rhytidiadelphus loreus. Fig. 51. Sphagnum quinque-
farium. Fig. 52. Calypogeia muelleriana. Fig. 53. Cephalozia/Cephaloziella sp. Fig. 54. Chiloscyphus 
profundus. Fig. 55. Diplophyllum taxifolium.
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Fig. 56. Lund: distributions of species abundances in the DCA ordination of 50 meso plots, axes 1 
(horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 56. Lophozia ventricosa.

Correlations between DCA ordination axes and environmental variables

Seven environmental variables had correlations with DCA axis 1 and three with DCA axis 2 at the ׀τ׀ 
> 0.3 level (Tables 4 and 5). The two measures of pH (pHH2O, τ = 0.511 and pHCaCl2

, τ = 0.500) were 
best correlated with the first DCA axis (Fig. 15), while soil moisture (τ = –0.402) was the variable 
most strongly correlated with DCA 2 (Fig. 14). 

Other strong correlations with DCA 1 and 2 at the ׀τ0.3 < ׀ level which are visualised in iso-
diagram figures are macro plot aspect (τ = –0.400, Fig. 11), macro plot heat index (τ = –0.337, Fig. 
12), meso plot slope (τ = –0.322, Fig. 13) and the concentrations of Al (τ = –0.303, Fig. 16), K (τ = 
0.358 with DCA 2, Fig. 17), S (τ = 0.309, Fig. 18) and Zn (τ = –0.339, Fig. 19).

Frequent species

A total of 69 species were recorded within the fifty 1×1m meso plots: 35 vascular plants, 19 mosses, 
15 liverworts (and no lichens). The most frequent species were (the sum of subplot frequencies in 
brackets): Vaccinium myrtillus (779 out of 800), Avenella flexuosa (744), Vaccinium vitis-idaea (543), 
Trientalis europaea (452), Maianthemum bifolium (386), Pleurozium schreberi (363), Dicranum 
majus (339), Polytrichastrum formosum (311), Rhytidiadelphus loreus (278), and Plagiothecium 
undulatum (271).

The distribution of species abundance in the DCA ordination

Common species with wide ecological amplitude were Vaccinium myrtillus (Fig. 22), Maianthemum 
bifolium (Fig. 30), Trientalis europaea (Fig. 35) and Avenella flexuosa (Fig. 37).

Species restricted to the left hand side of the ordination diagram and which hence showed 
optimum in sample plots with low pH values were Calluna vulgaris (Fig. 21), Chamaepericlymenum 
suecicum (Fig. 26), Linnaea borealis (Fig. 28), Lycopodium annotinum (Fig. 29) and Melampyrum 
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pratense (Fig. 31). The mosses Dicranium scoparium (Fig. 43), Hylocomium splendens (Fig. 44) and 
Pleurozium schreberi (Fig. 48) also showed preference for low DCA axis 1 values.

Agrostis capillaris (Fig. 36), Diplophyllum taxifolium (Fig. 55) and to some extent Blechnum 
spicant (Fig. 25), Phegopteris connectilis (Fig. 32) and Potentilla erecta (Fig. 33), situated mainly 
at the right hand side of the DCA diagram, showed preferences for sites with higher pH.

Most of the other species had their optimum distribution at low to medium DCA axis 1 
scores.
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MØSVATN REFERENCE AREA

Correlations between environmental variables

There were strong pairwise correlations between several of the topographical variables, between 
soil chemical variables and between topographical and chemical variables related to soil richness 
(Table 6). 

Macro and meso plot slopes and heat indices were negatively correlated, and slopes were posi-
tively correlated with meso plot terrain form. Tree basal area (tree biomass) was positively correlated 
with macro plot slope, macro plot heat index and macro plot aspect unfavourability.

LOI was negatively correlated with soil pH and with concentrations of all extractable elements, 
except P, and positively correlated with exchangeable H. In general, element concentrations were 
pairwise positively correlated, and all were negatively correlated with exchangeable H.

Tree basal area, macro plot and meso plot slope and heat indices were correlated with chemical 
variables that were related to a gradient in soil nutrient richness. They were positively (except heat 
indices) correlated with total nitrogen, extractable Ca, Mg, Na and K and with pH, and negatively 

Fig. 57. Møsvatn: PCA ordination of 31 environmental variables. Abbreviations in accordance with 
Table 2. Positions of variables in the ordination space give the head of variable vectors. Tickmarks 
indicate 0.1 units along both axes.
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Fig. 58. Møsvatn: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). 
Meso plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig. 59. Møsvatn: GNMDS ordination biplot diagram of 50 meso plots (indicated by their 
number).
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correlated (except heat indices) with LOI and exchangeable H. Minimum soil depth was positively 
correlated with soil acidity (H) and negatively correlated with pH while maximum soil depth was 
positively correlated with pH.

Macro plot terrain form and terrain unevenness showed no significant correlations with soil 
chemical variables. However, the meso plot terrain form was negatively correlated with soil pH and 
extractable concentrations of Ca and Na, while meso plot terrain unevenness was positively cor-
related with soil pH.

Soil moisture was not significantly correlated with topographical variables and heat index. 
However, it was positively correlated with extractable Na and Al and negatively correlated with 
extractable P, K and Zn.

Figs 60-61. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 60. Ma Slo (R2 = 0.648). Fig. 61. Ma Asp (R2 = 0.615). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2. 
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Table 7. Møsvatn: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 50.8559) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 47.6090 SSmeso plot = 3.24690 
 FVE = 0.9362 of SS FVE = 0.0638 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.4611 2.6769 6.8448 0.0308  0.0007  0.0273 0.8696 0.388
Ma Asp 0.4985 2.6061 7.9514 0.0225  0.0283  1.1350 0.2933 0.441
Ma HI 0.7252 –4.6325 21.2480 0.0017  0.0075  0.2942 0.5906 –0.433
Ma Ter 0.1041  0.9297 0.3632  0.0411  1.6733 0.2034 –0.128
Ma Une 0.1335  1.2323 0.2992  0.0065  0.2554 0.6161 0.131
TBA 0.6836 4.0763 17.2840 0.0032  0.0008  0.0310 0.8610 0.617
Me Slo 0.5123 4.1573 8.4031 0.0199  0.0386  1.5677 0.2180 0.379
Me Asp 0.0902  0.7930 0.3992  0.0213  0.8508 0.3620 0.035
Me HI 0.7630 –4.7897 25.7500 0.0294  0.0565  0.0291 0.8655 –0.426
Me Ter 0.6624 –7.2123 15.6980 0.0042  0.0026  0.1031 0.7499 –0.250
Me Une 0.5105 6.6347 8.3436 0.0203  0.0220  0.8777 0.3546 0.177
Smi 0.5935 –4.3949 11.6790 0.0091  0.0213  0.8494 0.3624 –0.297
Sme 0.0000  0.0000 0.9968  0.0168  0.6650 0.4198 –0.002
Sma 0.6022 5.6671 12.1090 0.0083  0.0009  0.0338 0.8551 0.364
Mme 0.0142  0.1150 0.7433  0.0643  2.6806 0.1096 0.047
LOI 0.6560 –3.0244 15.2590 0.0045  0.0002  0.0093 0.9237 –0.499
Total N 0.8349 5.7496 40.4630 0.0002  0.0043  0.1695 0.6829 0.500
pHH2O 0.9084 4.0510 79.3780 0.0000  0.0076  0.2995 0.5873 0.716
pHCaCl2

 0.9198 3.9279 91.7770 0.0000  0.0027  0.1053 0.7473 0.726
H 0.7214 –4.6122 20.7130 0.0019  0.1006 –0.6547 4.3636 0.0433 –0.536
Al 0.0470  0.3944 0.5475  0.0500  2.0534 0.1598 0.105
C 0.6319 3.5272 13.7320 0.0060  0.0026  0.1011 0.7522 0.491
Ca 0.8994 5.1352 71.5000 0.0000  0.0981 0.7604 4.2421 0.0462 0.675
Fe 0.0238  0.1948 0.6706  0.0318  1.2798 0.2648 –0.045
K 0.5455 4.2784 9.6034 0.0147  0.0987 0.5387 4.2692 0.0455 0.450
Mg 0.2609  2.8233 0.1314  0.0432  1.7621 0.1921 0.324
Mn 0.8145 3.2564 35.1220 0.0004  0.0989 0.6429 4.2791 0.0453 0.636
Na 0.7596 4.3704 25.2840 0.0010  0.0018  0.0684 0.7950 0.458
P 0.4529 –2.7878 6.6221 0.0330  0.0335  1.3539 0.2517 –0.313
S 0.9355 4.8181 116.130 0.0000  0.0316  1.2736 0.2660 0.602
Zn 0.0003  0.0023 0.9626  0.0781  3.3024 0.0769 0.099
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Table 8. Møsvatn: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 5.8257) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 4.7768 SSmeso plot = 1.04892 
 FVE = 0.8200 of SS FVE = 0.1800 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.0033  0.0269 0.8737  0.0172  0.6837 0.4133 –0.170Ma 
Asp 0.2392  2.5146 0.1515  0.0010  0.0373 0.8480 0.298
Ma HI 0.0582  0.4948 0.5018  0.0084  0.3337 0.5668 –0.122
Ma Ter 0.2876  3.2288 0.1101  0.0215  0.8554 0.3607 0.230
Ma Une 0.0942  0.8324 0.3882  0.0008  0.0320 0.8590 0.026
TBA 0.0075  0.0605 0.8118  0.0570  2.3596 0.1326 –0.066
Me slo 0.0118  0.0956 0.7651  0.0047  0.1859 0.6688 –0.102
Me Asp 0.0018  0.0145 0.9072  0.0215  0.8574 0.3602 0.151
Me HI 0.0010  0.0082 0.9299  0.0178  0.7071 0.4055 –0.148
Me Ter 0.0129  0.1049 0.7543  0.0127  0.5013 0.4831 –0.014
Me Une 0.0318  0.2628 0.6220  0.0035  0.1373 0.7130 0.051
Smi 0.0054  0.0433 0.8404  0.0009  0.0348 0.8530 0.140
Sme 0.0164  0.1331 0.7247  0.0967 0.2233 4.1768 0.0478 0.199
Sma 0.0264  0.2168 0.6539  0.0600  2.4888 0.1227 –0.035
Mme 0.0031  0.0253 0.8776  0.0236  0.9424 0.3377 –0.027
LOI 0.0002  0.0017 0.9680  0.0123  0.4863 0.4897 0.055
Total N 0.0001  0.0010 0.9758  0.0327  1.3171 0.2581 –0.001
pHH2O 0.0012  0.0098 0.9236  0.0068  0.2665 0.6086 –0.080
pHCaCl2

 0.0036  0.0293 0.8683  0.0105  0.4145 0.5234 –0.096
H 0.1858  1.8250 0.2137  0.0000  0.0000 0.9978 –0.068
Al 0.1121  1.0102 0.3443  0.0011  0.0433 0.8363 –0.193
C 0.1594  1.5166 0.2531  0.0012  0.0471 0.8293 0.064
Ca 0.0819  0.7138 0.4227  0.0002  0.0063 0.9374 0.056
Fe 0.0512  0.4317 0.5296  0.0000  0.0005 0.9830 0.045
K 0.1305  1.2002 0.3052  0.0028  0.1094 0.7426 0.125
Mg 0.2825  3.1495 0.1139  0.0273  1.0937 0.3021 0.234
Mn 0.0370  0.3071 0.5946  0.0062  0.2422 0.6254 0.017
Na 0.0377  0.3137 0.5908  0.0733  3.0835 0.0869 0.035
P 0.0011  0.0088 0.9277  0.0025  0.0995 0.7541 0.127
S 0.0790  0.6866 0.4314  0.0080  0.3138 0.5786 0.035
Zn 0.2082  2.1031 0.1850  0.0330  1.3296 0.2559 0.172
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PCA ordination of environmental variables

The first PCA axis accounted for 40.6 % (eigenvalue of 0.406) of the variance in the matrix of stand-
ardised transformed environmental variables, and the second axis accounted for 14.6 % (eigenvalue 
of 0.146).

pHH2O, pHCaCl2
 and extractable S, Mn, Ca and C obtained the highest loadings on PCA axis 1, 

while loss-on-ignition, exchangeable H and macro- and meso plot heat indices obtained low loadings 
(Fig. 57). Extractable Al and soil moisture obtained low loadings on PCA axis 2, while extractable 
P and Zn obtained high loadings.

The PCA results were consistent with the correlation matrix of the environmental variables, 

Figs 62-63. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 62. Ma HI (R2 = 0. 684). Fig. 63. TBA (R2 = 0.507). R2 
refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 64-65. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 64. Me Slo (R2 = 0.643). Fig. 65. Me HI (R2 = 0.748). R2 
refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.

showing that pH, Ca, Mn and several of the topgraphical indices (not heat indices) with high loadings 
on axis 1 were highly positively correlated, and that variables in this group was negatively correlated 
with loss on ignition, extractable H and heat indices. Thus the environmental data from the Møsvatn 
reference area reflects an important gradient in soil nutrient richness and base status.

DCA ordination

The gradient length of the two first DCA axes was 4.53 and 1.88 S.D. units, and the eigenvalues were 
0.554 and 0.140, respectively. Meso plot 35 made up an outlier along the first axis. A second DCA 
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Figs 66-67. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 66. Sma (R2 = 0.583). Fig. 67. LOI (R2 = 0.707). R2 refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.

ordination was obtained by removing this plot from the analysis, and a new ordination was performed. 
However, the relative positions of the remaining plots in the diagram did not change, nor was the 
main pattern along the axes affected. All plots were therefore used in further analyses. 

The first axis represented a high proportion of the structured variation in the material while, 
consequently, the remaining axes captured smaller amounts of variation. Variation along DCA axis 
2 was mainly restricted to sample plots to the right in the ordination diagram, i.e. with high DCA 1 
scores (Fig. 58).
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Figs 68-69. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 68. Total N (R2 = 0.738). Fig. 69. pHCaCl2

 (R2 = 0.837). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.

GNMDS ordination

The GNMDS ordination diagram (Fig. 59) was visually similar to the DCA diagram (Fig. 58), although 
plot 35 was separated somewhat from all other plots both along the first and the second ordination 
axis. The correlation between GNMDS 1 and DCA 1 was τ = 0.953, and the correlation between 
GNMDS 2 and DCA 2 was τ = 0.407 (both P < 0.001). 
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Figs 70-71. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 70. H (R2 = 0.750). Fig. 71. C (R2 = 0.753). R2 refers to 
the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 93.62 % at the macro plot scale (i.e. 
between macro plots) and 6.38 % at the (between) meso plot scale within macro plots (Table 7). For 
the second ordination axis, 82.00 % of the variation was explained at the macro plot scale and 18.00 
% at the meso plot scale (Table 8)

At the macro plot scale, twenty-two environmental variables were significantly (at the α = 0.05 
level) related to DCA 1 while no variable (also at the α = 0.05 level) was related to DCA 2. At the 
meso plot scale, four environmental variables were significantly related to DCA 1 and one variable 
to DCA 2 (Tables 7 and 8). 
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Figs 72-73. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 72. Ca (R2 = 0.803). Fig. 73. K (R2 = 0.669). R2 refers to 
the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.

At the macro plot scale, most of the significant variables increased along DCA 1; exceptions 
were heat indices, meso plot terrain form, minimum soil depth, LOI and the concentrations of H and 
P in soil which decreased. 

At the meso plot scale, DCA 2 was only significant positively correlated with median soil depth. 
No other significant relationships were detected (at the α = 0.05 level) (Table 8).
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Figs 74-75. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 74. Mg (R2 = 0.618). Fig. 75. Mn (R2 = 0.771). R2 refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.

Correlations between DCA ordination axes and environmental variables

Twenty of the 31 measured variables were strongly correlated with DCA axis 1 (|τ| > 0.300), while no 
variables were equally strongly correlated with DCA 2 (Table 7). pHCaCl2

 (τ = 0.726, Fig. 69), pHH2O 
(τ = 0.716), extractable Ca (τ = 0.675, Fig. 72) and Mn (τ = 0.636, Fig. 75) and tree basal area (τ = 
0.617, Fig. 63) were best correlated with DCA axis 1, while meso plot aspect unfavourablility (τ = 
0.298) was the variable most strongly correlated with DCA 2. 
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Figs 76-77. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 76. Na (R2 = 0.743). Fig. 77. P (R2 = 0.569). R2 refers to 
the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.

Frequent species 

A total of 124 species were recorded within the fifty 1×1 m meso plots: 61 vascular plants, 25 mosses, 
19 liverworts and 19 lichens. The most frequent species were (the sum of subplot frequencies in 
brackets): Avenella flexuosa (717 out of 800), Barbilophozia lycopodioides (691), Vaccinium myrtillus 
(663), Vaccinium vitis-idaea (452), Empetrum nigrum (443), Trientalis europaea (376), Pleurozium 
schreberi (347), Hylocomium splendens (312), Vaccinium uliginosum (298), and Brachythecium 
reflexum (295).
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Fig. 78. Møsvatn: isolines for environmental variables in the DCA ordinations of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso plots’ 
positions. Scaling in S.D. units. Fig. 78. S (R2 = 0.776). R2 refers to the coefficient of determination 
between original and smoothened values as interpolated from the isolines. Names of environmental 
variables in accordance with Table 2.

The distribution of species abundance in the DCA ordination

Forty seven of the total 124 species occurred in 5 or more of the meso plots (Figs 79-125). 
Only Vaccinium myrtillus (Fig. 82) occurred abundantly in most of the meso plots, demonstrat-

ing a wide ecological amplitude. Empetrum nigrum (Fig. 81), Vaccinium uliginosum (Fig. 83) and 
Vaccinium vitis-idaea (Fig. 84) also had relatively wide ecological amplitudes, but were absent from 
the extreme right-hand situated plots in the DCA ordination diagram with favourable soil nutrient 
status. Solidago virgaurea (Fig. 97), Trientalis europaea (Fig. 98), Avenella flexuosa (Fig. 100), 
Brachythecium reflexum (Fig. 103) and Barbilophozia lycopodioides (Fig. 115) were only absent from 
plots with very low DCA 1 scores, i.e. the plots with the most acid and nutrient-poor soils.

Species with more narrow amplitudes in the material, which showed preferences for soils with 
higher pH and higher concentrations of nutrients, were Geranium sylvaticum (Fig. 85), Phegopteris 
connectilis (Fig. 94), Ranunculus acris (Fig. 95), Rumex acetosa (Fig. 96), Milium effusum (Fig. 102) 
and Mnium spinosum (Fig. 108).

