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Abstract. Even a small percentage of missing data can cause serious problems
with analysis, reducing the statistical power of a study and leading to wrong
conclusions being drawn. In the case of monitoring a woman’s monthly cycle,
missing entries can appear even in a woman experienced in fertility awareness
methods. Due to the fact that in a system of controlling a woman’s fertility, it
is the most important to predict the day of ovulation and, ultimately, to deter-
mine the fertile window as much precisely as possible, much attention should
be paid to the quality of the used data. This paper presents the results of han-
dling missing observations as far as predicting the time during the cycle when
a woman can become pregnant is concerned. Data taken from a multinational
European study of daily fecundability was used to learn the quantitative part
of the variety of a higher-order dynamic Bayesian network modeling a woman’s
monthly cycle. The main goal of this paper is to examine whether omitting
observations has an influence on the model’s reliability. The accuracy of com-
parison was examined based on two measures: the average percentage length
of the infertile time during the monthly cycle and average percentage of days
inside the fertile window classified as infertile.

Introduction

Missing data (or missing values) are a common problem in statistical
analysis and most practical databases contain missing values of some of their
attributes. This can have a significant effect on the conclusions that can be
drawn from the data. There are several reasons why data may be missing.
Sometimes it results from malfunctioning equipment, sometimes the value of
the attribute is not known, or the data was not entered correctly. However,
regardless of the reason for the missing values, the fact that a measurement
is missing is a complication for any algorithm that analyzes the data.
This paper presents the results of handling missing values in the prob-

lem of modeling a dynamic process. The vehicle for experiments was the
problem of monitoring a woman’s monthly cycle. In the case of monitoring
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a woman’s monthly cycle, the main goal is to predict the day of ovulation
and, ultimately, to determine the fertile window. Days inside the fertile win-
dow that are classified as infertile are false negatives. If the model is used
to avoid pregnancy, it is crucial to reduce the false negative rate to zero.
Days that are marked as fertile and are outside the fertile window are false
positives. The smaller the false positive rate, the closer the predicted day of
ovulation is to the real day of ovulation, which can be helpful for couples
seeking pregnancy. The data being used throughout this paper was drawn
from a multinational European study of daily fecundability, which enrolled
women from centers providing services on fertility awareness and natural
family planning. According to calculations, there were 63,152 missing val-
ues (21.65% of all entries) in the data set. There was not a single record
without missing values.
This experiment involved learning the conditional probability distribu-

tion of woman’s monthly cycle models from the multinational European
fecundability study data set, using different methods for dealing with miss-
ing data. A variety of higher-order dynamic Bayesian network models were
used. The chosen approaches to handling missing data have an impact only
on the quantitative part of the model. The qualitative part, i.e. the graphical
structure, remained unchanged in each of the tested approaches. The accu-
racy of comparison was tested using the following measures: the average
percentage length of the infertile time during the monthly cycle and the
average percentage of false negatives (i.e. the days inside the fertile window
that were classified as infertile).
The remainder of the paper is structured as follows: the following section

presents the background of the analyzed problem, including basic informa-
tion about a woman’s monthly cycle with a short description of the applied
data set, the issue of missing data and techniques applied to dealing with it,
as well as a short introduction to Bayesian networks and their extension,
i.e. dynamic Bayesian networks. This section also introduces the created
dynamic Bayesian network models of a woman’s monthly cycle. The suc-
ceeding section presents the results of an experimental comparison. Finally,
the last section concludes the paper.

Materials and Methods

The data of 881 participants of an Italian study of daily fecundabil-
ity were analyzed. Between the years 1992 and 1996, 881 women from
seven European centers (Milan, Verona, Lugano, Duesseldorf, Paris, Lon-
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don and Brussels) recorded a total of over seven thousand monthly cycles.
The women participating in the study satisfied the following five entry crite-
ria: (1) experienced in use of Fertility Awareness Method (FAM), (2) married
or in a stable relationship, (3) between 18th and 40th birthday at admis-
sion, (4) had at least one menses after cessation of breastfeeding or after
delivery, (5) not taking hormonal medication or drugs affecting fertility.
In addition, neither partner could be permanently infertile and both had to
be free from any illness that could affect fertility. For each woman, several
dynamic Bayesian network models were created. The intention was to sim-
ulate the use of the DBN model by women who want to become pregnant
or want to avoid pregnancy. The conducted experiment involved learning
the conditional probability distribution of DBNs, using different methods
for dealing with missing data.

