DE GRUYTER
B SE STUDIES IN LOGIC, GRAMMAR

AND RHETORIC 56 (69) 2018
DOI: 10.2478/slgr-2018-0049

Automatic Generation of Regular Expressions
for Extracting Attribute Values
of Medical Products

Tomasz Fukaszuk', Mariusz Ferenc?

! Faculty of Computer Science, Bialystok University of Technology, Poland
2 Ediom sp. z 0.0., Poland

Abstract. Resources of professional companies operating on the medical ser-
vices market contain data from a huge number of transactional documents. This
allows them to collect and process, among other actions, information about
medical products. Organized data is obviously more valuable. In this paper, the
possibility of supporting the process of organizing information is considered,
with the goal to extract values of attributes of medical products from brief de-
scriptions in transactional documents. This helps to build a structured product
specification and makes it possible to make comparisons between products. For
this purpose, an approach based on regular expressions and their generation
with the use of the genetic algorithm is proposed. The results presented in the
paper show a great potential of the presented method.

Introduction

Nowadays, online shops offer an ever-expanding range of products.
The ability to compare them objectively is a significant advantage for cus-
tomers. Many stores recognize this need and allow customers to compile
a list of product attributes so that they can decide more easily on the best
product according to their needs.

The facilities described above, however, mainly concern common types
of products such as electronic devices, sports equipment, and food products.
It is much more difficult to compile a list of attributes of products not pur-
chased by ordinary customers, or of specialized products. Medical products
are an important group of such products. As a rule, they are not of interest
to ordinary customers, but rather to different types of health care units.

The market for medical products and services is of a huge financial
value. As a result, there are companies on the market that offer health care

ISSN 0860-150X 193

Tomasz Lukaszuk, Mariusz Ferenc

units various types of services and intermediation in purchasing the neces-
sary products. For such intermediaries, transactional documents containing,
inter alia, brief descriptions of the products on sale constitute an important
source of information about medical products.

With the very large number of medical products’ descriptions, it is diffi-
cult to process them all manually, which is why machine processing support
is needed. Regular expressions are an important aid in text processing and
extraction of relevant fragments from it (Thompson, 1968). Once the appro-
priate regular expression is constructed, it can be used for many descriptions
to extract the fragments that represent the values of medical products’ at-
tributes of interest.

In this paper, a method for generating regular expressions based on de-
scriptions of products constituting a training sample is presented. Descrip-
tions from the training sample were analyzed by an expert who indicated
their important fragments. A genetic programming approach is studied to
automatically generate a regular expression that extracts expert-indicated
fragments in descriptions of medical products.

The remaining part of this paper is structured as follows: Section “Re-
lated works” discusses other works connected with the subject matter of
this paper, particularly extraction of product value from textual descrip-
tions and regular expression learning. Section “Problem to solve” contains
the problem description. In Section “Methods”, a relatively detailed algo-
rithm for generating regular expressions is presented. Section “Experimental
evaluation” reports experiments performed with the use of the developed
algorithm and presents their results. Conclusions are presented in Section
“Conclusions and Future Works”.

Related Works

A good deal of important research into retrieving information from text
documents has been carried out (see e.g. Banko et al., 2007; Chang et al.,
2006; Kopcke et al., 2012; Sarawagi, 2008; Wu & Weld, 2010). This group
also includes works aimed at extraction of product attributes and their
values.

Ghani et al. (2006) presents an approach to the problem of extraction
of attribute-value pairs from textual product descriptions on retail store
websites. The authors consider both the implicit (defined by experts) and
explicit (existing in the text) attributes and formulate both types of ex-
traction as classification problems. They use semi-supervised learning algo-

194

Automatic Generation of Regular Ezxpressions for Extracting Attribute...

rithms, thus reducing the need for initial tagged data, which is expensive
to obtain.

A more NLP-oriented approach is proposed in the work of Popescu
and Etzioni (2007). Their system, called OPINE, attempts to identify
product features and user opinions based on noun phrases derived from
online user reviews. First they extract noun phrases as candidate at-
tributes and then compute the PMI (pointwise mutual information) be-
tween the noun phrases and salient context patterns. Unfortunately, in in-
formal texts, the formulation approach does not work well. In the case
in question, product description may consist of loosely combined words,
phrases and numbers, usually grammatically incorrect from the formal point
of view.

In terms of its objective and methodology, this paper is the closest to the
work of Petrovski et al. (2014). Their goal was to extract product attributes
from e-shops’ product offers by means of regular expressions in order to
build well-structured product specifications. For this purpose, they present
a technique for learning regular expressions. The problem considered in that
article is almost identical to the one discussed in this paper. The genetic
algorithm approach is also similar. The difference is in the representation of
the regular expression and other components of the genetic algorithm.

Problem to Solve

The authors assume that the input data is a collection of short text
descriptions of medical products. These descriptions are derived from sales
documents, e.g. invoices issued by sellers to medical units. It is also as-
sumed that the descriptions were pre-selected by experts so that they refer
to products belonging to a single category, e.g. surgical gloves, intraocu-
lar lenses, or microplates. Examples of descriptions of medical products are
shown in Figure 1.