Cladonia arbuscula (Fig. 119), C. rangiferina (Fig. 124) and C. stellaris (Fig. 125) were re-
stricted to the left-hand side of the ordination diagram and thus occurred in sample plots with low slope, 
low tree basal area, low soil nutrient status and high LOI values (on ridges with scattered trees).
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Figs 79-86. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 79. Betula pubescens. Fig. 80. Juniperus communis. Fig. 
81. Empetrum nigrum. Fig. 82. Vaccinium myrtillus. Fig. 83. Vaccinium uliginosum.  Fig. 84. Vac-
cinium vitis-idaea. Fig. 85. Geranium sylvaticum. Fig. 86. Gymnocarpium dryopteris.
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Figs 87-94. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 87. Hieracium umbellatum. Fig. 88. Linnaea borealis. 
Fig. 89. Listera cordata. Fig. 90. Lycopodium annotinum. Fig. 91. Maianthemum bifolium. Fig. 92. 
Melampyrum pratense. Fig. 93. Melampyrum sylvaticum. Fig. 94. Phegopteris connectilis.
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Figs 95-102. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 95. Ranunculus acris. Fig. 96. Rumex acetosa. 
Fig. 97. Solidago virgaurea. Fig. 98. Trientalis europaea. Fig. 99. Anthoxanthum odoratum. Fig. 100. 
Avenella flexuosa. Fig. 101. Luzula pilosa. Fig. 102. Milium effusum.
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Figs 103-110. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 103. Brachythecium reflexum. Fig. 104. 
Brachythecium salebrosum. Fig. 105. Dicranum fuscescens. Fig. 106. Dicranum scoparium. Fig. 
107. Hylocomium splendens. Fig. 108. Mnium spinosum. Fig. 109. Plagiothecium laetum. Fig. 110. 
Pleurozium schreberi.
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Figs 111-118. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 111. Polytrichum commune. Fig. 112. Poly-
trichum juniperinum. Fig. 113. Barbilophozia attenuata. Fig. 114. Barbilophozia floerkei. Fig. 115. 
Barbilophozia lycopodioides. Fig. 116. Lophozia obtusa. Fig. 117. Lophozia ventricosa. Fig. 118. 
Cetraria islandica.



SOMMERFELTIA 34 (2010)72

Figs 119-125. Møsvatn: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 119. Cladonia arbuscula. Fig. 120. Cladonia 
chlorophaea. Fig. 121. Cladonia ecmocyna. Fig. 122. Cladonia furcata. Fig. 123. Cladonia gracilis. 
Fig. 124. Cladonia rangiferina. Fig. 125. Cladonia stellaris.
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GUTULIA REFERENCE AREA

Correlations between environmental variables

Macro and meso plot slope were negatively correlated with heat indices, tree basal area, soil moisture 
and soil pH, and negatively correlated with soil depth, loss-on-ignition and exchangeable H (Table 
9). Tree basal area was positively correlated with soil pH. Soil depth (Smi, Sme and Sma) was, in 
general, negatively correlated with concentrations of extractable elements that reflected soil richness 
(e.g. Ca, Mg, K and Na) and with pH, and positively correlated with loss-on-ignition and soil acidity 
(exchangeable H). 

Soil moisture was positively correlated with soil pH, extractable P, C, Ca, K, Mg, Mn and Zn 
and negatively correlated with loss on ignition and soil acidity. Loss-on-ignition was, in turn, positively 
correlated with soil acidity and negatively correlated with variables reflecting soil nutrient richness. 
Variables reflecting soil nutrient richness (pH, P, N, Ca, Mg, Na, K, Mn) were, in general, internally 
positively correlated, each of these were negatively correlated with soil acidity (exchangeable H and 
extractable Al). Thus the Gutulia reference area showed variation in soil nutrient richness and base 
status with the most acidic plots situated in rather flat areas with deeper soils characterized by high 

Fig. 126. Gutulia: PCA ordination of 31 environmental variables. Abbreviations in accordance with 
Table 2, axes 1 (horizontal) and 2 (vertical). Positions of variables in the ordination space give the 
head of variable vectors. Tickmarks indicate 0.1 units along both axes.
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Fig. 127. Gutulia: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). 
Meso plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig.128. Gutulia: GNMDS ordination biplot diagram of 50 meso plots (indicated by their number).
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Figs 129-130. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 129. TBA (R2 = 0.611). Fig. 130. Smi (R2 = 0.658). R2 

refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2. 
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Table 10. Gutulia: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 29.2643) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 27.9043 SSmeso plot = 1.36000 
 FVE = 0.9535 of SS FVE = 0.0465 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.0553  0.4679 0.5133  0.0009  0.0347 0.8533 0.217
Ma Asp 0.0023  0.0181 0.8963  0.0002  0.0060 0.9387 –0.046
Ma HI 0.0619  0.5279 0.4882  0.0002  0.0077 0.9304 –0.188
Ma Ter 0.0047  0.0381 0.8500  0.0341  1.3776 0.2476 –0.049
Ma Une 0.2292  2.3785 0.1616  0.0147  0.5807 0.4506 –0.297
TBA 0.5716 2.9582 10.6740 0.0114  0.0008  0.0329 0.8571 0.365
Me Slo 0.0246  0.2016 0.6654  0.0510  2.0951 0.1558 0.133
Me Asp 0.0116  0.0937 0.7673  0.0195  0.7764 0.3836 0.024
Me HI 0.0844  0.7378 0.4154  0.0004  0.0176 0.8953 –0.102
Me Ter 0.0578  0.4910 0.5034  0.0084  0.3290 0.5695 –0.035
Me Une 0.0227  0.1855 0.6780  0.0901  3.8621 0.0565 –0.137
Smi 0.3935  5.1903 0.0522  0.0000  0.0006 0.9799 –0.430
Sme 0.4095 –1.747 5.5481 0.0463  0.0528  2.1723 0.1485 –0.403
Sma 0.3352  4.0344 0.0795  0.0217  0.8646 0.3582 –0.271
Mme 0.1321  1.2176 0.3019  0.0139  0.5497 0.4629 0.169
LOI 0.5269 –1.873 8.9093 0.0175  0.0003  0.0130 0.9099 –0.451
Total N 0.4169 2.2566 5.7199 0.0437  0.0041  0.1622 0.6893 0.295
pHH2O 0.7113 2.1803 19.7090 0.0022  0.0084  0.3288 0.5697 0.568
pHCaCl2

 0.7125 2.0798 19.8230 0.0021  0.0024  0.0945 0.7601 0.575
H 0.6636 –2.061 15.7810 0.0041  0.0003  0.0102 0.9201 –0.553
Al 0.0054  0.0435 0.8400  0.0019  0.0755 0.7849 –0.053
C 0.6654 2.7013 15.9080 0.0040  0.0124  0.4908 0.4877 0.558
Ca 0.2347  2.4533 0.1559  0.0012  0.0451 0.8330 0.221
Fe 0.0180  0.1468 0.7116  0.0132  0.5204 0.4750 –0.112
K 0.4409 2.2281 6.3085 0.0363  0.0088  0.3466 0.5594 0.487
Mg 0.0773  0.6702 0.4367  0.0208  0.8285 0.3683 0.189
Mn 0.5906 1.8420 11.5410 0.0094  0.0001  0.0055 0.9413 0.451
Na 0.3533  4.3706 0.0700  0.0004  0.0156 0.9013 0.269
P 0.0025  0.0200 0.8910  0.0003  0.0105 0.9188 0.030
S 0.8087 2.6093 33.8220 0.0004  0.0101  0.3984 0.5316 0.605
Zn 0.1602  1.5260 0.2518  0.0019  0.0740 0.7870 0.288
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Table 11. Gutulia: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 6.0188) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 4.6643 SSmeso plot = 1.35446 
 FVE = 0.7750 of SS FVE = 0.2250 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.3389  4.1007 0.0774  0.0275  1.1011 0.3005 –0.102
Ma Asp 0.0472  0.3967 0.5464  0.0003  0.0099 0.9214 –0.109
Ma HI 0.2968  3.3759 0.1035  0.0142  0.5604 0.4586 0.159
Ma Ter 0.0342  0.2837 0.6088  0.0302  1.2132 0.2774 0.039
Ma Une 0.0231  0.1893 0.6750  0.0010  0.0409 0.8408 0.094
TBA 0.0021  0.0171 0.8992  0.0051  0.2015 0.6560 0.023
Me slo 0.3579  4.4591 0.0677  0.0334  1.3460 0.2530 –0.182
Me Asp 0.0718  0.6189 0.4541  0.0127  0.5003 0.4836 –0.042
Me HI 0.3162  3.6994 0.0906  0.0010  3.6994 0.0906 0.092
Me Ter 0.1452  1.3585 0.2774  0.0291  1.1710 0.2859 –0.057
Me Une 0.0245  0.2007 0.6660  0.0075  0.2954 0.5899 0.074
Smi 0.0295  0.2431 0.6352  0.0109  0.4303 0.5157 0.001
Sme 0.0342  0.2834 0.6089  0.0692  2.9001 0.0965 0.033
Sma 0.0869  0.7613 0.4083  0.0612  2.5422 0.1189 0.099
Mme 0.0264  0.2172 0.6536  0.0078  0.3070 0.5827 –0.200
LOI 0.0057  0.0456 0.8363  0.0142  0.5625 0.4578 0.032
Total N 0.4236 0.9300 5.8802 0.0415  0.0215  0.8551 0.3608 0.299
pHH2O 0.0006  0.0048 0.9464  0.0356  1.4406 0.2373 0.028
pHCaCl2

 0.0005  0.0043 0.9493  0.0123  0.4852 0.4902 0.039
H 0.0017  0.0139 0.9090  0.0010  0.0373 0.8478 –0.017
Al 0.0316  0.2611 0.6232  0.0079  0.3106 0.5805 0.048
C 0.0013  0.0106 0.9207  0.0356  1.4410 0.2372 0.104
Ca 0.1056  0.9449 0.3595  0.0090  0.3557 0.5543 0.242
Fe 0.0555  0.4697 0.5125  0.0078  0.3046 0.5842 0.133
K 0.0307  0.2537 0.6280  0.0002  0.0069 0.9345 –0.006
Mg 0.0004  0.0028 0.9589  0.0297  1.1946 0.2811 0.048
Mn 0.0001  0.0009 0.9769  0.0135  0.5340 0.4693 –0.074
Na 0.4173 1.4811 5.7294 0.0436  0.0078  0.3071 0.5826 0.367
P 0.0146  0.1188 0.7392  0.0058  0.2268 0.6366 –0.074
S 0.0206  0.1681 0.6926  0.0003  0.0130 0.9096 0.056
Zn 0.0077  0.0617 0.8102  0.0079  0.3114 0.5800 0.020
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loss on ignition, and the more base rich plots on steeper slopes with higher biomass of trees.

PCA ordination of environmental variables

The first two PCA axes accounted for 46.6% and 14.5% of the variance in the matrix of standardised 
transformed environmental variables, respectively (the corresponding eigenvalues were 0.466 and 
0.145).

Lowest loadings on PCA axis 1 as well as loadings close to zero on PCA axis 2 were obtained 
by median, minimum and maximum soil depth, loss-on-ignition, and exchangeable H, S and Mn (Fig. 
126). High loadings on this axis and loadings close to zero on PCA axis 2 were obtained by extract-
able C, K, P and Zn and pHH2O and pHCaCl2

. Extractable Mg and Ca obtained relatively high loadings 
on PCA axis 1 together with macro and meso plot slope, while soil concentrations of Fe, macro plot 
heat index and macro plot unevenness obtained low loadings. 

Total N and extractable Al obtained high loadings on PCA axis 2, while extractable P and Mg 
obtained low loadings.

The PCA ordination results were thus consistent with the correlation matrix in Table 9, em-
phasising importance of soil nutrient richness and topography for the environmental structure in the 
Gutulia reference area.

DCA ordination

The gradient length of the two first DCA axes was 2.76 and 1.62 S.D. units with eigenvalues of 0.404 
and 0.136 respectively, showing that the first axis was particularly important.

The sample plots were relatively evenly distributed along DCA axis 1, but dispersion along 
DCA axis 2 was largest among plots with DCA axis 1 values less than 1.4 S.D. units (Fig. 127). 

GNMDS ordination

The GNMDS ordination diagram (Fig. 128) showed good visual similarity to the DCA diagram (Fig. 
127). The correlation between GNMDS axis 1 and DCA axis 1 was τ = 0.917 and between GNMDS 
axis 2 and DCA axis 2 τ = 0.342. 

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 95.35 % at the macro plot scale (i.e. 
between macro plots) and 4.65 % at the (between) meso plot scale within macro plots (Table 10). 
For the second ordination axis, 77.50 % of the variation was explained at the macro plot scale and 
22.50 % at the meso plot scale (Table 11).

At the macro plot scale, eleven environmental variables were significantly (at the α = 0.05 
level) related to DCA 1 while two variables (also at the α = 0.05 level) were related to DCA 2. At 
the meso plot scale level, no environmental variables were significantly related to both DCA 1 and 
DCA 2 (Tables 10 and 11). 

At the macro plot scale, tree basal area and both pH measures and soil concentrations of Total 
N, C, K, Mn and S increased significantly along DCA 1, while soil concentration of H, loss-on-ignition 
and median soil depth decreased (Table 10). 
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Figs 131-132. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 131. Sme (R2 = 0.691). Fig. 132. LOI (R2 = 0.681). R2 
refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 133-134. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 133. pHCaCl2

 (R2 = 0.852). Fig. 134. H (R2 = 0.785). R2 
refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 135-136. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 135. C (R2 = 0.714). Fig. 136. K (R2 = 0.726). R2  refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.
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Figs 137-138. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 136. Mn (R2 = 0.812). Fig. 137. Na (R2 = 0.666). R2 refers 
to the coefficient of determination between original and smoothened values as interpolated from the 
isolines. Names of environmental variables in accordance with Table 2.
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Fig. 139. Gutulia: isolines for environmental variables in the DCA ordinations of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso plots’ 
positions. Scaling in S.D. units. Fig. 139. S (R2 = 0.815). R2 refers to the coefficient of determination 
between original and smoothened values as interpolated from the isolines. Names of environmental 
variables in accordance with Table 2.

At the macro plot scale, DCA 2 was only significant (positively) related to the concentration 
of Total N and Na (Table 11). 

Correlations between DCA axes and environmental variables 

Extractable S (Fig. 139), pH measuresments [pHCaCl2
 (Fig. 133)], extractable C (Fig. 135) and ex-

changeable H (negatively related to the axis; Fig. 134) showed the highest correlations with DCA 
axis 1 (Table 15). A total of 11 out of 31 of the measured variables had a correlation |τ| > 0.300 (Figs 
129-139). Variables related to high soil nutrient richness were positively correlated while loss-on-
ignition and exchangeable H were negatively correlated with this axis.

 Only one variable, extractable Na (Fig. 138), had a correlation higher than |τ| > 0.300 with 
DCA axis 2. 

Frequent species

A total of 87 species were recorded within the fifty 1×1 m meso sample plots: 41 vascular plants, 19 
mosses, 11 liverworts and 16 lichens. The most frequent species (the sum of subplot frequencies in 
brackets) are: Vaccinium myrtillus (786 out of 800), Avenella flexuosa (766), Vaccinium vitis-idaea 
(674), Barbilophozia lycopodioides (534), Dicranum scoparium (473), Trientalis europaea (352), 
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Figs 140-145. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot propor-
tional to quadrate size. Scaling in S.D. units. Fig. 140. Betula nana. Fig. 141. Juniperus communis. 
Fig. 142. Sorbus aucuparia. Fig. 143. Calluna vulgaris. Fig. 144. Empetrum nigrum. Fig. 145. Vac-
cinium myrtillus. 
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Figs 146-151. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot propor-
tional to quadrate size. Scaling in S.D. units. Fig. 146. Vaccinium uliginosum. Fig. 147. Vaccinium 
vitis-idaea. Fig. 148. Gymnocarpium dryopteris. Fig. 149. Linnaea borealis. Fig. 150. Lycopodium 
annotinum. Fig. 151. Melampyrum pratense. 
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Figs 152-157. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 152. Melampyrum sylvaticum. Fig. 153. Oxalis 
acetosella. Fig. 154. Potentilla erecta. Fig. 155. Rubus chamaemorus. Fig. 156. Rumex acetosa. Fig. 
157. Solidago virgaurea.
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Figs 158-163. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 158. Trientalis europaea. 159. Anthoxanthum 
odoratum. Fig. 160. Carex vaginata. Fig. 161. Deschampsia cespitosa. Fig. 162. Avenella flexuosa. 
Fig. 163. Eriophorum vaginatum.
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Figs 164-169. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 164. Luzula pilosa. Fig. 165. Milium effusum. 
Fig. 166. Nardus stricta. Fig. 167. Brachythecium reflexum. Fig. 168. Brachythecium salebrosum. 
Fig. 169. Dicranum scoparium.
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Figs 170-175. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, axes 
1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot proportional 
to quadrate size. Scaling in S.D. units. Fig. 170. Hylocomium splendens. Fig. 171. Plagiothecium 
laetum. Fig. 172. Pleurozium schreberi. Fig. 173. Pohlia nutans. Fig. 174. Polytrichum commune. 
Fig. 175. Polytrichum juniperinum.
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Figs 176-181. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 176. Rhodobryum roseum. Fig. 177. Sphagnum 
girgensohnii. Fig. 178. Barbilophozia floerkei. Fig. 179. Barbilophozia lycopodioides. Fig. 180. 
Calypogeia integristipula. Fig. 181. Cephalozia lunulifolia.
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Figs 182-187. Gutulia: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 182. Lophozia obtusa. Fig. 183. Lophozia 
ventricosa. Fig. 184. Ptilidium ciliare. Fig. 185. Cetraria islandica. Fig. 186. Cladonia arbuscula. 
Fig. 197. Cladonia bellidiflora.
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Figs 188-193. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 188. Cladonia chlorophaea. Fig. 189. Cladonia 
coccifera. Fig. 190. Cladonia  cornuta. Fig. 191. Cladonia crispata. Fig. 192. Cladonia furcata. Fig. 
193. Cladonia gracilis.
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Figs 194-196. Gutulia: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot pro-
portional to quadrate size. Scaling in S.D. units. Fig. 194. Cladonia rangiferina. Fig. 195. Cladonia 
sulphurina. Fig. 196. Cladonia uncialis.

Pleurozium schreberi (315), Empetrum nigrum (286), Melampyrum pratense (267) and Gymnocar-
pium dryopteris (251).

The distribution of species abundance in the DCA ordination

Fifty seven of the totally 87 species occurred in 5 or more of the sample plots (Figs 140–196). 
Vaccinium myrtillus (Fig. 145), Vaccinium vitis-idaea (Fig. 147), Avenella flexuosa (Fig. 162) and 
Dicranum scoparium (Fig. 169) had wide ecological amplitudes and were highly abundant in most 
of the sample plots. Barbilophozia lycopodioides (Fig. 179) also had a relatively wide distribution, 
although it was rather rare in plots with low axis 1 scores and high axis 2 scores that were poor in 
soil nutrients, acidic, and situated on relatively deep soils.
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Species restricted to high DCA axis1 scores, preferring soils with high pH values and high 
concentrations of extractable C, Ca, K, Mn and S, were Juniperus communis (Fig. 141), Gymnocar-
pium dryopteris (Fig. 148), Linnaea borealis (Fig. 149), Melampyrum sylvaticum (Fig. 152), Oxalis 
acetosella (Fig. 153), Rumex acetosa (Fig. 156), Solidago virgaurea (Fig. 157), Anthoxanthum odo-
ratum (Fig. 159), Carex vaginata (Fig. 160), Deschampsia cespitosa (Fig. 161), Luzula pilosa (Fig. 
164), Milium effusum (Fig. 165), Brachythecium salebrosum (Fig. 168), Plagiothecium laetum (Fig. 
171), Rhodobryum roseum (Fig. 176) and Lophozia obtusa (Fig. 182).

Species restricted to sample plots with lower soil pH and less nutrient-rich soils were Betula 
nana (Fig. 140), Eriophorum vaginatum (Fig. 163), Cetraria islandica (Fig. 185), Cladonia arbuscula 
(Fig. 186), Cladonia bellidiflora (Fig.187), Cladonia crispata (Fig. 191), Cladonia gracilis (Fig. 
193), Cladonia rangiferina (Fig. 194) and Cladonia uncialis (Fig. 196). Of these Betula nana and 
Eriophorum vaginatum had their main occurrence at high DCA axis 2 scores, on deep soils, while 
the Cladonia species were restricted to low DCA 2 scores, preferring a thin soil layer.