Physiology of a Woman’s Monthly Cycle. A woman’s monthly
cycle is driven by a highly complex interaction between hormones produced
by three organs of the body: the hypothalamus, the pituitary gland, and
the ovaries. There are four main hormones involved in the menstrual cycle
process: estrogen, progesterone, follicle stimulating hormone (FSH), and
luteinizing hormone (LH).
A woman’s monthly cycle can be divided into four phases: (1) men-

struation, (2) the follicular phase, (3) ovulation, and (4) the luteal phase
(Figure 1). The length of each phase may vary from woman to woman and
from cycle to cycle. Menstruation begins with the first day of bleeding. Dur-
ing the follicular phase (or the proliferative phase), the follicles in the ovary
mature. The main hormone controlling this stage is estrogen. Just before
ovulation, the level of estrogen is high enough to cause an increased release
of luteinizing hormone and, as a result, the egg is released from the ovary.
The luteal phase (or the secretory phase) is the latter phase of the menstrual
cycle. The main hormone associated with this stage is progesterone, whose
level is significantly higher during the luteal phase than during the other
phases of the cycle.
In addition to measurable blood hormone levels, there are several eas-

ily accessible indicators of phases of the cycle: raised the basal body tem-
perature (BBT) after ovulation, presence of cervical mucus, and changes
in the position and consistency of the cervix. BBT is defined as the body
temperature measured immediately after awakening and before any physical
activity has been undertaken. To increase the reliability of this indicator,
temperature should be measured every day at the same time. BBT follows
a cyclical biphasic pattern, shifting near ovulation from the low to the high

77



Anna Łupińska-Dubicka

Figure 1. Levels of hormones during the phases of a woman’s monthly cycle
(Weschler, 2006)

phase. Metabolism is slower in the pre-ovulatory phase of the cycle, which
results in a slightly lower body temperature. Following ovulation, as a result
of an increased level of progesterone in the body, women typically experi-
ence an increase in the BBT of at least 0.2◦C. BBT remains higher until
menstruation occurs or, if a woman becomes pregnant, until the end of the
pregnancy. Sometimes BBT can rise due to causes other than ovulation.
This atypical rise is treated as disturbance and can be caused by a change
in conditions around the time of measurement, such as later measurement
time, lack of sleep, high stress levels, travel, or illness.
In the analyzed data set, the menstrual cycle was defined as the inter-

val in days between the first day of menstrual bleeding in two neighboring
cycles, where day 1 was the first day of fresh red bleeding, excluding any
preceding days with spotting. The day of ovulation was identified in each
cycle from records of basal body temperature and mucus symptoms. Daily
mucus observations were classified into four classes; ranging from a score
of 1 (no discharge and dry) to 4 (transparent, stretchy, slippery). The cer-
vical mucus peak day was defined as the last day with best quality mucus,
within a woman’s specific cycle. If there were different mucus observations
on a single day, the most fertile characteristic of the observed mucus deter-
mined the classification. To determine BBT shift, the three over six rule was
used, i.e. the first time in the menstrual cycle when three consecutive tem-
peratures were registered, all of which were above the average temperature
of the last six proceeding days.
In the analysis, only 3,432 (out of 7,017) cycles from 236 (out of 881)

women were included. All women who recorded fewer than seven cycles were
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excluded, because a woman needs at least six cycles to become familiar with
the chosen fertility awareness method. In addition, cycles with no uniquely
identified mucus peak or BBT shift days were excluded, as the proposed
models used these values to determine the beginning of post-ovulatory in-
fertility.