Melampyrum pratense (Fig. 151) and Trientalis europaea (Fig. 158) seemed to occur irrespec-
tively to pH and concentration of C, H, K, Mn, Na and S (cf. Fig. 133-139). 
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ÅMOTSDALEN REFERENCE AREA

Correlations between environmental variables

There were strong pairwise correlations between several of the topographical variables, between soil 
chemical variables and between topographical and chemical variables related to soil nutrient richness 
and soil moisture (Table 12). 

Macro plot slope was positively correlated with macro and meso plot aspect unfavourability 
and negatively correlated with macro plot heat index and macro plot terrain form. Meso plot slope 
was positive correlated with macro plot aspect unfavourability and negative correlated with meso 
plot heat index. In general meso plot slope was positively correlated with soil chemical variables 
that reflected soil nutrient status (e.g. Ca concentrations and pH) and negatively correlated with soil 
acidity (H and Fe) and high LOI. Meso plot heat index was negatively correlated with soil variables 
related to a gradient in soil nutrient richness (e.g. pH, Ca and K).

Tree basal area was negatively correlated with LOI and H and positively correlated with pH and 
most extractable elements. Median, minimum and maximum soil depths were internally positively 

Fig. 197. Åmotsdalen: PCA ordination of 31 environmental variables. Abbreviations in accordance 
with Table 2), axes 1 (horizontal) and 2 (vertical). Positions of variables in the ordination space give 
the head of variable vectors. Tickmarks indicate 0.1 units along both axes.
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correlated, but not strongly correlated with other variables. Soil moisture and LOI were negatively 
correlated with pH and most other extractable elements, and positively correlated with each other. 
pH was positively correlated with total N, C, Ca, K, Mg, Mn and Zn and negatively correlated with 
H and Fe. Extractable P was negatively correlated with soil moisture, total N, pH, Na and Zn, and 
positively correlated with LOI and C.

PCA ordination of environmental variables

The first two PCA axes accounted for 34.6% and 12.4% of the variance in standardised transformed 
environmental variables, respectively (eigenvalues of 0.346 and 0.124).

pHH2O, pHCaCl2
, Ca, K and Mn obtained high loadings along PCA axis 1 together with extract-

able C, macro plot aspect unfavourability, macro and meso plot slope and meso plot heat index, while 
low loadings were obtained by H, Fe, meso plot heat index and soil moisture (Fig. 197). These two 
groups of variables were negatively correlated with each other. 

Extractable P obtained high loading on PCA axis 2, while Na, Al and soil moisture obtained 
low loadings. 

The PCA results were consistent with the correlation matrix of the environmental variables, 
showing that variables related to soil richness and soil moisture made up the strongest environmental 
complex gradients in the Åmotsdalen reference area.

DCA ordination

The gradient length of the two first DCA axes was 3.54 and 1.79 S.D. units, and the eigenvalues were 
0.519 and 0.106, respectively. Accordingly, the only strong gradient in species composition was DCA 
1. The plots partly segregated into two groups; one group with 40 samples occurred to the left in the 
DCA diagram (DCA 1 scores between 0 and 1.9 S.D. units on axis 1), while the remaining 10 plots 
occurred to the right (2.5–3.5 S.D. units) (Fig. 198).

GNMDS ordination

The GNMDS ordination diagram (Fig. 199) was visually similar to the DCA diagram (Fig 198). 
The correlation between GNMDS axis 1 and DCA axis 1 was τ = 0.931 and the correlation between 
GNMDS axis 2 and DCA axis 2 was τ = 0.620. 

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 96.03 % at the macro plot scale (i.e. 
between macro plots) and 3.97 % at the (between) meso plot scale within macro plots (Table 13). 
For the second ordination axis, 56.03 % of the variation was explained at the macro plot scale and 
43.97 % at the plot scale (Table 14).

At the macro plot scale, eight environmental variables were significantly (at the α = 0.05 level) 
related to DCA 1 while three variables (also at the α = 0.05 level) were related to DCA 2. At the meso 
plot scale level, five environmental variables were significantly related to DCA 1 and two variables 
to DCA 2 (Tables 13 and 14). 

At the macro plot scale, tree basal area, pH and soil concentrations of Total N, Ca, Mn, and 
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Fig. 198. Åmotsdalen: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). 
Meso plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig.199. Åmotsdalen: GNMDS ordination biplot diagram of 50 meso plots (indicated by their 
number).

S increased significantly along DCA 1 while loss-on-ignition decreased. Predictors with significant 
relationship (positive) to this axis on the meso plot scale were maximum soil depth, soil moisture, 
pH measures and soil concentrations of Al. 

At the macro plot scale, DCA 2 was positively related to minimum soil depth and negatively 
related to macro plot terrain form and the concentration of Mn in soil. At the meso plot scale, DCA 
axis 2 was significantly negatively related to macro plot slope and positively correlated to soil con-
centration of Na (Table 14).
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Table 13. Åmotsdalen: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient 
τ between DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 34.3416) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 32.9770 SSmeso plot = 1.36464 
 FVE = 0.9603 of SS FVE = 0.0397 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.2773  3.0701 0.1178  0.0812  3.4454 0.0710 –0.041
Ma Asp 0.0285  0.2351 0.6408  0.0192  0.7627 0.3878 0.166
Ma HI 0.1310  1.2061 0.3041  0.0017  3.6437 0.0927 0.148
Ma Ter 0.3714  4.7258 0.0614  0.0184  0.7295 0.3983 0.147
Ma Une 0.0371  0.3082 0.5939  0.0264  1.0563 0.3104 –0.09
TBA 0.4875 2.7191 7.6086 0.0247  0.0000  0.0001 0.9935 0.257
Me Slo 0.3861  5.0319 0.0552  0.0002  0.0096 0.9226 0.208
Me Asp 0.0045  0.0365 0.8533  0.0043  0.1686 0.6836 –0.135
Me HI 0.3129  3.6437 0.0927  0.0000  0.0009 0.9930 –0.248
Me Ter 0.0517  0.4364 0.5274  0.0041  0.1618 0.6897 0.045
Me Une 0.2576  2.7753 0.1343  0.0026  0.1010 0.7523 –0.22
Smi 0.0191  0.1557 0.7034  0.0209  0.8327 0.3671 0.088
Sme 0.0776  0.6734 0.4356  0.0121  0.4778 0.4935 –0.065
Sma 0.0951  0.8407 0.3860  0.1008 0.3049 4.3729 0.0431 0.123
Mme 0.1495  1.4064 0.2697  0.1043 0.3367 4.5427 0.0394 –0.235
LOI 0.6934 –2.4254 18.0930 0.0028  0.0019  0.0757 0.7847 –0.536
Total N 0.5493 3.7831 9.7483 0.0142  0.0630  2.6229 0.1134 0.361
pHH2O 0.7879 2.8417 29.7260 0.0006  0.1581 0.5362 7.3260 0.0100 0.572
pHCaCl2

 0.7507 2.5896 24.0870 0.0012  0.1604 0.6187 7.4522 0.0095 0.590
H 0.2968  3.3771 0.1034  0.0015  0.0583 0.8104 –0.387
Al 0.0000  0.0000 0.9965  0.1050 0.4716 4.5746 0.0388 –0.047
C 0.1925  1.9072 0.2046  0.0367  1.4857 0.2302 0.297
Ca 0.4048 2.6665 5.4417 0.0480  0.0055  0.2173 0.6437 0.407
Fe 0.2194  2.2483 0.1721  0.0705  2.9584 0.0934 0.240
K 0.3225  3.8073 0.0868  0.0082  0.3240 0.5725 0.409
Mg 0.3895  5.1030 0.0538  0.0290  1.1634 0.2874 0.423
Mn 0.6383 2.2069 14.1160 0.0056  0.0451  1.8438 0.1823 0.594
Na 0.2159  2.2022 0.1761  0.0361  1.4605 0.2341 0.206
P 0.3249  3.8497 0.0854  0.0807  3.4217 0.0719 –0.227
S 0.5611 3.1651 10.2280 0.0127  0.0412  1.6741 0.2033 0.477
Zn 0.1902  1.8793 0.2076  0.0266  1.0677 0.3078 0.214
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Table 14. Åmotsdalen: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient 
τ between DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 6.8792) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 3.8547 SSmeso plot = 3.02452 
 FVE = 0.5603 of SS FVE = 0.4397 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.3067  3.5387 0.0967  0.1704 –1.258 8.0085 0.0073 –0.073
Ma Asp 0.0106  0.0856 0.7772  0.0364  1.4717 0.2324 –0.247
Ma HI 0.6403  14.244 0.0054  0.0129  0.5098 0.4795 –0.260
Ma Ter 0.6765 –2.1084 16.7320 0.0035  0.0275  1.1025 0.3002 –0.112
Ma Une 0.2552  2.7419 0.1363  0.0000  0.0011 0.9740 0.145
TBA 0.1339  1.2370 0.2983  0.0638  2.6599 0.1110 –0.182
Me slo 0.3133  3.6499 0.0925  0.0004  0.0153 0.9023 –0.259
Me Asp 0.0106  0.0856 0.7773  0.0415  1.6880 0.2015 –0.063
Me HI 0.3842  4.9904 0.0559  0.0245  0.9801 0.3283 –0.258
Me Ter 0.0209  0.1710 0.6901  0.0038  0.1473 0.7032 –0.057
Me Une 0.1369  1.2687 0.2927  0.0039  0.1531 0.6977 0.176
Smi 0.4365 1.1815 6.1975 0.0376  0.0382  1.5504 0.2205 0.22
Sme 0.2872  3.2238 0.1103  0.0479  1.9638 0.1690 0.213
Sma 0.3009  3.4433 0.1006  0.0293  1.1752 0.2850 0.217
Mme 0.3035  3.4854 0.0989  0.0871  3.7220 0.0610 0.304
LOI 0.1425  1.3298 0.2821  0.0000  0.0016 0.9680 0.205
Total N 0.2089  2.1126 0.1842  0.0862  3.6790 0.0625 –0.002
pHH2O 0.2511  2.6822 0.1401  0.0019  0.0755 0.7849 –0.241
pHCaCl2

 0.2819  3.1400 0.1143  0.0028  0.1086 0.7435 –0.269
H 0.2490  2.6520 0.1421  0.0183  0.7268 0.3991 0.289
Al 0.1730  1.6735 0.2319  0.0272  1.0908 0.3027 0.254
C 0.2866  3.2141 0.1108  0.0000  0.0013 0.9715 –0.245
Ca 0.2705  2.9670 0.1233  0.0428  1.7432 0.1944 –0.407
Fe 0.3879  5.0707 0.0544  0.0230  0.9193 0.3436 0.433
K 0.1437  1.3431 0.2799  0.0061  0.2401 0.6269 –0.161
Mg 0.0471  0.3952 0.5471  0.0192  0.7622 0.3880 –0.184
Mn 0.4339 –0.6221 6.1308 0.0384  0.0610  2.5347 0.1194 –0.387
Na 0.0754  0.6527 0.4425  0.2264 0.9904 11.4150 0.0017 0.231
P 0.0042  0.0339 0.8584  0.0000  0.0007 0.9785 –0.059
S 0.0567  0.4810 0.5076  0.0618  2.5672 0.1172 –0.008
Zn 0.0267  0.2198 0.6517  0.0165  0.6553 0.4231 –0.097
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Figs 200-201. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 200. Mme (Soil moisture) (R2 = 0.503). Fig. 201. 
LOI (R2 = 0.771). Names of environmental variables in accordance with Table 2. 
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Figs 202-203. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 202. Total N (R2 = 0.694). Fig. 203. pHCaCl2

 (R2 
= 0.787). R2 refers to the coefficient of determination between original and smoothened values as 
interpolated from the isolines. Names of environmental variables in accordance with Table 2. 
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Figs 204-205. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 204. H (R2 = 0.693). Fig. 205. C (R2 = 0.675). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 206-207. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. 206. Ca (R2 = 0.824). Fig. 207. Fe (R2 = 0.557). Fig. 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 208-209. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 196. K (R2 = 0.366). Fig. 197. Mg (R2 = 0.778). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 210-211. Åmotsdalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 210. Mn (R2 = 0.821). Fig. 211. S (R2 = 0.821). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Correlations between DCA ordination axes and environmental variables

The variables most strongly positively correlated with DCA axis 1 (Table 13) were soil extractable 
Mn (τ = 0.594, Fig. 210) and pHCaCl2 (τ = 0.590, Fig. 203), while loss-on-ignition (τ = –0.536, Fig. 
201) and exchangeable hydrogen (Fig. 204) were negatively correlated with this axis. Other variables 
that were positively correlated (τ > 0.300) with DCA axis 1 were Total N (Fig. 202), Ca (Fig. 206), 
K (Fig. 208), Mg (Fig. 209), and S (Fig. 211). No variables, except LOI and H (Fig. 201 and 204), 
had equally strong negative correlations.

Fe (τ = 0.433, Fig. 207) and soil moisture (τ = 0.304, Fig. 200) had the strongest positive 
correlations with DCA axis 2. Extractable Ca (Fig. 206) and Mn (Fig. 210) were the only variables 
that were negatively correlated with DCA axis 2 at the |τ| > 0.300 level. None of the topographical 
variables were significantly correlated with the first two DCA axes.

Frequent species

A total of 90 species were recorded within the 50 meso plots: 53 vascular plants, 14 mosses, 9 liver-
worts and 14 lichens. The most frequent species were (the sum of subplot frequencies in brackets): 
Vaccinium myrtillus (761 out of 800), Avenella flexuosa (743), Vaccinium vitis-idaea (724), Empetrum 
nigrum spp. hermaphroditum (607), Polytrichum commune (520), Calluna vulgaris (439), Pleurozium 
schreberi (363), Barbilophozia lycopodoides (367), Trientalis europaea (331) and Chamaepericly-
menum suecicum (315).

The distribution of species abundance in the DCA ordination

Forty-seven of the total 90 species occurred in 5 or more of the sample plots (Figs 212–258). 
Vaccinium myrtillus (Fig. 217), Vaccinium vitis-idaea (Fig. 219), Avenella flexuosa (Fig. 241) 

and Polytrichum commune (Fig. 250) had wide ecological amplitudes and were highly abundant in 
most of the sample plots. 

Many species were mainly restricted to the right part of the DCA ordination diagram (high 
DCA axis 1 scores), showing preferences for soils with high values of pH, extractable elements 
(e.g. Ca, K, Mg, Mn) and total N and low values of loss-on-ignition. Examples of such species were 
Deschampsia cespitosa (Fig. 240) and Rhytidiadelphus squarrosus (Fig. 253), mainly restricted to 
the driest sites (lower right part of the DCA ordination diagram), while Alchemilla alpina (Fig. 220), 
Bistorta vivipara (Fig. 221) Geranium sylvaticum (Fig. 223), Gymnocarpium dryopteris (Fig. 224), 
Maianthemum bifolium (Fig. 227), Orthilia secunda (Fig. 229), Oxalis acetosella (Fig. 230), Pyrola 
minor (Fig. 232), Ranunculus acris (Fig. 221), Veronica officinalis (Fig. 236) and Agrostis capillaris 
(Fig. 237) were more or less present in both the lower and upper right part of the DCA ordination 
diagram. Rhodobryum roseum (Fig. 252) had its optimum for intermediate to high DCA axis 1 and 
axis 2 scores. 

Examples of species mainly restricted to sample plots with low values of pH, extractable ele-
ments and higher loss on ignition (the left part of the DCA ordination diagram) were Betula nana 
(Fig. 212), Vaccinium uliginosum (Fig. 218), Dicranum fuscescens (Fig. 245), Ptilidium ciliare (Fig. 
256), Cladonia chlorophaea (Fig. 257) and Cladonia rangiferina (Fig. 258). Of these Betula nana 
occupied the most moist plots at high DCA axis 2 scores. Species such as Calluna vulgaris (Fig. 
214), Empetrum nigrum (Fig. 215), Dicranum scoparium (Fig. 247), Hylocomium splendens (Fig. 
248), Pleurozium schreberi (Fig. 249) and Barbilophozia lycopodioides (Fig. 254) also preferred less 
nutrient-rich soils in the left part of DCA axis 1.
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Figs 212-217. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 212. Betula nana. Fig. 213. Betula pubes-
cens. Fig. 214. Calluna vulgaris. Fig. 215. Empetrum nigrum. Fig. 216. Juniperus communis. Fig. 
217. Vaccinium myrtillus.
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Figs 218-223. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 218. Vaccinium uliginosum. Fig. 219. Vac-
cinium vitis-idaea. Fig. 220. Alchemilla alpina. Fig. 221. Bistorta vivipara. Fig. 222. Chamaeperic-
lymenum suecicum. Fig. 223. Geranium sylvaticum.
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Figs 224-229. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 224. Gymnocarpium dryopteris. Fig. 225. 
Linnaea borealis. Fig. 226. Listera cordata. Fig. 227. Maianthemum bifolium. Fig. 228. Melampyrum 
pratense. Fig. 229. Orthilia secunda.
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Figs 230-235. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 230. Oxalis acetosella. Fig. 231. Potentilla 
erecta. Fig. 232. Pyrola minor. Fig. 233. Ranunculus acris. Fig. 234. Solidago virgaurea. Fig. 235. 
Trientalis europaea. 
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Figs 236-241. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 236. Veronica officinalis. Fig. 237. Agrostis 
capillaris. Fig. 238. Anthoxanthum odoratum. Fig. 239. Carex bigelowii. Fig. 240. Deschampsia 
cespitosa. Fig. 241. Avenella flexuosa.
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Figs 242-247. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 242. Luzula pilosa. Fig. 243. Nardus stricta. 
Fig. 244. Brachythecium reflexum. Fig. 245. Dicranum fuscescens. Fig. 246. Dicranum majus. Fig. 
247. Dicranum scoparium. 
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Figs 248-253. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 248. Hylocomium splendens. Fig. 249. 
Pleurozium schreberi. Fig. 250. Polytrichum commune. Fig. 251. Polytrichum juniperinum. Fig. 252. 
Rhodobryum roseum. Fig. 253. Rhytidiadelphus squarrosus.
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Figs 254-258. Åmotsdalen: distributions of species abundances in the DCA ordination of 50 meso  
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. 254. Barbilophozia lycopodioides. Fig. 255. 
Lophozia obtusa. Fig. 256. Ptilidium ciliare. Fig. 257. Cladonia  chlorophaea. Fig. 258. Cladonia 
rangiferina.
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BØRGEFJELL REFERENCE AREA

Correlations between environmental variables

Many variables had strong pairwise correlations (Table 15). Macro and meso plot slope were negatively 
correlated with soil moisture, loss-on-ignition, exchangeable H and extractable Al, and positively 
correlated with variables reflecting soil nutrient richness, such as pH, P, Ca, Mg and K. Macro plot 
slope was also positively correlated with tree basal area which also was positively correlated with 
pH and extractable cations. Soil depth (Sme and Sma) was, in general, negatively correlated with 
extractable elements that reflected soil richness and positively correlated with LOI and soil acidity 
(H and low pH values). Soil moisture was positively correlated with LOI, and both were negatively 
correlated with soil nutrient richness variables. Variables reflecting soil nutrient richness (pH, P, N, 
Ca, Mg, Na, K, Mn) were positively correlated with each other and negatively correlated with soil 
acidity (exchangeable H and extractable Al). 