Missing Data. According to Little and Rubin (2002), one can dis-
tinguish three classes of a possible mechanism that account for missing
data. Each of these mechanisms has unique characteristics both in terms
of the reasons for the missing data, and the implications of the specific type
of missingness. A brief description of each class of missing data is presented
below.
The first class is Missing Completely at Random (MCAR). MCAR

means that the missing data mechanism is unrelated to the values of any
variables, whether missing or observed. For example, data that is miss-
ing because survey participants accidentally skipped questions are likely
to be MCAR. If the observed values are essentially a random sample of
the full data set, a complete case analysis gives the same results as the full
data set would. Unfortunately, most missing data is not MCAR.
The opposite class is Non-Ignorable (NI). NI means that the missingness

of data is not random and the missing data mechanism is related to the miss-
ing values. It commonly occurs when people do not want to reveal something
very personal or unpopular about themselves. For example, if the research
concerns mental health and people who have been diagnosed as depressed
are less likely than others to report their mental status, the data is not
missing at random. Clearly, the mean mental status score for the available
data would not be an unbiased estimate of the mean that would have been
obtained with complete data.
In between these two extremes there is a third class: Missing at Ran-

dom (MAR). MAR requires that the cause of the missing data is unrelated
to the missing values, but may be related to the observed values of other
variables. For example, well-educated people are less likely to reveal their
income than those with lower education.
A key distinction is whether the mechanism is ignorable (i.e., MCAR

or MAR) or non-ignorable. Various approaches for handling ignorable miss-
ing data have been developed. Non-ignorable missing data is more chal-
lenging and requires a different approach. In general, methods dealing with
ignorable missing data can be divided into the following categories (Lit-
tle & Rubin, 2002): (a) procedures based on completely recorded units,
(b) imputation-based procedures, and (c) model-based procedures.
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Procedures based on completely recorded units simply omit cases with
missing data and analyze the remaining ones. In those cases with a small
fraction of records containing missing values, this method works well. How-
ever, when many records contain missing values, it becomes unreliable. Ap-
plying this method would result in an almost empty or even completely
empty data set. In the case of MCAR data, such behavior affects the over-
statement of statistical error. When used on non-MCAR data, these meth-
ods may affect unrepresentativeness of the data in relation to the whole
data set. If the missing values belong to the NI class, removing rows may
affect the pursuit of biased estimation.
Imputation-based procedures fill in the missing values and the re-

sultant completed data is analyzed by standard methods. The com-
monly used procedures for imputation include hot deck imputation and
mean/mode/median imputation. Mean imputation consists of replacing the
missing data for a given feature (attribute) by the mean of all known val-
ues of that attribute in the class to which the instance with the missing
attribute belongs. However, the mean can be affected by the presence of
outliers and thus, to assure robustness, it seems natural to use the median
instead. In this case, the missing data for a given feature is replaced by the
median of all known values of that attribute in the class that the instance
with the missing value belongs to. In the case of a missing value in a cat-
egorical feature, mode imputation can be used instead of either mean or
median imputation. In hot deck imputation, recorded units in the sample
are used to substitute values.
Model-based procedures define a model for the observed data and basing

inferences on the likelihood or posterior distribution under that model, with
parameters estimated by procedures such as maximum likelihood. These
methods include, among others, iterative methods such as EM algorithm
(Lauritzen, 1995) or Gibbs sampling (Yi & Li, 2011), and methods based
on probability intervals, for example, the deterministic “bound and collapse”
method (Ramoni & Sebastiani, 1999).
As was calculated, there were 63,152 missing values (21.65% of all en-

tries) in the data set. Figure 2 presents the number of cases in the data set
as a function of the number of missing values per woman. It can be seen that
there was not a single record without missing values. The author’s hypoth-
esis is that missing data in the multinational European fecundability study
data set do not belong to non-ignorable class. They can be both missing
completely at random (women simply forgot to chart observation on a par-
ticular day) or missing at random (women failed to note the observation
due to some simplification, for example during bleeding the woman did not
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Figure 2. Number of cases as a function of the number of missing values
per case in the multinational European fecundability study data set
(Colombo & Masarotto, 2000)

chart her basal body temperature or, after the BBT shift, she did not take
mucus observation). However, bearing in mind the type of study the data
was obtained from (women experienced in the use of the Fertility Awareness
Methods), it could be hypothesized that most of the missing data are missing
at random cases.