Thus the Børgefjell reference area shows variation from soils poor in nutrients, high acidity 
and high loss-on-ignition on rather flat sites to plots richer in soil nutrients with denser forests on 
steeper slopes.

PCA ordination of environmental variables

The first two PCA axes accounted for 37.3% and 14.3% of the variance in the matrix of standardised 
transformed environmental variables, respectively (eigenvalues of 0.373 and 0.143). 

pHH2O, pHCaCl2
, extractable C, K, Mn, S and Zn obtained the highest loadings on PCA axis 1 

while loss-on-ignition, extractable Al, exchangeable H and soil moisture (Mme) obtained low values 
on the same axis (Fig. 259). Macro and meso plot slope, tree aspect, total N and extractable Ca, Mg 
and P also had relatively high loadings on PCA axis 1.

 Macro and meso plot heat indices obtained the highest loadings on PCA axis 2 while macro 
and meso plot aspect unfavourability indices obtained the lowest loadings

The strong correlations between variables related to soil nutrient richness and slope steepness, 
and between soil acidity, LOI and soil moisture, are consistent with the correlation matrix of the 
environmental variables in Table 15.

DCA ordination

The gradient length of the first two DCA axes was 2.54 and 1.79 S.D. units with eigenvalues of 0.316 
and 0.168, respectively. The sample plots segregated into four relatively distinct clusters along the 
two first axes (Fig. 260). The first cluster, consisting of five sample plots (from macro plot 7) had 
low DCA axis 1 values (> 0.8 S.D. units) and medium high DCA axis 2 values. The next cluster, 
which also had the highest number of sample plots, occupied the middle of the diagram. The last two 
clusters were located at the right-hand side of the diagram and only these two clusters segregated 
along the second axis.
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Fig. 259. Børgefjell: PCA ordination of 31 environmental variables. Abbreviations in accordance 
with Table 2, axes 1 (horizontal) and 2 (vertical). Positions of variables in the ordination space give 
the head of variable vectors. Tickmarks indicate 0.1 units along both axes.

GNMDS ordination

The GNMDS ordination diagram (Fig. 261) showed good visual similarity with the DCA diagram 
(Fig. 260).The correlation between GNMDS axis 1 and DCA axis 1 was τ = 0.855 and the correlation 
between GNMDS axis 2 and DCA axis 2 was τ = 0.631. 

Split-plot GLM analysis of relationships between ordination axes and environmental variables

The variation (in plot scores) along DCA axis 1 was partitioned with 94.38 % at the macro plot scale 
(i.e. between macro plots) and 5.62 % at the (between) meso plot scale within macro plots (Table 
16). For the second ordination axis, 83.37 % of the variation was explained at the macro plot scale 
and 16.63 % at the meso plot scale (Table 17).

At the macro plot scale, seven environmental variables were significantly (at the α = 0.05 
level) related to DCA 1 while five variables (also at the α = 0.05 level) were related to DCA 2. At the 
meso plot scale, nine environmental variables were significantly related to DCA 1 and two variables 
to DCA 2 (Tables 16 and 17). 

At the macro plot scale, soil concentrations of Total N, C and S, pH and tree basal area increased 
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Fig. 260. Børgefjell: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). 
Meso plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig. 261. Børgefjell: GNMDS ordination biplot diagram of 50 meso plots (indicated by their 
number).
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Table 16. Børgefjell: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 20.9353) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 19.7589 SSmeso plot = 1.17638 
 FVE = 0.9438 of SS FVE = 0.0562 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.1245  1.1379 0.3172  0.1934 0.4761 9.3517 0.0040 0.248
Ma Asp 0.0189  0.1539 0.7051  * * * * 0.060
Ma HI 0.0107  0.0862 0.7765  0.1878 2.8563 9.0161 0.0046 –0.045
Ma Ter 0.0009  0.0074 0.9335  0.0229  0.9149 0.3447 0.055
Ma Une 0.0153  0.1240 0.7338  0.0003  0.0131 0.9096 –0.030
TBA 0.4038 1.4490 5.4194 0.0483  0.0199  0.7935 0.3785 0.448
Me Slo 0.1159  1.0492 0.3357  0.0979 0.2335 4.2309 0.0464 0.201
Me Asp 0.2404  0.0800 0.0985  0.0122  2.6560 0.1112 0.096
Me HI 0.0186  0.1517 0.7071  0.0074  0.2898 0.5934 –0.049
Me Ter 0.0853  0.7465 0.4127  0.0135  0.5350 0.4689 0.027
Me Une 0.0316  0.2614 0.6230  0.0548  2.2609 0.1407 –0.081
Smi 0.0010  0.0082 0.9302  0.0013  0.0525 0.8200 0.012
Sme 0.0843  0.7364 0.4158  0.0044  0.1731 0.6796 –0.109
Sma 0.0483  0.4061 0.5418  0.0052  0.2020 0.6556 –0.136
Mme 0.0643  0.5501 0.4795  0.0022  0.0867 0.7700 –0.190
LOI 0.2273  2.3533 0.1636  0.0365  1.4792 0.2312 –0.360
Total N 0.8972 2.8637 69.8410 0.0000  0.0088  0.3453 0.5602 0.639
pHH2O 0.6472 2.6795 14.6780 0.0050  0.0227  0.9071 0.3467 0.560
pHCaCl2

 0.7237 3.1055 20.9500 0.0018  0.0318  1.2810 0.2646 0.562
H 0.7863 –3.1976 29.4330 0.0006  0.0111  0.4395 0.5113 –0.546
Al 0.2055  2.0688 0.1883  0.1172 –0.5758 5.1772 0.0285 –0.265
C 0.4007 1.7924 5.3498 0.0495  0.1928 0.6805 9.3154 0.0041 0.509
Ca 0.3404  4.1294 0.0766  0.1067 0.3177 4.6599 0.0371 0.298
Fe 0.0073  0.0592 0.8140  0.0000  0.0001 0.9910 –0.063
K 0.2928  3.3120 0.1063  0.3075 1.0645 17.3140 0.0002 0.520
Mg 0.3097  3.5887 0.0948  0.0565  2.3363 0.1345 0.288
Mn 0.2837  3.1692 0.1129  0.0015  0.0571 0.8123 0.412
Na 0.1702  1.6405 0.2361  0.0142  0.5599 0.4588 0.210
P 0.3580  4.4607 0.0677  0.1432 0.8311 6.5174 0.0147 0.447
S 0.5827 2.2077 11.1710 0.0102  0.1079 0.5103 4.7160 0.0360 0.582
Zn 0.1823  1.7835 0.2185  0.0899  3.8512 0.0569 0.404
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Table 17. Børgefjell: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 7.5495) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 6.2941 SSmeso plot = 1.25535 
 FVE = 0.8337 of SS FVE = 0.1663 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.3104  3.6006 0.0943  0.0089  0.3491 0.5580 0.229
Ma Asp 0.0006  0.0051 0.9446  * * * * –0.005
Ma HI 0.1631  1.5587 0.2472  0.0096  0.3793 0.5416 0.271
Ma Ter 0.0038  0.0306 0.8656  0.0018  0.0687 0.7946 0.053
Ma Une 0.4209 –0.6629 5.8159 0.0424  0.0477  1.9543 0.1700 –0.271
TBA 0.0330  0.2729 0.6155  0.1474 0.7126 6.7451 0.0132 0.224
Me slo 0.3182  3.7328 0.0894  0.0034  0.1343 0.7160 0.277
Me Asp 0.0663  0.5679 0.4727  0.0712  0.0476 0.8285 –0.136
Me HI 0.1266  1.1595 0.3130  0.0012  0.0717 0.7903 0.185
Me Ter 0.0483  0.4061 0.5417  0.0016  2.3695 0.1318 0.066
Me Une 0.3249  3.8495 0.0854  0.0741  3.1197 0.0852 –0.218
Smi 0.0611  0.5206 0.4911  0.1217 –0.2805 5.4028 0.0254 –0.195
Sme 0.1170  1.0600 0.3333  0.0896  3.8400 0.0572 –0.091
Sma 0.4261 –2.3678 5.9403 0.0407  0.0002  0.0080 0.9292 –0.165
Mme 0.6029 –4.5734 12.1440 0.0083  0.0134  0.5310 0.4705 –0.411
LOI 0.4099 –0.8743 5.5572 0.0462  0.0411  1.6700 0.2039 –0.427
Total N 0.1320  1.2167 0.3021  0.0046  0.1819 0.6721 –0.140
pHH2O 0.0763  0.6612 0.4397  0.0294  1.1814 0.2837 0.286
pHCaCl2

 0.0535  0.4523 0.5202  0.0877  3.7489 0.0601 0.186
H 0.0214  0.1745 0.6871  0.0683  2.8601 0.0988 –0.149
Al 0.3909  5.1344 0.0532  0.0004  0.0176 0.8953 –0.262
C 0.2515  2.6875 0.1398  0.0778  3.2891 0.0774 0.337
Ca 0.2633  2.8596 0.1293  0.0529  2.1775 0.1481 0.252
Fe 0.1586  1.5076 0.2544  0.0018  0.0692 0.7939 –0.019
K 0.3201  3.7662 0.0883  0.0447  1.8245 0.1846 0.280
Mg 0.0334  0.2765 0.6133  0.0218  0.8700 0.3567 –0.016
Mn 0.3438  4.1910 0.0748  0.0117  0.4614 0.5010 0.411
Na 0.2244  2.3153 0.1666  0.0002  0.0059 0.9392 –0.066
P 0.1159  1.0491 0.3357  0.0042  0.1634 0.6882 0.115
S 0.1125  1.0143 0.3434  0.0561  2.3197 0.1358 0.244
Zn 0.4495 1.1885 6.5323 0.0339  0.0023  0.0915 0.7640 0.278
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significantly (at the α = 0.05 level) along DCA 1 while the concentration of H decreased. At the meso 
plot scale, macro and meso plot slope, macro plot heat index and soil concentrations of C, Ca, K, P 
and S increased while the concentration of Al decreased. 

At the macro plot scale, DCA 2 was positively related to the concentration of Zn and negatively 
related to meso plot unevenness, maximum soil depth, soil moisture and loss on ignition. At the meso 
plot scale, DCA axis 2 was significantly positively related to tree basal area and negatively related 
to minimum soil depth (at the α = 0.05 level) (Table 17).

Correlations between DCA ordination axes and environmental variables

Thirteen out of the 31 environmental variables were correlated with DCA axis 1 or/and DCA axis 
2 at the |τ| > 0.300 level (Tables 16 and 17). Total N (τ = 0.639, Fig. 265), extractable S (τ = 0.582, 
Fig. 272), pH [pHH2O (τ = 0.562, Fig. 266)] and exchangeable H (τ = –0.546, Fig. 267) were most 
strongly correlated with DCA axis 1. The only two variables that were correlated with DCA axis 2 at 
the |τ| > 0.300 level were soil moisture (τ = –0.411, Fig. 263) loss-on-ignition (τ = –0.427, Fig. 264), 
extractable Mn (τ = 0.411, Fig. 270) and extractable C (τ = 0.337, Fig. 268).

Frequent species

A total of 80 species were recorded within the fifty 1×1 m meso plots: 40 vascular plants, 17 mosses, 
13 liverworts and 24 lichens. The most frequent species (the sum of subplot frequencies in brackets) 
were: Vaccinium myrtillus (783 out of 800), Avenella flexuosa (755), Barbilophozia lycopodioides 
(724), Chamaepericlymenum suecicum (695), Empetrum nigrum (583), Dicranum scoparium (547), 
Pleurozium schreberi (542), Brachythecium reflexum (481), Vaccinium vitis-idaea (378) and Gym-
nocarpium dryopteris (343).

The distribution of species abundance in the DCA ordination

Forty-seven of the totally 80 species occurred in 5 or more of the sample plots (Figs 274–320).
Examples of species with wide ecological amplitude were Vaccinium myrtillus (Fig. 279), 

Chamaepericlymenum suecicum (Fig. 283), Avenella flexuosa (Fig. 294) and partly Barbilophozia 
lycopodioides (Fig. 307), which all were abundant in most of the sample plots. 

Species restricted to plots in the left part of the DCA ordination diagram, reflecting soils with 
low pH values and low amounts of total N, S, K, C, P and Mn, were Calluna vulgaris (Fig. 277), 
Cladonia arbuscula (Fig. 312), Cladonia rangiferina (Fig. 319) and Cladonia uncialis (Fig. 320), 
and partly Empetrum nigrum (Fig. 278) and Pleurozium schreberi (Fig. 302). The lichen species 
Cladonia arbuscula, C. rangiferina and C. uncialis were also mainly restricted to high DCA axis 2 
scores, typically having dry soil (cf. Fig. 263).

In contrast Cicerbita alpina (Fig. 282) and Brachythecium salebrosum (Fig. 297) and to some 
extent Gymnicarpium dryopteris (Fig. 285) were mostly restricted to sample plots with high pH 
values and high concentrations of total N, S, K, C, P and Mn. Species with optimum at high DCA 
axis 1 values differed with respect to distribution along DCA axis 2. Dryopteris expansa (Fig. 284) 
and to some extent Plagiothecium sp. (Fig. 301) showed preference for the lower right-hand corner 
of the diagram, reflecting affinities to slightly moister soils. Hieracium sect. Hieracium (Fig. 286), 
Polygonatum verticillatum (Fig. 290) and Anthoxanthum odoratum (Fig. 293) are examples of species 
that occurred mostly in the upper right-hand corner of the diagram, reflecting affinities to slightly 
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Figs 262-263. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 262. TBA (R2 = 0.719). Fig. 263. Mme (Soil 
moisture) (R2 = 0.603). Names of environmental variables in accordance with Table 2. 
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Figs 264-265. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the meso 
plots’ positions. Scaling in S.D. units. Fig. 264. LOI (R2 = 0.794). Fig. 265. Total N. C (R2 = 0.839). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2. 
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Figs 266-267. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 266. pHH2O (R2 = 0.792). Fig. 267. H (R2 = 0.760). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 268-269. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 268. C (R2 = 0.799). Fig. 269. K (R2 = 0.830). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 270-271. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 270. Mn (R2 = 0.761). Fig. 271. P (R2 = 0.729). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 272-273. Børgefjell: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 272. S (R2 = 0.803). Fig. 273. Zn (R2 = 0.710). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Fig. 274-279. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 274. Betula pubescens. Fig. 275. Juniperus 
communis. Fig. 276. Sorbus aucuparia. Fig. 277. Calluna vulgaris. Fig. 278. Empetrum nigrum. Fig. 
279. Vaccinium myrtillus.
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Figs 280-285. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 280. Vaccinium uliginosum. Fig. 281. Vac-
cinium vitis-idaea. Fig. 282. Cicerbita alpina. Fig. 283. Chamaepericlymenum suecicum). Fig. 284. 
Dryopteris expansa. Fig. 285. Gymnocarpium dryopteris.
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Figs 286-291. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 286. Hieracium sect. Hieracium. Fig. 287. 
Lycopodium annotinum. Fig. 288. Melampyrum pratense. Fig. 289. Melampyrum sylvaticum. Fig. 
290. Polygonatum verticillatum. Fig. 291. Solidago virgaurea.
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Figs 292-297. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 292. Trientalis europaea. 293. Anthoxanthum 
odoratum. Fig. 294. Avenella flexuosa. Fig. 295. Luzula pilosa. Fig. 296. Brachythecium reflexum. 
Fig. 297. Brachythecium salebrosum.
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Figs 304-309. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 304. Polytrichastrum longisetum. Fig. 305. 
Rhodobryum roseum. Fig. 306. Barbilophozia floerkei. Fig. 307. Barbilophozia lycopodioides. Fig. 
308. Lophozia obtusa. Fig. 309. Lophozia ventricosa.
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Figs 310-315. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 310 Ptilidium ciliare. Fig. 311. Tritomaria 
quinquedentata. Fig. 312. Cladonia arbuscula. Fig. 313. Cladonia bellidiflora. Fig. 314. Cladonia 
carneola. Fig. 315. Cladonia chlorophaea.
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Figs 316-320. Børgefjell: distributions of species abundances in the DCA ordination of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot propor-
tional to quadrate size. Scaling in S.D. units. Fig. 316. Cladonia crispata. Fig. 317. Cladonia ecmocyna. 
Fig. 318. Cladonia furcata. Fig. 319. Cladonia rangiferina. Fig. 320. Cladonia uncialis.
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drier soils.
Lycopodium annotinum (Fig. 287) was with one exception restricted to the central cluster in 

the DCA ordination diagram.
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DIVIDALEN REFERENCE AREA

Correlations between environmental variables

There were strong pairwise correlations between several of the topographical variables, between 
topographical variables and soil variables and between soil variables (Table 18).

Macro plot slope was negatively correlated with aspect unfavourabilites and positively cor-
related with heat indices. Both macro plot and meso plot terrain form and terrain unevenness were 
positively correlated with soil moisture. Tree basal area was positively correlated with macro plot 
aspect unfavourability and the heat index. Loss-on-ignition was negatively correlated with aspect, 
soil pH, total N, extractable C and Ca, and positively correlated with soil moisture and exchangeable 
H. Soil pH was positively correlated with total N, extractable C, Ca, Mn, S and Zn and negatively 
correlated with extractable Al, K, Mg, P and exchangeable H.

PCA ordination of environmental variables

The first two PCA axes accounted for 30.3% and 17.5% of the variance in the matrix of standardised 
transformed environmental variables, respectively (eigenvalues of 0.303 and 0.175). 

Fig. 321. Dividalen: PCA ordination of 31 environmental variables. Abbreviations in accordance 
with Table 2, axes 1 (horizontal) and 2 (vertical). Positions of variables in the ordination space give 
the head of variable vectors. Tickmarks indicate 0.1 units along both axes.
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Fig. 322. Dividalen: DCA ordination diagram of 50 meso plots, axes 1 (horizontal) and 2 (vertical). 
Meso plot number are plotted just right of the sample plot positions. Scaling of axes in S.D. units.

Fig. 323. Dividalen: GNMDS ordination biplot diagram of 50 meso plots (indicated by their 
number).  
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pHH2O and pHCaCl2
 obtained the highest loadings on PCA axis 1, together with extractable C, 

Ca, Mn, S and Zn and total N (Fig. 321). Low loadings were among others obtained by exchangeable 
H, extractable Mg and loss-on-ignition.

Extractable P obtained highest loadings on PCA axis 2 while extractable Zn and macro plot 
terrain form obtained low loadings. 

The PCA results were thus consistent with the correlation matrix of the environmental vari-
ables (Table 18), showing that soil pH and exchangeable H had a central position in the correlation 
structure of the variables.

DCA ordination

The gradient length of the first two DCA axes was 3.0 and 1.8 S.D. units with eigenvalues of 0.517 
and 0.119, respectively, showing that the first axis by far was the strongest gradient in species com-
position. The sample plots segregated into two main clusters along the first DCA axis. One cluster, 
consisted of 40 sample plots with DCA 1 scores < 2 S.D. units, while the other (consisting of plots 
in macro plots 8 and 9) formed a tight group of sample plots with DCA axis 1 scores > 2.6 S.D. units 
(Fig. 322). The latter cluster showed almost no variation along DCA axis 2.

GNMDS ordination

The GNMDS ordination diagram (Fig. 323) had acceptable visual similarity with the DCA diagram 
(Fig. 322), although some differences along the second axes were visible. The correlation between 
GNMDS axis 1 and DCA axis 1 was τ = 0.786 and the correlation between GNMDS axis 2 and DCA 
axis 2 was τ = 0.393. 

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 96.72 % at the macro plot scale (i.e. 
between macro plots) and 3.28 % at the (between) meso plot scale within macro plots (Table 19). 
For the second ordination axis, 80.94 % of the variation was explained at the macro plot scale and 
19.06 % at the meso plot scale (Table 20).

At the macro plot scale, ten environmental variables were significantly (at the α = 0.05 level) 
related to DCA 1 while two variables (also at the α = 0.05 level) were related to DCA 2. At the meso 
plot scale level, eleven environmental variables were significantly related to DCA 1 and seven vari-
ables were significantly related to DCA 2 (Tables 19 and 20). 

At the macro plot scale, pH and soil concentrations of Total N, C, Ca, Mn, S and Zn increased 
significantly along DCA 1 while concentrations of H and loss-on-ignition decreased. At the meso plot 
scale, many of these variables showed the same tendencies. Soil concentrations of K and Mg were 
the only additional significant predictors (both negatively related to the axis) while loss-on-ignition, 
however, was not significantly related to DCA 1 on the meso plot scale. 

At the macro plot scale, DCA 2 was positively related to the concentration of Zn and negatively 
related to P. At the meso plot scale, DCA axis 2 was significantly negatively related to loss-on-ignition 
and soil concentrations of H, Mg and P. Variables significantly positively related to  DCA 2 at the 
meso plot scale were pH and soil concentrations of Ca and Zn (Table 20).
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Table 19. Dividalen: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 1 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 1 (SS = 44.0948) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 1 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 42.6490 SSmeso plot = 1.44584 
 FVE = 0.9672 of SS FVE = 0.0328 of SS Total  

 SSexpl / r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.1295  1.1895 0.3072  * * * * 0.069
Ma Asp 0.0001  0.0008 0.9786  0.0018  0.0690 0.7942 –0.090
Ma HI 0.0469  0.3939 0.5477  0.0018  0.0690 0.7942 0.135
Ma Ter 0.0089  0.0721 0.7951  * * * * –0.150
Ma Une 0.0754  0.6527 0.4425  0.0000  0.0003 0.9863 –0.010
TBA 0.0849  0.7426 0.4139  0.0054  0.2134 0.6467 –0.251
Me Slo 0.1423  1.3274 0.2825  0.0007  0.0281 0.8677 0.024
Me Asp 0.0010  0.0079 0.9313  0.0244  0.9760 0.3293 –0.036
Me HI 0.0376  0.3128 0.5913  0.0003  0.0102 0.9200 0.088
Me Ter 0.0426  0.3561 0.5672  0.0048  0.1876 0.6673 –0.134
Me Une 0.0453  0.3791 0.5552  0.0084  0.3323 0.5676 –0.034
Smi 0.0009  0.0071 0.9349  0.0468  1.9147 0.1743 0.186
Sme 0.1517  1.4303 0.2660  0.0157  0.6203 0.4357 0.194
Sma 0.0849  0.7426 0.4139  0.0871  3.7209 0.0610 –0.061
Mme 0.2193  2.2471 0.1722  0.0255  1.0199 0.3188 –0.120
LOI 0.5221 –2.3527 8.7413 0.0182  0.0348  1.4043 0.2432 –0.334
Total N 0.6667 3.5942 16.005 0.0039  0.1473 0.6576 6.7371 0.0132 0.363
pHH2O 0.6429 2.7107 14.406 0.0053  0.2272 0.8335 11.469 0.0016 0.618
pHCaCl2

 0.6549 2.6664 15.183 0.0045  0.2447 0.8509 12.638 0.0010 0.637
H 0.6298 –2.9630 13.608 0.0061  0.1854 –0.7888 8.8745 0.0049 –0.621
Al 0.0863  0.7556 0.4100  0.0196  0.7803 0.3825 –0.252
C 0.6245 3.3661 13.305 0.0065  0.1354 0.5572 6.1087 0.0179 0.429
Ca 0.7473 3.0154 23.6600 0.0012  0.3507 1.1397 21.0680 0.0000 0.680
Fe 0.0006  0.0048 0.9465  0.0137  0.5416 0.4662 0.076
K 0.2229  2.2947 0.1683  0.1044 –0.4686 4.5447 0.0394 –0.298
Mg 0.2640  2.8692 0.1287  0.2134 –0.9498 10.5780 0.0024 –0.535
Mn 0.6089 2.4474 12.4550 0.0077  0.1777 0.5649 8.4292 0.0060 0.533
Na 0.0075  0.0604 0.8120  0.0001  0.0045 0.9468 0.102
P 0.1350  1.2481 0.2963  0.0678  2.8382 0.1000 –0.159
S 0.8128 5.0199 34.7330 0.0004  0.2289 0.6457 11.5760 0.0016 0.554
Zn 0.5117 2.2557 8.3818 0.0200  0.2877 0.9038 15.7530 0.0003 0.424
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Table 20. Dividalen: Split-plot GLM analysis and Kendall’s nonparametric correlation coefficient τ 
between DCA 2 and 31 environmental variables (predictor) in the 50 meso plots. dfresid: degrees of 
freedom for the residuals; SS: total variation; FVE: fraction of total variation attributable to a given 
scale (macro plot or meso plot); SSexpl /SS: fraction of the variation attributable to the scale in ques-
tion, explained by a variable; r: model coefficient (only given when significant at the α = 0.05 level, 
otherwise blank); F: F statistic for test of the hypothesis that r = 0 against the two-tailed alternative. 
Split-plot GLM relationships significant at level α = 0.05, P, F, r and SSexpl/SS, and Kendall’s non-
parametric correlation coefficient │τ│ ≥ 0.30 are given in bold face. Numbers and abbreviations for 
names of environmental variables are in accordance with Tab. 2. 
  

Predictor Dependent variable = DCA 2 (SS = 9.3501) Correlation   
  between   
 Error level predictor   
  and
 Macro plot Meso plot within macro plot DCA 2 
 dfresid = 8 dfresid = 39 
 SSmacro plot = 7.5677 SSmeso plot = 1.78235 
 FVE =0.8094 of SS FVE = 0.1906 of SS Total  

 SSexpl /  r F P  SSexpl / r F P τ
 SSmacro plot     SSmeso plot 

Ma Slo 0.0106  0.0857 0.7771  * * * * –0.010
Ma Asp 0.1484  1.3944 0.2716  0.0055  0.2169 0.6440 0.254
Ma HI 0.2026  2.0330 0.1917  0.0055  0.2169 0.6440 –0.275
Ma Ter 0.0812  0.7073 0.4248  * * * * 0.200
Ma Une 0.0402  0.3353 0.5785  0.0171  0.6796 0.4147 –0.121
TBA 0.1528  1.4430 0.2640  0.0000  0.0001 0.9908 0.241
Me slo 0.0002  0.0015 0.9704  0.0189  0.7528 0.3909 0.031
Me Asp 0.0468  0.3925 0.5484  0.0115  0.4546 0.5041 0.104
Me HI 0.0516  0.4357 0.5278  0.0053  0.2059 0.6525 –0.081
Me Ter 0.0102  0.0825 0.7813  0.0217  0.8650 0.3581 0.112
Me Une 0.0524  0.4425 0.5246  0.0818  3.4758 0.0698 –0.057
Smi 0.2173  2.2209 0.1745  0.0006  0.0249 0.8753 –0.229
Sme 0.1090  0.9790 0.3514  0.0073  0.2864 0.5956 –0.127
Sma 0.1528  1.4430 0.2640  0.0447  1.8270 0.1843 0.045
Mme 0.0011  0.0085 0.9287  0.0397  1.6127 0.2116 –0.048
LOI 0.2681  2.9302 0.1253  0.2251 –0.6875 11.3300 0.0017 –0.314
Total N 0.3507  4.3204 0.0713  0.0035  0.1355 0.7148 0.301
pHH2O 0.1560  1.4786 0.2587  0.1222 0.6787 5.4304 0.0251 0.260
pHCaCl2

 0.1263  1.1564 0.3136  0.0904  3.8740 0.0562 0.247
H 0.1944  1.9300 0.2022  0.1210 –0.7075 5.3666 0.0259 –0.304
Al 0.1634  1.5631 0.2465  0.0252  1.0093 0.3213 0.224
C 0.0012  0.0095 0.9247  0.0336  1.3571 0.2511 0.027
Ca 0.2636  2.8641 0.1290  0.1637 0.8646 7.6354 0.0087 0.331
Fe 0.3111  3.6119 0.0939  0.0047  0.1843 0.6700 –0.296
K 0.3092  3.5802 0.0951  0.0547  2.2555 0.1412 0.297
Mg 0.0019  0.0155 0.9040  0.2114 –1.0498 10.4550 0.0025 –0.032
Mn 0.0088  0.0711 0.7965  0.0048  0.1868 0.6680 –0.048
Na 0.0002  0.0014 0.9712  0.0224  0.8919 0.3508 –0.051
P 0.7898 –1.6488 30.0590 0.0006  0.3768 –0.9903 23.5800 0.0000 –0.607
S 0.0856  0.7485 0.4121  0.0005  0.0181 0.8937 0.153
Zn 0.6320 1.0560 13.7390 0.0060  0.1190 0.6455 5.2697 0.0272 0.509
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Correlations between DCA ordination axes and environmental variables

Eleven out of the 31 measured environmental variables were correlated with either DCA axis 1, DCA 
axis 2 or both at the |τ| > 0.300 level (Table 19 and 20). Exctractable Ca (τ = 0.680, Fig. 329), pH [pH 
(CaCl2) (τ = 0.637, Fig. 326)] and exchangeable H (τ = –0.621, Fig. 327), S (τ = 0.554, Fig. 333), 
Mg (τ = –0.535, Fig. 330) and Mn (τ = 0.533, Fig. 331) were the variables best correlated with DCA 
axis 1. The variables that were best correlated with DCA axis 2 were extractable P (τ = –0.607, Fig. 
332) and Zn (τ = –0.509, Fig. 334).

Dividalen was the only reference area in which the macro plots were distributed along an altitu-
dinal gradient. Thus correlation coefficients were also calculated between DCA scores and the altitude 
of each sample plot. Altitude was highly significantly correlated with DCA axis 2 (τ = 0.563).

Frequent species

A total of 141 species was found within the fifty 1×1 m meso plots in the Dividalen reference area: 
74 vascular plants, 24 mosses, 18 liverworts and 25 lichens. The most frequent species (the sum of 
subplot frequencies in brackets) were: Avenella flexuosa (755 out of 800), Vaccinium myrtillus (602), 
Vaccinium vitis-idaea (519), Barbilophozia lycopodioides (496), Chamaepericlymenum suecicum 
(474), Linnaea borealis (398), Anthoxanthum odoratum (356) and Pleurozium schreberi (320).

The distribution of species abundance in the DCA ordination

Out of total 141 recorded species, 71 occurred in five or more of the fifty sample plots. Vaccinium 
myrtillus (Fig. 341), Vaccinium vitis-idaea (Fig. 343), Avenella flexuosa (Fig. 374) and Barbilophozia 
lycopodioides (Fig. 391) had wide ecological amplitudes along both DCA axes, and they were also 
highly abundant in most of the sample plots. 

Species that occurred mostly on the right side of the diagram and thus had preferences for sites 
with relatively high values of soil pH, Ca, Mg and S were Salix phylicifolia (Fig. 338), Alchemilla 
glabra (Fig. 344), Cerastium fontanum (Fig. 345), Myosotis decumbens (Fig. 356), Omalotheca 
norvegica (Fig. 357), Rumex acetosa (Fig. 363), Saussurea alpina (Fig. 364), Trollius europaeus 
(Fig. 368), Poa alpina (Fig. 377) and Mnium spinosum (Fig. 383).

Species that were restricted to plots with low DCA axis 1 scores, i.e. sites poorer in soil nu-
trients, e.g. lower pH and lower concentrations of Ca, Mg, Mg and S, were Betula nana (Fig. 335), 
Pedicularis lapponica (Fig. 359), Dicranum scoparium (Fig. 381), Cladonia arbuscula (Fig. 394), 
Cladonia bellidiflora (Fig. 395), Cladonia chlorophaea (Fig. 396), Cladonia ecmocyna (Fig. 398), 
Cladonia furcata (Fig 399), Cladonia rangiferina (Fig. 401), Cladonia sulphurina (Fig. 402) and 
Peltigera aphthosa (Fig. 405). 

Some species also showed distinct patterns along the second DCA axis, related to differences 
in altitude (τ = 0.563) and soil extractable P (Table 20). Species with preference for higher altitudes 
and lower amounts of P (plots with high DCA axis 2 scores) were Phyllodoce caerulea (Fig. 340), 
partly also Equisetum sylvaticum (Fig. 347), Pedicularis lapponica (Fig. 359), Calamagrostis lap-
ponica (Fig. 371) and Nephroma arcticum (Fig. 404). Examples of species that preferred sites at 
lower altitudes with higher soil contents of extractable P and Zn were Gymnocarpium dryopteris (Fig. 
350), Melampyrum sylvaticum (Fig. 354), Orthilia secunda (Fig. 358), Luzula pilosa (Fig. 376) and 
Brachythecium salebrosum (Fig. 379). 
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Figs 324-325. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 324. LOI (R2 = 0.629). Fig. 325. Total N (R2 = 0.630). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2. 
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Figs 326-327. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 326. pHCaCl2

 (R2 = 0.889). Fig. 327. H (R2 = 0.899). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2. 
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Figs 328-329. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 328. C (R2 = 0.832). Fig. 329. Ca (R2 = 0.895). R2 
refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 330-331. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 330. Mg (R2 = 0.821). Fig. 331. Mn (R2 = 0.859).  
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Figs 332-333. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto 
the meso plots’ positions. Scaling in S.D. units. Fig. 332. P (R2 = 0.830). Fig. 333. S (R2 = 0.726). 
R2 refers to the coefficient of determination between original and smoothened values as interpolated 
from the isolines. Names of environmental variables in accordance with Table 2.
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Fig. 334. Dividalen: isolines for environmental variables in the DCA ordinations of 50 meso plots, 
axes 1 (horizontal) and 2 (vertical). Values for the environmental variables are plotted onto the 
meso plots’ positions. Scaling in S.D. units. Fig. 334. Zn (R2 = 0.872). R2 refers to the coefficient of 
determination between original and smoothened values as interpolated from the isolines. Names of 
environmental variables in accordance with Table 2.
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Fig. 335-340. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 335. Betula nana. Fig. 336. Betula pubes-
cens. Fig. 337. Salix lapponum. Fig. 338. Salix phylicifolia. Fig. 339. Empetrum nigrum. Fig. 340. 
Phyllodoce caerulea. 
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Figs 341-346. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 341. Vaccinium myrtillus. Fig. 342. Vaccin-
ium uliginosum. Fig. 343. Vaccinium vitis-idaea. Fig. 344. Alchemilla glabra. Fig. 345. Cerastium 
fontanum. Fig. 346. Chamaepericlymenum suecicum. 
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Figs 347-352. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 347. Equisetum pratense. Fig. 348. Equisetum 
sylvaticum. Fig. 349. Geranium sylvaticum. Fig. 350. Gymnocarpium dryopteris. Fig. 351. Hieracium 
sect. Vulgata. Fig. 352. Linnaea borealis.
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Figs 353-358. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 353. Lycopodium annotinum. Fig. 354. 
Melampyrum pratense. Fig. 355. Melampyrum sylvaticum. Fig. 356. Myosotis decumbens. Fig. 357. 
Omalotheca norvegica. Fig. 358. Orthilia secunda.
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Figs 359-364. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 359. Pedicularis lapponica. Fig. 360. Pyrola 
minor. Fig. 361. Ranunculus acris. Fig. 362. Rubus chamaemorus. Fig. 363. Rumex acetosa. Fig. 
364. Saussurea alpina.
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Figs 365-370. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 365. Solidago virgaurea. Fig. 366. Taraxa-
cum sp. Fig. 367. Trientalis europaea. Fig. 368. Trollius europaeus. Fig. 369. Viola biflora. 370. 
Anthoxanthum odoratum.
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Figs 371-376. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 371. Calamagrostis lapponica. Fig. 372. 
Carex nigra. Fig. 373. Carex vaginata. Fig. 374. Avenella flexuosa. Fig. 375. Festuca ovina. Fig. 
376. Luzula pilosa. 
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Figs 377-382. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 377. Poa alpina. Fig. 378. Brachythecium 
reflexum. Fig. 379. Brachythecium salebrosum. Fig. 380. Brachythecium starkei. Fig. 381. Dicranum 
scoparium. Fig. 382. Hylocomium splendens. 
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Figs 383-388. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 383. Mnium spinosum. Fig. 384. Pleurozium 
schreberi. Fig. 385. Pohlia nutans. Fig. 386. Polytrichum commune. Fig. 387. Polytrichastrum juni-
perum. Fig. 388. Rhodobryum roseum.
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Figs 389-394. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 389. Barbilophozia floerkei. Fig. 390. Bar-
bilophozia kunzeana. Fig. 391. Barbilophozia lycopodioides. Fig. 392. Lophozia obtusa. Fig. 393. 
Lophozia ventricosa. Fig. 394. Cladonia arbuscula.
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Figs 395-400. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 395. Cladonia bellidiflora. Fig. 396. Cladonia 
chlorophaea. Fig. 397. Cladonia digitata. Fig. 398. Cladonia ecmocyna. Fig. 399. Cladonia furcata. 
Fig. 400. Cladonia gracilis.
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Figs 401-405. Dividalen: distributions of species abundances in the DCA ordination of 50 meso 
plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for each species in each meso plot 
proportional to quadrate size. Scaling in S.D. units. Fig. 401. Cladonia rangiferina. Fig. 402. Cla-
donia sulphurina. Fig. 403. Cladonia uncialis. Fig. 404. Nephroma arcticum. Fig. 405. Peltigera 
aphthosa.
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THE TOTAL DATA SET 

Variation in species composition between reference areas

Twenty-one species were restricted to the southermost reference area Lund, located in the middle 
boreal vegetation zone in the western (O2) vegetation section (Moen 1999). These were Anemone 
nemorosa, Blechnum spicant, Carex pilulifera, Danthonia decumbens, Huperzia selago spp. selago, 
Luzula sylvatica, Oreopteris limbosperma, Populus tremula, Pteridium aquilinum, Chiloscyphus 
coadunatus, Dicranum polysetum, Diplophyllum taxifolium, Hylocomiastrum umbratum, Hypnum 
cupressiforme, Lepidozia reptans, Leucobryum glaucum, Plagiothecium undulatum, Polytrichastrum 
formosum, Sphagnum capillifolium and Sphagnum quinquefarium.

Several species that were common in most of the other reference areas were very rare or totally 
absent in Lund, such as Anthoxanthum odoratum, Barbilophozia lycopodioides, Betula nana, Brach-
ythecium reflexum, B. salebrosum, Deschampsia cespitosa, Empetrum nigrum, Geranium sylvaticum, 
Lophozia obtusa, Polytrichum commune, P. juniperinum, Ranunculus acris, Rhodobryum roseum, 
Solidago virgaurea and all lichen species.

The other reference areas, all located in the northern boreal zone, shared a majority of species. 
However, the Dividalen reference area located in the continental vegetation section, partly on cal-
caerous bedrock, differed considerable from the others in species composition, as exemplified by the 
occurrence of species such as Carex lapponica, Cerastium fontanum, Equisetum pratense, Myosotis 
decumbens, Poa alpina, Saussurea alpina and Trollius europaeus. 