Dynamic Bayesian Networks. Bayesian networks (BNs) (Cooper,
1990; Pearl, 1986), also called belief networks or causal networks, belong
to the family of probabilistic graphical models (GMs). These graphical
structures are used to represent knowledge about an uncertain domain.
In particular, each node in the graph represents a random variable, while
the edges between the nodes represent probabilistic dependencies among
the corresponding random variables. Formally, a BN B is a pair 〈G; Θ〉,
where G is an acyclic directed graph in which nodes represent random vari-
ables X1, . . . ,Xn and edges represent direct dependencies between pairs
of variables. Θ represents the set of parameters that describes the prob-
ability distribution for each node Xi in G, conditional on its parents
in G, i.e. P (Xi|Pa(Xi)), where Pa(Xi) stands for the parents of node Xi.
The structure of the graph is often given as a causal interpretation, conve-
nient from the point of view of knowledge engineering and user interfaces.
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BNs allow to compute probability distributions over subsets of their vari-
ables conditional on other subsets of observed variables (Neapolitan, 2003).
While Bayesian networks are a powerful tool for representing uncer-

tainty, they do not provide a direct mechanism for representing temporal
dependencies. Most events occurring in everyday life are not detected based
on a particular point in time. They can be described through the multiple
states of observations that all together lead up to a final event. The ability
to model temporal aspects of the domain effectively plays a crucial role in
modeling the World.
Dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989; Miha-

jlovic & Petkovic, 2001) are a temporal extension of Bayesian networks for
modeling dynamic systems. While a Bayesian network shows the cumula-
tive probability distribution over a set of random variables independent of
time, the dynamic Bayesian networks can be seen as a multidimensional
representation of a random process. DBNs allow to interpret the present,
reconstruct the past and predict the future. Phenomena are time bound,
and the specific location in time is governed by the “earlier and later” rela-
tionship. Time is treated as a discrete variable, mostly due to the computa-
tional complexity of the inference algorithm. It should be noted that term
dynamic means that the system’s development is modelled over time as op-
posed to the model’s structure and parameters changing over time, even
though the latter is theoretically possible (Friedman et al., 1998; Robinson
& Hartemink, 2008).
A DBN is a directed, acyclic graphical model of a stochastic process

(Ghahramani, 1998). It consists of time-steps and each time-step contains
its own variables. In the most common approach it is usually assumed that
the network meets the Markov property, i.e. the values of future states of the
process are determined only by its current state, regardless of the past. In
other words, the future states of the process are conditionally independent
of the past states. Such a network is called a first-order network. Usually,
the DBN is defined as a pair of BNs (B1;B→), where B1 represents a priori
probability distribution P (Z1) of the model. Typically, Zt = (U t;Xt;Y t),
where U represents the input variables, X represents the hidden variables,
and Y represents the output variables of the model. B→ is a two time-
slice BN (2TBN), which defines transition distribution P (Zt|Zt−1) as fol-
lows (Murphy, 2002):

P (Zt|Zt−1) =
n
∏

i=1

P
(

Zt
i |Pa(Zt

i )
)

where Zt
i is the i

th node at time t. Pa(Zt
i ) are the parents of Z

t
i from the
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same or previous time-slice. The joint probability distribution for a sequence
of length T can be obtained by unrolling the B→ network:

P (Z1:T ) =
T
∏

t=1

n
∏

i=1

P
(

Zt
i |Pa(Zt

i )
)

It is worth mentioning that the most practical uses of DBNs involve tem-
poral influences of the first order, i.e., influences between neighboring time
steps. This choice is a convenient approximation influenced by the existence
of efficient algorithms for first-order models and limitations of the available
tools. Many real world systems, however, have memory that spans beyond
their current state. Although DBNs are widely used nowadays, they focus
generally on first- and second-order DBNs and there are only few application
of higher-order models in real world systems (Daly et al., 2009; Łupińska-Du-
bicka & Drużdżel, 2011; McNaught & Zagorecki, 2009; Onisko et al., 2009;
Perrin et al., 2003).
Furthermore, while any DBN model should contain at least one first-

order influence (if that were not the case, some slices would be disconnected
from the model), a model of order k does not need to include influences
of all orders between 1 and k − 1 (Łupińska-Dubicka & Drużdżel, 2015).

Application of Dynamic Bayesian Networks for Monitoring

Woman’s Monthly Cycle. The computer models of a woman’s monthly
cycle based on a modeling technique known as dynamic Bayesian networks,
described in details in (Łupińska-Dubicka & Drużdżel, 2011, Łupińska-Du-
bicka & Drużdżel, 2015), used in the experiments, combine information re-
trieved from BBT charting with observations of cervical mucus secretions.
They contain a variable Phase with four states: menstruation, follicular,
ovulation, and luteal, standing for the phases of the menstrual cycle. Three
discrete observation variables were included in the data set: Basal Body
Temperature, Bleeding, and Mucus observation, which are readily avail-
able to any woman. BBT has two possible values: lower range and higher
range, representing the temperature before and after the BBT shift, re-
spectively. Bleeding describes whether the woman had menses on a par-
ticular day or not. Mucus observation can have one of the four states
(s1 through s4), described in detail in (Dunson et al., 2001). Time was
modeled explicitly as n time steps, where n is the number of days of the
longest monthly cycle of the particular woman. The model is k-order, i.e. it
contains temporal influences between 1 and k. In the example model pre-
sented in Figure 3, k = 3, which means that the model contains temporal
influences from 1 to 3.
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Figure 3. An example of a third-order DBN model of a woman’s monthly cycle.
Its temporal influences range from 1 to 3

For each woman, nine DBNs of temporal orders ranging from 1 to 9
were created. Additionally, a model with a structure that can change after
each cycle was proposed for each woman, called “SEL” model. Its structure
was changed by adding or removing temporal arcs, bearing in mind that
the first-order arc is essential and cannot be removed. The procedure of
changing the structure of a model can be described as follows: after each
cycle the minimal and the most frequent day of ovulation in a woman’s
last 12 cycles were calculated. By dividing these values by two, the order of
temporal arcs to appear in the model was obtained. Moreover, those orders
that were no longer necessary were removed from the model.
In order to obtain more meaningful results and to compensate for the

absence of much data, the initial structure of a model and its parameters
were determined based on domain knowledge and adjusted to a particular
woman using data for her first six cycles. While a woman’s body can also
change over time together with the characteristics of the cycle, the model’s
parameters after each cycle were updated using the woman’s last 12 cycles
at most.

Experimental Comparison of the Approaches. In the case of mon-
itoring a woman’s monthly cycle, the main goal is to predict the right time
of ovulation and based on it to determine the fertile window. If the main
goal of a model is to avoid pregnancy, it is critical to reduce the number
of days inside the fertile window that were incorrectly classified as infertile
(false negatives). On the other hand, in the case when the model is used
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to help couples who seek pregnancy, the number of days outside the fertile
window and classified as fertile (false positives) should be minimalized.
The number of fertile days during a menstrual cycle is difficult to spec-

ify, as it depends on the life span of the ovum and sperm, which varies
from person to person and from cycle to cycle. It is generally believed that
an ovum can be fertilized only within the first 24 hours after ovulation
(Royston, 1982). Many authors (Kippley & Kippley, 1996; Potter, 1961;
Rötzer, 1968; Szymański, 2004; Wilcox et al., 1995; World Health Organi-
zation, 1983) agree that the start of the fertile interval is strictly connected
with changes in vaginal discharge and, in particular, estrogenic-type cervi-
cal mucus secretions. However, they differ in their estimates of the length of
the fertile window. In this experiment, the definition of fertile window was
based on Wilcox et al. (1995), who define it as the period between the day of
ovulation minus five days and the day of ovulation plus one day. Apart from
the number of false negatives, the percentage lengths of the pre-ovulatory
and the post-ovulatory phases, and the percentage length of the fertile win-
dow were chosen as the comparison criterion. The numbers of fertile and
infertile days in all cycles were determined and divided by the total length
of the cycle, for each woman and for each cycle. Effectively, the percentage
of all days that were classified as infertile and the percentage of all days
that were classified as fertile were obtained. These two numbers (which
add up to 100%) are a good indication of the precision of the method.
If the method avoids false negatives perfectly, the larger the percentage
of infertile days and the smaller the percentage of fertile days, the more
precise the method is and the better approximation of the ovulation day
it provides. At each time step (i.e. every day of the cycle), the proposed
DBN models computed the most probable day of ovulation. If a time in-
terval between the current day and the day with the highest probability
of ovulation equaled at least six days, the current day was marked as in-
fertile. In the other cases, the current day was the beginning of the fer-
tile period. To find the beginning of the post-ovulatory phase, the model
used the BBT shift. The third day after the BBT shift was considered
as infertile.
The main idea behind the conducted experiment was to examine