Variation in environmental variables between reference areas

Differences among reference areas with respect to range and median values of environmental variables 
were also found (Table 21). These differences should be interpreted as between area (those included 
in this study) variation rather than regional biogeographical trends of these variables in Norway.  
Median soil depth was higher, while the meso plot aspect unfavourability was lower in more northerly 
situated areas. The median value of loss-on-ignition was highest in Gutulia and lowest in Møsvatn 
and Børgefjell. The southernmost reference area, Lund, had the lowest median pH value, while the 
northernmost area, Dividalen, had the highest value. Lund and Åmotsdalen had the lowest median 
value of extractable Ca concentrations while the highest value of both of Ca and Mg were found for 
Dividalen. The median value of extractable Mn was lowest in Lund and highest in Gutulia, while 
extractable P was highest in Børgefjell and Møsvatn. Lund had the highest soil moisture content and 
Lund and Gutulia had the highest median value of total N.

DCA ordination of the total data set, all reference areas included

All fifty sample plots from the Lund reference area were clearly separated from sample plots of the 
other reference areas in the DCA ordination, all restricted to low DCA axis 1 scores (Fig. 406). The 
other reference areas formed a cluster at medium to high axis 1 scores. Sample plots from Dividalen 
obtained the highest median score. The sample plots from Lund occupied a narrow interval along 
DCA axis 2 while sample plots from Møsvatn almost spanned the entire second ordination axis.



SOMMERFELTIA 34 (2010)168

DCA ordination of five reference areas, sample plots from Lund excluded

In a DCA ordination without sample plots from Lund, sample plots from the other reference areas 
mixed almost completely along DCA axis 1, but less so along DCA axis 2 (Fig. 407). Sample plots 
from Dividalen obtained the lowest values along the second ordination axis, followed by sample plots 
from Åmotsdalen, Gutulia, Møsvatn and Børgefjell. Sample plots from Møsvatn showed increasing  
DCA axis 2 scores with increasing DCA axis 1 scores (Fig. 407). 

Correlations between DCA axes (sample plots from Lund excluded) and local and regional climatic/
geographical variables
Soil pH and extractable C, Ca, Mn and S concentrations and total N were the variables most strongly 
positively correlated with DCA axis 1, while exchangeable H and loss on ignition were most strongly 
negatively correlated, all with |τ| > 0.3 (Table 22). Extractable Mn and S were also strongly correlated 
with DCA axis 2, as was also effective temperature sum. Latitude was the only variable strongly 
negatively correlated with DCA axis 2 (Table 23).

Split-plot GLM analysis of relationships between ordination axes and environmental variables

Variation (in plot scores) along DCA axis 1 was partitioned with 4.30 % at the area scale (i.e. between 
areas), 89.15 % at the macro plot scale (i.e. between macro plots) and 6.55 % at the (between) meso 
plot scale within macro plots (Table 22). Along the second ordination axis, 55.21 % of the variation 
was explained at the between area scale, 36.35 % at the macro plot scale and 8.44 % at the meso 
plot scale (Table 23).

At the area scale, four variables were significantly (at the α = 0.05 level) related to DCA 1, 
while two variables (also at the α = 0.05 level) were related to DCA 2. At the macro plot scale level, 
sixteen environmental variables were significantly related to DCA 1 and twelve variables to DCA 
2 (Tables 22 and 23). At the meso plot scale level, ten environmental variables were significantly 
related to DCA 1 and four variables to DCA 2 (Tables 22 and 23). 

At the area scale, DCA 1 was positively related to the concentration of Al, Na and P and 
negatively related to meso plot terrain form (at the α = 0.05 level). At the macro plot scale, altitude, 
macro and meso plot slope, tree basal area, pH and soil concentrations of C, Ca, K, Mn, Na, S and 
Zn increased significantly along DCA 1 while loss-on-ignition and exchangeable H decreased. At 
the meso plot scale, many of these variables showed the same tendencies. Predictors which were 
significantly related to DCA 1 at the macro plot but not at the meso plot scale were macro and meso 
plot slope, tree basal area and concentrations of K and Na.

The only variables significantly related (at the α = 0.05 level) to DCA axis 2 at the area scale 
(both positively) were the concentrations of Na and P. At the macro plot scale, DCA 2 was positively 
related to macro and meso plot aspect unfavourability, meso plot uneveness and soil concentrations 
of C, K Mn, Na, S and Zn and negatively related to meso plot heat index, minimum soil depth and 
altitude. At the meso plot level, DCA 2 was positively significant related to soil concentrations of 
Mn, S and Zn and negatively related to maximum soil depth (Table 23).
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Partial DCA ordination (sample plots from Lund excluded) with variation due to regional climatic/
geographical variables partialled out

The partial DCA with the seven climatic/geographical variables as covariables (compare Figs 407 
and 408) had a shorter first DCA axis (gradient length in S.D. units) while DCA axis 2 had approxi-
mately the same gradient length in both ordinations. Plots were largely similarly distributed in the 
ordination diagrams, but some differences existed. In the partial DCA ordination the Møsvatn plots 
did not span the entire DCA 1 axis, but were not represented among plots with the highest DCA 1 
scores. Sample plots from Gutulia obtained generally higher scores along DCA axis 2 in the partial 
ordination, mixing with sample plots from Børgefjell. Correlations between corresponding axes in 
the two DCA ordinations were high; τ  = 0.743 for the first and τ  =  0.605 for the second axes.

Correlations between partial DCA ordination axes (sample plots from Lund excluded) with variation 
due to regional climatic/geographical variables partialled out, and local environmental variables

The relationships between partial DCA axes and explanatory variables (Tables 24 and 25) closely 
resembled those of the ordinary DCA ordination (without covariables; Tables 22 and 23). 

Split-plot GLM analysis of relationships between partial ordination axes and environmental vari-
ables

Variation (in plot scores) along partial DCA axis 1 was partitioned with 6.16 % at the area scale (i.e. 
between areas), 83.93 % at the macro plot scale (i.e. between macro plots) and 9.91 % at the (between) 
meso plot scale within macro plots (Table 24). Along the second partial ordination axis, 49.62 % of 
the variation was explained at the between-area scale, 39.63 % at the macro plot scale and 10.74 % 
at the meso plot scale (Table 25).

At the area scale, three variables were significantly (at the α = 0.05 level) related to partial 
DCA axis 1, while no variables (also at the α = 0.05 level) were related to partial DCA axis 2. At the 
macro plot scale level, seventeen environmental variables were significantly related to partial DCA 
axis 1 and nine variables to partial DCA axis 2 (Tables 24 and 25). At the meso plot scale level, ten 
environmental variables were significantly related to partial DCA axis 1 and seven variables to partial 
DCA axis 2 (Tables 24 and 25). 

At the area scale, partial DCA axis 1 was positively related to the concentration of P and 
negatively related to meso plot slope and terrain form (at the α = 0.05 level). At the macro plot scale, 
macro and meso plot slope, macro plot aspect unfavourability, tree basal area, pH, Total N and soil 
concentrations of, C, Ca, K, Mn, Na, S and Zn increased significantly along partial DCA axis 1 while 
soil moisture, loss-on-ignition and exchangeable H decreased. At the meso plot scale, meso plot un-
eveness, maximum soil depth, pH, Total N and soil concentrations of, C, Ca, K, Mn, and S increased 
significantly along partial DCA axis 1 while loss-on-ignition and exchangeable H decreased.

At the area scale, partial DCA axis 2 was not significant related at the α = 0.05 level to any 
of the measured variables. At the macro plot scale, partial DCA axis 2 was positively related to tree 
basal area, meso plot slope and soil concentrations of C, K, Mg, Mn and S and negatively related 
to median soil depth and loss-on-ignition. At the meso plot scale, partial DCA axis 2 was positively 
significant related to tree basal area and soil concentrations of Ca, K and Mg and negatively related 
to maximum soil depth and exchangeable H and extractable Al (Table 25).
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Distribution of species abundances in the partial DCA ordination (sample plots from Lund excluded) 
with variation due to regional climatic/geographical variables partialled out 

Species more or less restricted to plots with high scores along partial DCA axis 1 (the right side of 
the ordination diagram), hence showing preference for nutrient-rich sites with high soil pH, were 
Bistorta vivipara (Fig. 415), Geranium sylvaticum (Fig. 419), Ranunculus acris (Fig. 424), Rumex 
acetosa (Fig. 410), Solidago virgaurea (Fig. 427), Anthoxanthum odoratum (Fig. 431) and Brach-
ythecium salebrosum (Fig. 434). The opposite pattern of distribution in the partial DCA ordination 
was shown by species more or less restricted to the left-hand side of the ordination (more nutrient-
poor sites) e.g. Arctostaphylos alpina (Fig. 410), Betula nana (Fig. 409), Calluna vulgaris (Fig. 
411), Empetrum nigrum (Fig. 412), Cetraria islandica (Fig. 444), Cladonia furcata (Fig. 445) and 
Cladonia rangiferina (Fig. 446).

 A few species such as Vaccinium uliginosum (Fig. 413) and Polytrichum juniperum (Fig. 438) 
spanned the entire first axis (i.e. the entire gradient related to soil nutrient and base richness repre-
sented by variables such as pH, concentrations of Mn, Ca, etc.), but showed a clear preference for 
plots with low partial DCA axis 2 scores. Barbilophozia floerkei (Fig. 443) occurred along the entire 
first partial DCA axis but were concentrated to high partial DCA axis 2 scores.

 The second partial DCA axis separated sample plots with high partial DCA axis 1 scores 
better than sample plots with low partial DCA axis 1 scores. The sample plots thus occupied a triangle-
like area in the space spanned by the two first partial ordination axes (Fig. 407). Species more or less 
strongly restricted to plots with high partial DCA axis 1 scores (richer in nutrients) and low partial 
DCA axis 2 scores (characterised by low concentrations of K and total N and low tree densities), were 
Bartsia alpina (Fig. 414), Cerastium fontanum (Fig. 416), Poa alpina (Fig. 433), Saussurea alpina 
(Fig. 426) Trollius europaeus (Fig. 428), Viola biflora (Fig. 430) and Mnium spinosum (Fig. 436).

Species with high partial DCA scores on both axes were Cicerbita alpina (Fig. 417), Oxalis 
acetocella (Fig. 421), Phegopteris connectilis (Fig. 422), Polygonatum verticillatum (Fig. 423), 
Polytrichastrum longisetum (Fig. 437), Rhytidiadelphus squarrosus (Fig. 442) and Veronica offici-
nalis (Fig. 429).

 Chamaepericlymenum suecicum (Fig. 418) and Dicranum scoparium (Fig. 435) had a wide 
distributions along both partial DCA axes and were only missing in the lower, right part of the dia-
gram.
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Fig. 406. DCA ordination of the total dataset of 300 meso plots from all reference areas, axes 1 
(horizontal) and 2 (vertical). Scaling of axes in S.D. units.

Fig. 407. DCA ordination of 250 meso plots from all reference areas except Lund, axes 1 (horizontal) 
and 2 (vertical). Scaling of axes in S.D. units.
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Fig. 408. DCA ordination of 250 meso plots from all reference areas (except Lund), with 7 CCA 
axes that represent variation exclusively explained by regional climatic/geographical variables as 
covariables, axes 1 (horizontal) and 2 (vertical). Scaling of axes in S.D. units.
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Figs 409-410. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical).Frequency in subplots for Betula 
nana (Fig. 409) and Arctostaphylos alpina (Fig. 410) in each meso plot proportional to symbol size. 
Scaling of axes in S.D. units.
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Figs 411-412. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Calluna 
vulgaris (Fig. 411) and Empetrum nigrum (Fig. 412) in each meso plot proportional to symbol size. 
Scaling in S.D. units.
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Figs 413-414. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Vaccinium 
uliginosum (Fig. 413) and Bartsia alpina (Fig. 414) in each meso plot proportional to symbol size. 
Scaling in S.D. units.
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Figs 415-416. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Bistorta 
vivpara (Fig. 415) and Cerastium fontanum (Fig. 416) in each meso plot proportional to symbol size. 
Scaling in S.D. units.
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Figs 417-418. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Cicerbita 
alpina (Fig. 417) and Chamaepericlymenum suecicum (Fig. 418) in each meso plot proportional to 
symbol size. Scaling in S.D. units.
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Figs 419-420. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Geranium 
sylvaticum (Fig. 419) and Listera cordata (Fig. 420) in each meso plot proportional to symbol size. 
Scaling in S.D. units.
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Figs 421-422. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Oxalis 
acetocella (Fig. 421) and Phegopteris connectilis (Fig. 422) in each meso plot proportional to symbol 
size. Scaling in S.D. units.
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Figs 423-424. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Polygonatum verticilatum (Fig. 423) and Ranunculus acris (Fig. 424) in each meso plot proportional 
to symbol size. Scaling in S.D. units.
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Figs 425-426. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Rumex 
acetosa (Fig. 425) and Saussurea alpina (Fig. 426) in each meso plot proportional to symbol size. 
Scaling in S.D. units. 
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Figs 427-428. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Solidago 
virgaurea (Fig. 427) and Trollius europaeus (Fig. 428) in each meso plot proportional to symbol size. 
Scaling in S.D. units. 
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Figs 429-430. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Veronica officinalis (Fig. 429) and Viola biflora (Fig. 430) in each meso plot proportional to symbol 
size. Scaling in S.D. units.



SOMMERFELTIA 34 (2010) 193

Figs 431-432. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Anthoxanthum odoratum (Fig. 431) and Luzula pilosa (Fig. 432) in each meso plot proportional to 
symbol size. Scaling in S.D. units. 
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Figs 433-434. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Poa alpina (Fig. 433) and Brachythecium salebrosum (Fig. 434) in each meso plot proportional to 
symbol size. Scaling in S.D. units. 
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Figs 435-436. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Dicranum scoparium (Fig. 435) and Mnium spinosum (Fig. 436) in each meso plot proportional to 
symbol size. Scaling in S.D. units. 
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Figs 437-438. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Polytri-
chastrum longisetum (Fig. 437) Polytrichum juniperum (Fig. 438) in each meso plot proportional to 
symbol size. Scaling in S.D. units. 
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Figs 439-440. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Polytrichum commune (Fig. 439) and Rhodobryum roseum (Fig. 440) in each meso plot proportional 
to symbol size. Scaling in S.D. units. 
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Figs 441-442. The total data set (Lund not included): distributions of species abundances in the DCA 
ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Sphagnum 
girgensohnii (Fig. 441) and Rhytidiadelphus squarrosus (Fig. 442) in each meso plot proportional to 
symbol size. Scaling in S.D. units.



SOMMERFELTIA 34 (2010) 199

Figs 443-444. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Barbilophozia floerkei (Fig. 443) and Cetraria islandica (Fig. 444) in each meso plot proportional 
to symbol size. Scaling in S.D. units.
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Figs 445-446. The total data set (Lund not included): distributions of species abundances in the 
DCA ordination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for 
Cladonia furcata (Fig. 445) and Cladonia rangiferina (Fig. 446) in each meso plot proportional to 
symbol size. Scaling in S.D. units.
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Fig. 447. The total data set (Lund not included): distributions of species abundances in the DCA or-
dination of 250 meso plots, axes 1 (horizontal) and 2 (vertical). Frequency in subplots for Nephroma 
arcticum in each meso plot proportional to symbol size. Scaling in S.D. units. 
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DISCUSSION

INTERPRETATION OF MAIN GRADIENTS IN SPECIES COMPOSITION IN EACH REFER-
ENCE AREA

  
Lund

Sample plots from the Lund reference area span a short gradient in species composition; the gradient 
length of the first DCA axis is less than 2.5 SD (Fig. 9). The majority of the plots are characterized by 
species showing low demands for mineral nutrients, such as Calluna vulgaris and Vaccinium spp. and 
contain very few herbs (only Melampyrum pratense, Trientalis europaea and Maianthemum bifolium 
are common). A few plots (to the right in the DCA diagram) are characterized by slightly more nutri-
ent demanding low-fern communities in which Blechnum spicant, Gymnocarpium dryopteris and 
Phegopteris connectilis occur, and tall fern plant communities with Dryopteris expansa, Orepoteris 
limbosperma and Pteridium aquilinum (see Figs 20-56). The relatively species-poor vegetation is 
probably a result of the acid bedrock (gneiss) of the area, which gives rise to nutrient-poor soils, and 
the unfavourable north-easterly aspect with low amounts of solar radiation reaching the ground.

Soil pH is by far the environmental variable most strongly related to the main vegetation 
gradient (DCA axis 1; Table 4). The lowest soil pH values are found in sample plots dominated by 
Calluna vulgaris to the left in the ordination diagram and the highest soil pH values are found in fern 
communities to the right in the diagram. This confirms our interpretation of the main coenocline (DCA 
axis 1)  as mainly related to the nutrient richness and acid-base status of  the soil. Further support 
from this interpretation comes from the increasing content of total N in soil samples with increasing 
scores along DCA axis 1.

Fern-dominated plots are found on the steepest slopes, where higher nutrient richness of soils 
can probably be explained by addition of nutrients by seepage water. However, this coenocline is also 
positively correlated with aspect unfavourability and negatively correlated with the heat indices, as 
they face northeast (Fig. 2). The unfavourable local climate of these rather steep northeast-exposed 
slopes can explain the sparse presence of thermophilous species in these plant communities.

Sample plots dominated by Vaccinium myrtillus mostly occur on less steep slopes while plots 
dominated by Calluna vulgaris are situated mainly on flat areas. Thus the variation in species com-
position in the Lund reference area is mainly caused by complex gradients in soil characteristics and 
topography-related microclimate. Nevertheless, the variation in species composition (and environ-
mental factors) along these ecoclines is rather restricted.

In most studies of boreal forests soil the concentration of extractable Ca is one of the most 
important variables explaining variation in species composition, and this element is usually more or 
less strongly positively correlated with the concentration of extractable Mg and soil pH and negatively 
correlated with exchangeable H (e.g. Hesselman 1937, Malmstrøm 1949, Kuusipalo 1983b, Taylor 
et al. 1987, Aarrestad 2002). The Lund sample plots do, however, follow a different pattern with a 
negative correlation between concentrations of the base cations Ca and Mg on one hand, and soil pH 
on the other hand, and a positive correlation between pH and exchangeable H. This result strongly 
conflicts general soil theories on soil acidity (cf. Schroeder 1984). However, a negative correlation 
between Ca and pH is also found in oceanic spruce forests by T. Økland (1996), who concludes that 



SOMMERFELTIA 34 (2010) 203

in humid areas soil Ca is likely not to contribute to a complex-gradient in soil nutrient concentrations, 
as is typically the case in less humid areas. 

On the other hand, the variation in soil characteristics between the 50 sample plots from the 
Lund reference area is very small. Thus even small errors in soil sampling and/or chemical analyses, 
or idiosyncracies of single plots or macro plots, may potentially have strong impact on the outcome 
of statistical analyses.

The second DCA axis for the Lund plots is significantly correlated with soil moisture, loss-on-
ignition and topographical indices (Table 5). Thus the second main vegetation gradient is probably 
related to differences in soil moisture, also affected by variation in topography and buildup of humus 
and peat layers, as exemplified by the distribution of Sphagnum quinquefarium in the ordination 
diagram (Fig. 51).

Most of the floristic variation, represented by DCA axis 1, occurs on the between macro plot 
scale (84.49%). The correspondence between the split plot analyses (between macro plot level) and 
the Kendall nonparametric correlation coefficients is good. However, even if the variation between 
plots within macro plots is low, 15.51 %, this is in fact the largest amount of explained variation within 
macro plots found along DCA axis 1 among the six investigated reference areas. On this most detailed 
scale, meso plot unevenness together with pH (also the most important variable on the between macro 
plot level and the one most strongly correlated with DCA axis 1 according to Kendall’s τ) are found to 
be the most important contributing variables. Also along DCA axis 2, the major fraction of variation 
along DCA axis 2 (78.76 %) occurs at the between macro plot level. Along this axis, the best predictor 
of species composition, revealed by the split-plot tests and by Kendall’s τ, is soil moisture. 

Møsvatn

In contrast to the Lund area the sample plots from the Møsvatn reference area span a long gradient in 
species composition. The gradient length of the first DCA axis is 4.5 SD units (Fig. 58). This gradient 
runs from lichen-dominated plots through bilberry-dominated woodland and small-fern communities to 
low- and tall herb woodland characterized by species often considered more eutrophic (Fremstad 1997) 
such as Cicerbita alpina, Geranium sylvaticum, Ranunculus acris, Rumex acetosa and tall grasses such 
as Milium effusum (Figs 78–125). The main coenocline at Møsvatn represents the longest vegetation 
gradient in terms of compositional turnover (S.D. units) in any of the six reference areas.

The main vegetation gradient, DCA axis 1, corresponds to a complex soil nutrient richness 
gradient, along which soil pH and soil nutrient concentrations (C, Ca, K, Mg, Mn, Na, S and total 
N) increase and loss-on-ignition and soil exchangeable H decrease (Figs 60-78, Table 7). This dem-
onstrates affinity of plant communities with tall herbs to base-rich and nutrient-rich soils. Along the 
coenocline related to soil richness also slope and maximum soil depth increase while heat indices 
decrease. Plots richer in soil nutrients are thus typically situated in steeper north-exposed slopes and 
receive lower lower solar radiation input than other plots. These relatively steep slopes with soil of 
high nutrient content also have the highest tree density and probably also the highest tree biomass, 
as shown by the positive correlation of these variables with tree basal area (Table 7 and Fig. 63). The 
main compositional gradient mainly reflects variation between macro plots (93.62%). The agreement 
between results of split-plot analysis and Kendall’s τ strengthens the interpretation.

The turnover of species along the first DCA axis also reflects variation normally interpreted 
as variation from drought-resistant to moisture-demanding vegetation. However, no significant or 
strong relation between soil moisture (Mme) and this axis is found. This may seem counter-intuitive 
because steep, northerly exposed plots with tall-herb communities are normally assumed to have 
higher soil water content due to influx of soil seepage water and lower solar radiation than the exposed 
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ridges and less steep slopes with lichen and bilberry woodland (e. g. Schroeder 1984, Brunet 1991, 
Stoutjesdijk & Barkman 1992, R. Økland & Eilertsen 1993, Aarrestad 2002). The lack of a clear soil 
relationship of this main vegetation gradient with soil moisture may, however, be an effect of the 
bulk soil sampling process or of unknown amounts of precipitation immediately before the soil was 
sampled, levelling out recorded differences in soil moisture between the plots. Other explanations 
may also apply, like the ‘soil moisture deficiency hypothesis’ postulated by R. Økland & Eilertsen 
(1993) (see later in discussion under the ‘The gradient in soil moisture’ chapter.

The second vegetation gradient (DCA axis 2) is very short in terms of units of compositional 
turnover (cf. Fig. 58) and none of the measured variables are strongly related to DCA axis 2; the 
strongest is macro plot aspect (τ = 0.298) and median soil depth; the latter is significant at the within 
macro-plot variation level in the split-plot analysis. Meso plots with high DCA 2 scores contain 
vegetation with high abundances of ferns such as Phegopteris connectilis while plots with low DCA 
2 scores have a vegetation with indicators of soils richer in nutrients, such as Geranium sylvaticum 
and Ranunculus acris. Because of the very small amounts of variation in species composition along 
DCA axis 2, only separating plots in macro plot 9 from the rest, DCA axis 2 is not likely to represent 
an ecocline of general validity.

Gutulia

Sample plots in the Gutulia reference area span a shorter gradient in species composition than in 
the Møsvatn reference area; the gradient length of the first DCA axis is 2.8 SD (Fig. 127). The vari-
ation along the first DCA axis runs from species-poor dwarf shrub communities with dominance 
of Empetrum nigrum and Vaccinium species to slightly more species-rich communities with high 
abundance of low ferns, grasses and low herbs (Figs 140–196). Gutulia thus lacks tall fern and tall 
herb communities corresponding to those of the Møsvatn area.

The main vegetation gradient (DCA axis 1) corresponds to a complex soil mineral nutrient and 
soil base sattus gradient, running from nutrient-poor soils with high organic content in the humus 
layer and low pH to slightly more nutrient-rich soils with higher pH and lower organic content. This 
complex soil nutrient gradient is also to some extent related to soil depth, with lower minimum and 
median soil depths in soils richest in mineral nutrients (Figs 130 and 131). Almost all variation along 
this axis occurs at the between macro-plot scale level (95.35%). The correspondence between the 
split plot analysis for this level and Kendall’s τ is good. 

Only two environmental variables are significantly (α = 0.05 level) related to the second DCA 
ordination axis; both at the macro-plot level at which 77.5% of the variation is explained. This is 
no more than expected by chance in a multiple-test situation (31 single tests are made at each scale 
level). In fact, DCA 2 only separates four plots from macro plot 9 and three plots from macro plot 
10 from all other plots (these plots obtain high DCA 2 scores). The axis separates lichen-dominated 
plots with species such as Cladonia arbuscula, C. bellidiflora, C.cornuta, C. crispata, C. gracilis and 
C. rangiferina (Fig. 186, 187, 190, 191, 193,194) with optima at low DCA axis 2 scores from species 
such as Rubus chamaemorus and Eriophorum vaginatum. with optima at high DCA axis 2 scores. 
The high-score plots differ from the rest in having deep soils (Figs 130–131), but no difference in 
soil moisture was recorded, as suggested by the species compositions of plots occupying contrasting 
positions along this axis. Like in the Lund area, the lack of a clear soil moisture pattern might be due 
to errors related to the bulk soil sampling process or precipitation before the soil sampling event, 
levelling out differences in soil moisture between the plots. There is also a possibility that depth to 
the ground water table might explain more of this variation in species composition. Because DCA 2 
separates small groups of plots only, it may reflect area-specific patterns rather than generally valid 
ecoclines. 
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Åmotsdalen

The main vegetation gradient in the Åmotsdalen reference area (DCA axis 1) runs from dwarf-shrub 
communities dominated by Betula nana, Calluna vulgaris and Empetrum nigrum with scattered 
lichens, to communities dominated by low ferns and herbs, with grasses and a few tall herbs such as 
Geranium sylvaticum and Ranunculus acris. The gradient length of the first DCA axis is 3.5 SD (Fig. 
198 and Figs 212–248). The magnitude of compositional turnover along DCA axis 1 is somewhat 
larger than in Lund and Gutulia, but smaller than in the Møsvatn reference area. 

The main vegetation gradient from dwarf-shrub dominated to herb dominated communities 
is related to a soil mineral nutrient and base richness gradient, running from low to higher soil pH 
values and from low to higher concentrations of base cations and total content of nitrogen (Table 13, 
Figs 200–211). Almost all variation along DCA axis 1 (96.03 %) occurred at the between macro-plot 
level. Like in the other reference areas, the split plot modelling results accorded well with Kendall’s 
τ correlation coefficients. We conclude that, as in the other reference areas, variaton in soil mineral 
nutrient availability, is an important structuring factor for the main vegetation gradient. 

The variation along the second ordination axis was more evenly split onto the two levels, with 
56.03 % between and 43.97 % within macro plots. Only a few variables were significantly related to 
this axis and the consistency between the results of split-plot analyses and Kendall’s τ was low. Soil 
moisture sorted out by Kendall’s τ as relatively strongly related to the axis and indicatively significant 
(0.05 < P < 0.10) at both levels in the split-plot analysis (Table 14). The distributions of species along 
this axis, e.g. the Cladonia species (Figs 257–258) versus species such as Geranium sylvaticum and 
Ranunculus acris may suggest that soil moisture, in some way, may be partly responsible for variation 
along this coenocline. However, the ordination diagram (Fig. 198) also shows that three meso plots 
obtain particularly high scores along DCA axis 2 (plots 42, 46 and 38) and one plot (No. 33) obtains 
low score. This opens for the possibility that DCA axis 2 merely reflects peculiarities of the species 
compositions of single plots (a noise axis; Gauch 1982).

Børgefjell

The main vegetation gradient in the Børgefjell reference area runs from lichen-dominated dwarf 
shrub communities (dominance by Cladonia spp.; Figs 312–320) to low-herb and fern communities 
with scattered occurrences of tall ferns (Dryopteris expansa) and tall herbs (Cicerbita alpina). The 
main vegetation gradient corresponds to a gradient in soil mineral nutrient richness and base status 
with sites related to differences in soil pH, base cation concentrations, total content of nitrogen and 
tree densities (Table 16, Figs 262–273). 

Of the variation in vegetation composition along the main ecocline (DCA axis 1), 94.38 % 
was explained at the between macro-plot scale. Like in the other reference areas, large conformity is 
found between the split-plot results at the between macro-plot level and the nonparametric Kendall’s 
τ correlation coefficients. Thus, like in the other areas, the mineral nutrient status is regarded as the 
most important structuring factor for vegetation in Børgefjell. 

Of the variation along the second ordination axis, 83.37 % is explained on the between macro-
plot level. Soil moisture is a strong predictor of plot score at the between macro plot scale level, and 
this variable is also identified as strongly related to the axis by Kendall’s τ. Fig. 263 shows that the 
six plots (plot 40 and all plots in macro plot 9) which are separated along DCA axis 2 by obtaining 
high scores (see Fig. 260) have lower soil moisture values than the nine plots with high DCA axis 
1 scores and low DCA axis 2 scores (macro plot 6 and the remaining plots in macro plot 8). The 
variation in vegetation along this axis runs from plots dominated by Dryopteris expansa (Fig. 284) 
on moister soil to plots dominated among others by Polygonatum verticillatum (Fig. 290) and An-



SOMMERFELTIA 34 (2010)206

thoxanthum odoratum (Fig 293) on slightly drier soils. Both Dryopteris expansa and Polygonatum 
verticillatum are typical of fern dominated, ‘flushed’ (cf. Malmström 1949, Dahl 1957) vegetation 
and the segregation along DCA axis 2 in the Børgefjell area may well only reflect idiosyncrasies of 
the specific macro plots.

Dividalen

The main vegetation gradient in the Dividalen reference area (DCA axis 1) runs from lichen-dominated 
dwarf-shrub communities with dominance by Betula nana (Fig. 335) and Cladonia spp. (Figs 394-403) 
via low fern and herb dominated communities with grasses to communities dominated by tall-herb 
species such as Omalotheca norvegica (Fig. 357), Saussurea alpina (Fig. 364) and Trollius europaeus 
(Fig. 368). Dividalen is the reference area with the highest total number of species.

The main vegetation gradient corresponds to a complex gradient which reflects soil mineral 
nutrient and base richness, running from soils poor in mineral nutrients (C, Ca, Mn, Na, S, Zn and 
total N), high organic content in the humus layer and low pH, to vice versa. Almost all variation 
along this compositional gradient is on the between macro plot scale level (96.72%). The agreement 
between results of split-plot analyses and Kendall’s τ is good. No terrain variables explain significant 
amounts of variation along this main ecocline, perhaps because the macro plots are placed along a 
line transect up a hillside. 

Also along DCA axis 2, most of the variation in plot positions (80.94 %) occurs on the between 
macro-plot level. Soil concentration of P is the strongest predictor (negatively) of plot position on 
the between macro-plot scale level. Kendall’s τ between DCA axis 2 scores and P is also strong. Spe-
cies typically occurring in plots with low P (high DCA axis 2 scores) are Phyllodoce caerulea (Fig. 
340), partly also Equisetum sylvaticum (Fig. 347), Pedicularis lapponica (Fig 359), Calamagrostis 
lapponica (Fig. 371) and Nephroma arcticum (Fig. 404). However, variation along this axis also 
strongly reflects altitudinal differences (τ = 0.563). Dividalen is the only reference area in which the 
plots span considerable elevational variation (385–615 m a.s.l., see Table 1). We interpret DCA axis 
2 as mainly expressing variation in species composition in the study area that results from placement 
of macro plots along an altitudinal gradient. Temperature-dependent variation in species composi-
tion, due to altitudinal (and south-north) variation is one of the main regional ecoclines (Ahti et al. 
1968, Pedersen 1990, Moen 1999, Bakkestuen et al. 2008). The variation in P concentrations along 
this coenocline may or may not represent a general trend or be due to variation within this particular 
reference area, for reasons so far not known.

MAIN COMPLEX-GRADIENTS IN (MIDDLE AND NORTH) BOREAL BIRCH FORESTS

The gradient in nutrient conditions

The importance of mineral nutrient availability as a main factor structuring vegetation gradients in 
boreal forests has been emphasized and documented by many authors (e.g. Dahl et al. 1957, Kuusipalo 
1985, R. Økland & Bendiksen 1985, Sepponen 1985, Taylor et al. 1987, R. Økland & Eilertsen 1993, 
T. Økland 1996, R. Økland & Eilertsen 1996, R. Økland et al. 2001). The mineral nutrient and soil 
base richness complex gradient is thus considered to be the most important complex gradient for the 
structuring of vegetation in boreal forests. Birch forest ecosystems are expected to differ slightly, but 
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fundamentally, from coniferous forest ecosystems  in properties such as the somewhat more favourable 
chemical composition and/or rates of decomposition of deciduous versus evergreen coniferous litter 
(Aarrestad 2002, Fjellberg et al. 2007). This influences the rates of soil biological processes (Saetre 
1998), physical soil properties such as texture, humus form and moisture retention capacity (Sirén 
1955, Green et al. 1993), and the acidity status and availability of essential elements from soils (e.g. 
Wittich 1961, Saetre et al. 1997, Ewald 2000, Légaré et al. 2001, Qian et al. 2003, Liu et al. 2008). 
While in coniferous forests input of needle material occurs at more or less constant rates (Saetre 
1998) and this material contributes to natural soil acidification, decomposing birch leaves instead 
contribute to soil improvement (Dimbleby 1952a, 1952b, Gardiner 1968, Miller 1984, Saetre 1998). 
Neverthless, a comparison of the reference area minimum, median and maximum pH values (Table 
21) with those of T. Økland (1996, see Table 35) for monitoring reference areas in spruce forest, 
reveals no large differences in pH between birch and spruce forest. It should be noted, however, that 
the selection of reference areas in birch and spruce forests was not made in ways that make possible 
a test of this particular hypothesis. 

Soil pH is highly correlated with main compositional gradient in all six areas and always among 
the three best predictors. Soil pH is thus the parameter which overall best reflects variation along the 
main vegetation gradient. This is in correspondence with the results obtained in spruce forest where 
pH contributes to the main coenocline in nine out of ten reference areas and is the variable most 
strongly correlated with the gradient in six of these (T. Økland 1996). Other studies also find pH to 
be the best variable in explaining variation along the main vegetation gradient (Sepponen 1985, Lahti 
& Väisänen 1987, Taylor et al. 1987, R. Økland & Eilertsen 1993, R. Økland et al. 2001, Aarrestad 
2002). However, pH mainly structures the vegetation indirectly by influencing the soil fauna and the 
plant mineral nutrient availability (cf. Glømme 1932, Larcher 2003).

The relative importance of mineral nutrients concentrations and other variables that make up 
the nutrient complex-gradient are known to vary between different studies and sites. Soil pH, con-
centrations of nitrogen and exchangeable Ca are usually reported as important in boreal ecosystems 
(cf. Malmström 1949, Dahl et al. 1967, Kuusipalo 1983b, 1984, 1985, R. Økland & Eilertsen 1993, T. 
Økland 1996). The six birch forest reference areas show considerable variation with respect to which 
variables make up the main complex-gradient, although pH and Ca are almost invariably among the 
most important. The middle boreal and oceanic birch forest in Lund differs strongly from this main 
pattern, probably due to the modifying influence of climate, which is very different between Lund and 
the other reference areas situated in the north boreal zone and in more continental parts of Norway. 

Concentrations of S are also correlated with the main vegetation gradient in all areas. Sulphur 
is, together with P, K, Ca and Mg, defined as one of the macro nutrients which are required in com-
paratively large amounts (Etherington 1982, Larcher 2003). Plants absorb S in the chemical form 
of sulphate, although there is some evidence that S-containing amino acids may also be assimilated 
(Larcher 2003). Sulphur accumulates in leaves and seeds and is an important component of proto-
plasma and enzymes. In industrial countries significant amounts of sulphur have been added to the 
soil through the precipitation over the last centuries (Anonymous 2006). H2S released by waterlogged 
soils, lake mud and continental shelf sediments also supplies soil with S through natural rainfall, but 
this is assumed to contribute less than 10 % of the amounts due to industrial pollution (Etherington 
1982, Mylona 1993). However, soil concentrations of S are by far not as strong predictors of vegeta-
tion gradients in spruce forest (T. Økland 1996) as found in birch forests in our study. The reason for 
this is still not understood.

Exchangeable concentrations of Ca in soil is highly positively related to the mineral nutrient 
complex gradient (and thus with pH) in four out of the six areas (Møsvatn, Åmotsdalen, Gutulia and 
Dividalen). Calcium was also positively related to pH and the main complex-gradient in Børgefjell, 
but less strongly than in the other four areas. Lund deviated from the other areas by having a negative 
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relationship between Ca and pH and by showing a weak relationship between Ca and all complex-
gradients. Most studies of boreal forest vegetation and soils reveal Ca as one of the most important 
predictors of variation in vegetation along a complex-gradient with soil base status as a central element 
(cf. Hesselmann 1937, Malmström 1949, Kussipalo 1983b, Taylor et al. 1987, T. Økland 1996). T. 
Økland (1996) does, however, find that in spruce forests with humid climates Ca and soil moisture 
co-vary along a different vegetation gradient. Hence T. Økland (1996) suggests that in a humid climate, 
Ca does not contribute to a ‘normal’ gradient in soil base status and mineral nutrient concentrations, 
like is typically the case in less humid areas. The results from birch forests largely agree with these 
observations. The two areas in which Ca is less strongly related with the main complex-gradient are 
also the two most humid areas (Lund and Børgefjell). Furthermore, concentrations of Ca are gener-
ally lower in Lund than in the other reference areas. 

Calcium is an essential part of the plant cell wall structure which provides for normal transport 
and retention of other elements and general physical strength of the plant. Ca is believed to balance 
the effect of alkali salts and organic acids within the plant. Calcium is absorbed as Ca2+ ions and ex-
ists in a fine balance with magnesium and potassium in plants. Too much of any one of these three 
elements may cause deficiencies of either the other two (Larcher 2003).