whether omitting observations has an influence on the reliability of the DBN
model, by learning the conditional probability distribution, using different
methods for dealing with missing data. In the case of each of the meth-
ods, the structure of the model was fixed and the tested approaches had
impact only on the models’ numerical parameters. In this comparison, two
approaches, briefly introduced previously, were taken into account: mode im-
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putation (due to the fact that all variables in the data set are discrete) and
hot-deck imputation. The method based on completely recorded units could
not be used due to the fact that discarding records in the case of the used
data set would lead to an empty data set (see Figure 2). In both approaches,
the missing values were estimated for each woman separately. In the case
of mode imputation, the dominant values that appeared on a given day
in all women’s cycles were calculated. In the case of hot-deck imputation,
the most similar case was defined as the case with the smallest distance
between particular variables on particular days of the cycle. In the case
when the closest record also had a missing value on a particular day, the
next one in order of similarity was chosen. An additional method for com-
pleting missing data was also proposed, named “normal”-value imputation.
In this case, values neighboring the missing one were taken into consider-
ation and compared, and those that minimized the model’s false negatives
were chosen. In the case of Basal body temperature, the more important vari-
able value was lower range, as this attribute value assumed that ovulation
had not yet occurred. In the case of Mucus, the more important variable
value was the more fertile type of mucus, for example value s3 is more im-
portant than value s2. The values calculated by the model learned from
the data set with missing values were also included as a baseline in terms
of performance.
Figure 4 shows the result of comparison of the average percentage of

infertile days during a monthly cycle for different models and different ap-
proaches to dealing with missing data. For all the implemented methods,
the relationship between the order of the model and the number of infertile
days during a cycle is similar: the higher order, the longer the infertile pe-
riod. It can also be noticed that the models learned from the data set not
containing missing values resulted in shorter numbers of infertile days. This
is particularly apparent in case of models with lower orders, for example
in case of the first-order model this difference equals roughly 10%. While
models learned using hot-deck imputation seem to perform best, especially in
the case of higher order models, the overall performance of the implemented
methods is similar.
Figure 5 presents the result of a comparison between the average per-

centages of false negatives. It can again be observed that the overall per-
formance of the tested approaches is similar. The models learned using
“normal”-value imputation performed worse; however, for eight- and ninth-
order models, they indicated a slightly smaller number of false negatives
compared to other methods. Nevertheless, these variations are generally
around a few hundredths of a percent.
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Figure 4. Average percentage of days classified as infertile during the monthly

cycle for each of the compared DBN models for the selected approaches
to handling missing data. The x-axis (horizontal) in the figure represents

a particular model created for each woman (nine DBNs of temporal
orders ranging from 1 to 9 and a model with a structure that can change

after each cycle was proposed, called “SEL” model)

Figure 5. The average percentage of false negatives during the monthly cycle for
each of the compared DBN models for selected approaches to handling
missing data. The x-axis (horizontal) in the figure represents a particular
model created for each woman (nine DBNs of temporal orders ranging
from 1 to 9 and a model with a structure that can change after each cycle
was proposed, called “SEL” model)
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Conclusions

In this paper, the diagnostic accuracy of different models for monitor-
ing a woman’s monthly cycle of several methods dealing with incomplete
data was tested. In each case, all models had the same graphical structure.
The results show that the choice of a method dealing with missing data has
some influence on the predictive performance and error measured by means
of false negatives; however, the accuracy for most of the tested methods was
similar, with slightly better performances of hot-deck and mode imputation
in the case of calculating the length of the fertile window and “normal”
imputation in the case of the number of average percentages of false neg-
atives, in comparison with other approaches. It is interesting to note that
while there were some performance differences between the applied meth-
ods, they were minimal. One would expect that given the large percentage
of missing data in the database, even a small improvement in dealing with
the missing values should lead to a noticeable improvement. This, however,
was not the case. A very probable explanation is the fact that these results
confirm the hypothesis that missing data in the multinational European fe-
cundability study data set belong to the missing at random class and can
well be compensated for by the EM algorithm during the learning process
of the model parameters and no additional method for filling the missing
values in monthly cycle observations is required.
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