Soil content of total nitrogen is highly related to the main mineral nutrient and soil base richness 
complex-gradient in four of the reference areas (Møsvatn, Åmotsdalen, Børgefjell and Dividalen), 
to some extent related to this complex-gradient in Gutulia and unrelated to it in Lund. Parallel vari-
ation in nitrogen and soil nutrient status and soil base richness along one main complex-gradient is 
typically found also in other studies in boreal forests (T. Økland 1996). In all reference areas pH and 
nitrogen are more or less strongly positively correlated. Nitrogen is usually considered as the most 
limiting resource in boreal forests (cf. Hesselmann 1937, Malmström 1949, Kussipalo 1984, Tamm 
1991). Nitrogen is important for building up new material in plants (Kubin 1983), but also for the 
microbiological activity in the humus (Olsen 1990), as the microbes need nitrogen for their synthesis 
of organic matter (Kubin 1983). The strong correlation between total amounts of nitrogen and the 
main compositional gradient in boreal forests accords with other studies (e.g. T. Økland 1996, R. 
Økland et al. 2001). This study of birch forests thus lends support to the general notion that the total 
amount of available nitrogen is important for the species composition and hence a good indicator of 
the main complex-gradient.

Other elements that are highly correlated with the main complex gradient in all areas (except 
Lund), are potassium and manganese. These elements are also considered as macronutrients by Larcher 
(2003); both are important among others in regulation of water physiology of plants.

The gradient in soil moisture

Measured volumetric bulk soil moisture is a significant predictor of vegetation composition turno-
ver in Lund (for the secondmost important ecocline represented by DCA axis 2), and partly also in 
Børgefjell (also DCA axis 2). These two reference areas are the most oceanic ones among the six 
areas included in this study. In the other four area no relationship between measured soil moisture and 
vegetation gradients is found in Møsvatn, Gutulia and Dividalen and a possible, weak, relationship 
is found in Åmotsdalen (but not at the α = 0.05 level). The recorded relationship between measured 
soil moisture and vegetation gradients in birch forest is thus generally weaker than found in spruce-
dominated forests where one of the main coenoclines (DCA 1 or DCA 2) are related to soil moisture 
in most areas (R. Økland & Eilertsen 1993, T. Økland 1996).

The importance of soil moisture as an important structuring factor in boreal forests is emphaz-
ised among others by Carleton & Maycock (1980), Bergeron & Borcard (1983), Kuusipalo (1983a), 
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Lahti & Väisänen (1987), R. Økland & Eilertsen (1993) and T. Økland (1996). On a local scale the 
soil moisture gradient should in principle be assumed to be independent of the complex gradient in 
soil mineral nutrients and base status (R. Økland & Eilertsen 1993), but these ecoclines may locally 
or in part be correlated (Lahti & Väisänen 1987, Carleton 1990, T. Økland 1996). In spruce forest 
nutrient-rich sites are mainly mostly dry while moist sites almost invariably tend to be poor (T. 
Økland 1996). This is not in accordance with the results found for the studied birch forest reference 
areas, and may indicate that this result of T. Økland (1996) does not have general validity, not even 
for spruce forests. 

The weak relationship between measured soil moisture and recorded coenoclines in many of the 
reference areas may be a result of the way soil moisture is measured. Several authors (R. Økland & 
Eilertsen 1993, T. Økland 1996 and R. Økland et. al 2001) have pointed out that species distributions 
may be related to moisture in several, principally different ways that are not captured by one type of 
measurement of soil moisture made at one particular time-point. In the background material for the 
new division of Norway into nature types, Halvorsen et al. (2008), recognise three ecoclines relevant 
to soil moisture in boreal forests, of which two are related to ‘normal’ water availability [spring influ-
ence, e.g. the difference between topogenous paludification, which occurs in small depressions with 
poor drainage and stagnant water, and soligenous paludification, which is favoured by a cold and 
humid climate and occurs on slopes where the terrain determines the speed and direction of water 
movement to flushed slopes with fern dominated vegetation, dependent on more constant supply of 
water, with springs at the end; and water saturation (paludification), which separates sites according 
to median (‘normal’) soil moisture]. The relationship between spring influence and water saturation 
is explained by Halvorsen (2008), among others by the ‘water availability triangle’ (Halvorsen 2008: 
Fig. 6). The third ecocline related to soil moisture and water availability is related to risk of extreme 
drought (R. Økland & Eilertsen 1993, Halvorsen et al. 2008).  

The wettest sites (high water saturation) included in this investigation are paludified slopes with 
high abundance of Sphagnum species, such as S. girgensohnii and S. quinquefarium, and slopes with 
ferns such as Phegopteris connectilis and Oreopteris limbosperma. High abundance of Sphagnum 
only occurs in Lund and Gutulia; S. girgensohnii are found in Gutulia sample plots 17 and 26–29 and 
S. quinquefarium is abundant in Lund, macro plots 1 and 3–6. Small hepatics like Cephalozia and 
Calypogeia spp. in Sphagnum carpets, and Oreopteris limbosperma, only occurred in Lund (macro 
plot 7). Furthermore, variation related to risk of extreme drought is likely to be present in several 
of the areas. Drought-exposed sites are typically richer in Cladonia lichens, Calluna vulgaris and 
Empetrum nigrum; species that are tyipcal for one end of the main coenocline in several of the birch 
forest reference areas. The lack of any relationship between this variation in species composition and 
recorded soil moisture in these cases accords with R. Økland & Eilertsen (1993) who postulated the 
‘soil moisture deficiency hypothesis’ to explain this variation, which was not related to among-plot 
differences in volumetric soil moisture in their study area. Insufficient sampling of variation in species 
composition related to soil moisture in the reference areas is a probable partial explanation for the 
poor relationship between coenoclines and soil moisture in some of the reference areas. Furthermore, 
volumetric bulk soil moisture, as measured in this study, does not only fail to reflect variation along 
all three moisture-related coenoclines but is also, in itself, vulnerable to variation in weather condi-
tions at and around the time-point sampling takes place.  

T. Økland (1996) finds in many spruce reference areas that soil moisture is related to a gradient 
from within gaps in the forest to sites below trees. Her study reveals drier soil below trees than in 
gaps between trees, and restriction of several species to the more moist sites in gaps between trees. 
This variation in soil moisture from below to between trees is explained as an effect of tree canopies 
(cf. R. Økland & Eilertsen 1993): (1) a strong gradient in throughfall precipitation (low close to tree 
stems), caused by canopy interception (C.O Tamm 1953, Beier et al. 1993); (2) stronger water uptake 
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by trees close to stems (cf. Stålfelt 1937b) and large amounts of spruce litter, particularly close to 
stems, that give rise to a loose and thick humus which dries up rapidly after rainfall, due to a low 
capacity for retaining moisture (cf. Malmström 1937, Stålfelt 1937b). No such relationships are found 
in the birch forest reference areas. A likely explanation for this is that the shading effect of the tree 
layer is less important in birch forests than in spruce forests because the size and density of trees are 
usually lower in the birch forest. This tendency is likely to be strengthened towards the tree line as 
the influence of winds increase (R. Økland & Bendiksen 1985). 

Disturbance and land use changes

Grazing and trampling by domestic animals (included domestic reindeer) have influenced and are 
still influencing the vegetation in all reference areas, to stringer or lesser extents. The reference areas 
Gutulia, Børgefjell and Dividalen are constantly influenced by reindeer grazing while Møsvatn and 
Åmotsdalen are influenced by cattle and sheep grazing. Lund is also to some extent influenced by 
sheep grazing. The species composition in these areas reflects the grazing (and trampling) pressure, 
but the extent to which this is the case is difficult to quantify. The most difficult part is to separate 
effects of grazing by domestic animals from natural dynamics in the reference areas. An experimen-
tal design, with enclosures in which the vegetation was protected from grazing, would have been a 
valuable reference for such influences. Miles & Kinnairs (1979) have shown that grazing may cause 
large mortality of birch saplings and that considerable rejuvenation took place in grazer exclosures. 
One the other hand, Pigott (1983) demonstrates that moderate grazing can promote germination of 
birch seeds. 

Bakkestuen & Erikstad (2002) performed a comparative analysis of aerial photos from 1949 
and 1987 in the Møsvatn area, revealing considerably lower summer farm activity in 1989, both in 
the reference area (birch forest) and in the mountain pasture area close by. Among others, they dem-
onstrate that in 1989 paths were in the process of being overgrown, the forest had grown denser and 
the openings were smaller and fewer. Such changes in the land use over the last 50–100 years have 
certainly had, and still have, an impact on the vegetation (cf. Bryn & Daugstad 2001).

MAIN GRADIENTS AND VARIATION IN THE TOTAL DATA SET

Interpretation of main gradients in the total data set

Three different ordinations were performed: one on the total data set, another on the same data set 
with sample plots from the southernmost reference area Lund excluded, and one partial ordination 
of the latter data set with variation due to seven climatic/geographical variables partialled out. In 
the first of these ordinations all sample plots from Lund split off from the rest of plots along the first 
ordination axis. This ordination is thus not discussed in further detail here as it merely shows that 
the vegetation in Lund differs strongly from that of the other areas, underpinning the importance of 
variation along the two main regional (climatic) ecoclines; Lund belongs to another vegetation zone 
and another vegetation section (see Moen 1998).

The new ordination obtained after removal of sample plots from Lund revealed a first DCA 
ordination axis along which no segregation of plots from different areas occurred. More than 80 % 
of the variation in species composition along this axis is explained on the between macro-plot scale 
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level while only approximately 5 % on the between-area scale level. This emphasises that generally 
applicable local environmental complex-gradients structure variation in vegetation in birch forests 
(at least within the same vegetation zone). 

The corresponding DCA 1 axes in the ordination and in the partial ordination, in which vari-
ation due to climatic/geographical variables had been partialled out, are strongly correlated and cor-
respondingly represent the ecoclines. Such similar patterns are exactly what T. Økland (1996) found 
in her data from spruce forests. This shows that within a relatively narrow range of vegetation zones 
and sections, boreal forest vegetation is structured by generally important local complex-gradients, 
the effect of which is considerably stronger than the effect of geographic distance as such. 

Our results show that this local complex-gradient runs from sites with low pH and low content 
of mineral nutrients (low concentrations of macro nutrients like C, Ca, Mn, S and N) and high loss 
of ignition to vice versa. 

The second ordination axis, related to soil concentrations of Mn and S, and with about one 
half of the variation explained at the between-area scale even in the partial ordination from which the 
effects of geographic/climated variables had been partialled out, is likely mostly to reflect inevitable 
variation in species composition between areas large distances apart (cf. Nekola & White 1999). 

The proportion of unexplained variation was large. The large size of the data set partly contrib-
utes to this because the random variation in a vegetational data set increases with increasing size of 
a data set (cf. Smith & Urban 1988, R. Økland et. al 1990, R. Økland & Eilertsen 1994 & T. Økland 
1996). Vegetational responses to environmental gradients and disturbances that occur at spatial scales 
below the sample plot size of 1 m2, like fine-scale topography gradients (R. Økland et al. 2001), 
also contribute to the unexplained variation (see also R. Økland & Eilertsen 1994). The amount of 
explained vegetational variation in the total data sets from birch forests is of approximately the same 
magnitude as found by T. Økland (1996) for spruce forests. 

Species with regional variation in response to main complex gradients

A few species, such as Gymnocarpium dryopteris and Phegopteris connectilis, show regional variation 
in response to the main environmental complex gradient underlying the main coenocline (the first 
ordination axis of the total data set and of separate ordinations of the different reference areas). Most 
notably, their amplitudes along the main ecocline differs between areas. These species occur on sites 
with lower pH and lower mineral nutrient concentrations in the humus in sites with a more humid 
climate compared to more continental sites, where they reach an optimum on sites with higher pH and 
higher nutrient concentrations. Correspondence between regional gradients and local environmental 
gradients has been recognised for a long time. Boyko (1947) refers to this as the geo-ecological law 
of distribution, which relates to similar concepts such as equivalence of sites (Loucks 1962, Vetaas 
1992) and habitat constancy (Walter & Walter 1953, Miehe 1989z), or niche constancy (Ferrer-Castán 
& Vetaas 2003). A species may thus displace its distribution with respect to a measured environmental 
variable from one climatic region to another, if the measured variable and the condition of primary 
physiological importance are affected by climate (T. Økland 1996). In spruce forest even more spe-
cies, like Anemone nemorosa, Oxalis acetocella, Rubus saxatilis and Rhytidiadelphus squarrosus 
agg., have been found to have such a pattern. However, the number of occurrences of these species 
in birch forest sample plots is too low to allow further discussion of the topic. 

Both R. Økland & Bendiksen (1985) and T. Økland (1996) explain this change in optimum 
by postulating that high soil moisture compensates for lower pH and mineral nutrients contents in 
the humus layer in a humid climate. This may contradict Boyko’s law which says that the amount 
of nutrients available for these species should be the same on sites where they occur, in the humid 
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reference areas as well as in the more continental. However, in humid climate water flow rates through 
the humus are higher due to higher precipitation, which is expected to contribute to higher nutrient 
supplies and probably also higher turnover rates (Varskog 1995, T. Økland 1996). The access to 
nutrients may then be higher throughout the year despite the lower pH and nutrients measured at one 
point in time (see T. Økland 1996). Other explanations may also apply, e.g. that other environmental 
factors are important in different parts of regional gradients. In that case the premises for Boyko’s 
geo-ecological law are not fulfilled. 

COMPARISON WITH VEGETATION CLASSIFICATIONS

The driest and most oligotrophic part of the monitored vegetation can be assigned to the A1b type 
‘Cladonia-Betula pubescens ssp. czerepanovii subtype’ of the ‘Cladonia woodland’ in Fremstad 
(1997). Slightly less ‘dryish’ vegetation accords with the A2c type, ‘Vaccinium vitis-idaea - Empetrum 
nigrum coll. subtype’ of the ‘Vaccinium woodland’. These types are more or less dominated by lichens 
and dwarf shrubs, and correspond more or less to the association Cladonio-Betuletum (Nordh.43) 
K.-Lund 73 and probably to Calamagrostio lapponicae-Pinetum K.-Lund 67 in the northernmost area, 
Dividalen. Lichen-dominated vegetation is represented in all analysed areas except Lund, and could 
probably be classified to the drier part of the subxeric topographic moisture series of R. Økland & 
Bendiksen (1985), due to high abundance of lichens and Empetrum nigrum ssp. hermaphroditum 
and the occurrence of Arctostaphylos alpina.

A few plots on moist and nutrient-poor soils in Åmotsdalen and Dividalen have a species 
composition similar to the A3b ‘Mountain subtype’ of the ‘Calluna vulgaris-Vaccinium uliginosum-
Pinus sylvestris woodland’ (Fremstad 1997), comparable with Barbilophozio-Pinetum Br.-Bl. et 
Siss. 39 em. K.-Lund 67 or the equivalent Empetro hermaphroditi-Betuletum tortuosae Nordh. 43 
(Betuletum empetro-cladinosum). Characteristic species are Betula nana, Calluna vulgaris and Vac-
cinium uliginosum.

The majority of plots recorded from the monitoring areas represent medium dry and slightly 
mesic vegetation related to the A4c ‘Vaccinium myrtillus-Empetrum nigrum coll. subtype’ of the ‘Bil-
berry woodland’ (Fremstad 1997), which occurs in all monitoring areas except Lund. This vegetation 
is comparable with the Myrtillio-Betuletum tortuosae Nordh. 43 (Betuletum myrtillo-hylocomiosum) 
K.-Lund 71. A few plots in the more termophilous lower parts of Gutulia, in south-eastern Norway, 
might also be classified to the A4a ‘Vaccinium myrtillus subtype’ of the ‘Bilberry woodland’ comparable 
to Eu-Piceetum (Caj. 21) K.-Lund 62, sub-association myrtilletosum K.-Lund 81. This major part of 
the monitored vegetation definitively belongs to the submesic topographic series of R. H. Økland & 
Bendiksen (1985), due to the dominance of Vaccinium myrtillus and species such as Maianthemum 
bifolium, Trientalis europaea and Solidago virgaurea.

The vegetation of the south-western, humid area Lund is very different from that of the other 
monitoring areas, comprising both the A4b ‘Vaccinium myrtillus-Cornus suecica subtype’ of the 
‘Bilberry woodland’ and the A7c ‘Molinia caerulea subtype’ of the ‘Poor grassdominated woodlands’ 
(Fremstad 1997). Less grass-dominated vegetation is comparable with Corno-Betuletum pubescentis 
Aune 73, probably sub-association myrtilletosum Aune 73, however without Chamaepericlymenum 
suecicum. The major part of the monitored vegetation has a species composition reflecting the sub-
mesic topographic-moisture series of R. Økland & Bendiksen (1985). However, grass dominated 
plant communities (Molinia caerulea) and tall fern plant communities (Orepoteris limbosperma, 
Dryopteris expansa) probably correspond to their mesic series.
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Vegetation of the submesic series, characterized by small ferns (Gymnocarpium dryopteris, 
Phegopteris connectilis) and herbs (e.g. Potentilla erecta, Rumes acetosa, Silene dioica, Oxalis ac-
etosella) occurs in monitoring plots mainly in the Møsvatn, Åmotsdalen, Børgefjell and Dividalen 
areas. Such more nutrient-rich submesic stands are also represented by a few plots in Gutulia. The 
vegetation can be assigned to the A5c ‘Small fern mountain woodland subtype’ of the ‘Small fern 
woodland’ (Fremstad 1997), comparable to Eu-Piceetum (Caj. 21) K.-Lund 62, sub-association 
dryopteridetosum K-Lund 81.

Slightly eutrophic submesic to mesic vegetation is only represented in the Møsvatn and 
Dividalen areas. The sites richest in mineral nutrients occurred on calcareous rocks in Dividalen. 
The associated, rather species-rich, vegetation can be assigned to the C2c ‘Low herb subtype with 
scattered tall herbs’ of the ‘Tall herb, downy birch and Norway spruce forest’ (Fremstad 1997), with 
species comparable with Salicetum geraniosum alpicolum Nordh.43 or Betuletum geraniosum sub-
alpinum Nordh. 43. Characteristic species are Geranium sylvaticum, Ranunculus acris, Saussurea 
alpine, Pyrola minor, Taraxacum sp. and bryophytes such as Mnium spinosum, Plagiomnium ssp. 
and Rhodobryum roseum.

All reference areas have been more or less grazed by domestic animals. In some areas this 
has probably contributed to a more grass-dominated vegetation, similar to the A7b ‘Deschampsia 
flexuosa subtype’ of the ‘Poor, grass-dominated woodland’ (Fremstad 1997). It is also possible that 
the vegetation on some of the herb and grass-dominated plots is partly a result of former scything, 
thus being comparable with the wooded grassland vegetation types described in Moen (1990) from 
scythed areas in boreal uplands in central Norway.

CONCLUSION

The main complex environmental gradient, and the variation in vegetation along this gradient, are 
more or less the same in birch forest areas all over Norway, and also the same as in coniferous forests. 
Some variation among areas do, however, occur with respect to which environmental variables that 
contribute to this main complex-gradient. Furthermore, this main ecocline interacts with regional 
climatic variation. The main complex gradient governing variation in species composition in all six 
reference areas was the gradient in mineral nutrient status and soil base richness, best expressed by 
pH and soil concentrations of Ca, K and S. Other contributing variables, like concentrations of Mn, P 
and total N in soil, vary to some extent in the strength of their relationship with the gradient between 
reference areas. The middle boreal birch forest of Lund deviate from this pattern, probably due to the 
climatic differences between this area and the other areas. Tree influence, topographic unfavourability, 
heat indices, soil moisture and soil depth may locally be related to the main ecocline.

Most of the variation in the vegetation in the studied birch forests occurs at the between macro-
plot scale level, leaving small amounts of variation at the between-area and the between-plot within 
macro-plot scale level. 
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