Each product is described with the same set of known attributes A;
(1t =1,2,...,a). It is assumed that an expert is able to specify the value
of a specific attribute A; of a product in a given product description or
indicate that there is no value of attribute A; in the product description.
Pairs consisting of a product description in which the expert found the
value of attribute A; and the value indicated by the expert are called posi-
tive examples. Pairs consisting of a product description in which the expert
determined that there is no value of attribute A; and the empty string are
called negative examples.

195

Tomasz Lukaszuk, Mariusz Ferenc

Sensor Flow Exhalation Ventilator Disposable For Evita Spirolog
Module Flow Sensor

Neb Block - 10-11 Lpm, Inlet Fitting: Chemetron
Flowmeter Assembly Without Cbl Vmax

Flowmeter Respiratory Oxygen Ohio-Ohmeda Male Dual Meters Y- Power Take Off 15ipm SOpsi
Coupler Ohmeda DISS Hand Tight Wagd

Neb Block - 89 Lpm

Nasal Pressure Probe, Small (bag Of 20)

Air Flowmeter, Alum, 15|, P-b

Flowmeter 02 0-15 No Fitting

50 Psi Oxy Reg 25ipm Cga 870 3p W/pt

Connector Circuit OD22mm ID15mm Oxygen Accessory Straight Latex Free

SENSOR, OXYGEN

Adapter DISS Male Air Puritan Bennet

Oxygen Fowmeters

Regulator E-cylinder 0-15

Figure 1. Examples of descriptions of medical products belonging
to the “Flowmeters” category

The problem consists in constructing a regular expression R able to
extract all the values indicated by the expert in positive examples and,
at the same time, not to extract anything in negative examples. In the case
where it is not possible to construct a regular expression that gives the
correct result for all examples, the regular expression R should generate
the least possible number of errors. Errors are situations when the regular
expression R extracts a different value than the one indicated by the ex-
pert, or does not extract anything in positive examples; or when the regular
expression R extracts a value in negative examples.

Methods

The authors’ approach to solving the problem presented in the “Problem
to solve” section is based on the genetic algorithm. However, the algorithm

196

Automatic Generation of Regular Ezxpressions for Extracting Attribute...

in question is not the genetic algorithm in the classical sense (Koza, 1992),
due to the fact that the authors’ algorithm does not contain too many
elements of randomness, therefore the selection of next-generation parents
is completely deterministic. The remaining steps of the algorithm, described
in detail in subsequent paragraphs, correspond to the scheme of the classical
genetic algorithm (Figure 2).

Next
generation
Crossover

-
-

Evaluation Mutation

(of population)

Selection

Figure 2. Diagram of the genetic algorithm for generating regular expressions

The genetic algorithm is an iterative optimization procedure. In each
iterative loop, the following steps are carried out sequentially: evaluation,
selection, and creation of the next generation of individuals through the use
of genetic operators, i.e. crossover and mutation. The procedure ends when
the new generation is no better than the previous one, or when a satisfactory
result in terms of the value of the evolutionary function has been achieved.
In addition, the classical genetic algorithm has many randomness aspects,
particularly at the step of selection and in the use of genetic operators.

To solve a problem using the genetic algorithm, the key issue is to
define the representation (Koza, 1992). In the authors’ algorithm, an indi-
vidual belonging to the population is the regular expression R, whose syntax
and semantics are based on Perl Compatible Regular Expressions (PCRE)
(Hazel, 2012), albeit with some limitations, detailed below.

The regular expression R consists of an ordered sequence of elements e;
(i=1,2,...,n):

R:el-eg-...-en

197

Tomasz Lukaszuk, Mariusz Ferenc

where - means concatenation operation. Element e; may be:
— terminal — a single character, a number or a string, including predefined
character classes \d (any single digit), \w (any single word character),

\s (any single whitespace), the wildcard . (any single character),

— character class — a set of allowed or disallowed characters, placed in

parentheses [1,

— either element — any number of elements e;, (k =1,2,...,m) connected
by operator |; it allows to match a string with one of elements ey.
In addition, each element e; has a specified count of occurrences: once or
not at all (?), one or more (+), zero or more (*) or exactly one (no sign).

According to the above representation, the regular expression
[+-]17\d+\.\d+ that allows to find a real number in the string, consists of
the following elements:

— e1 — character class with characters + and - and count of occurrences ?,
— eg — terminal \d with count of occurrences +,

— e3 — terminal \. with count of occurrences exactly one,

— e4 — terminal \d with count of occurrences +.

In addition, the regular expression R should have exactly one cap-
turing group, i.e. a subsequence of elements e; placed in parentheses
(and). The value extracted by the expression R from the examined
string is a substring included in the capturing group. The regular expression
[+-17(\d+)\.\d+ finds the real number, but the result of this extraction is
only the integer part of the found real number.

Another key aspect of the genetic algorithm is to determine the evalua-
tion criteria of the quality of individuals (Koza, 1992). In the discussed case,
the chosen criterion is the quality of regular expressions. The fitness func-
tion should be a monotonous function that receives the regular expression R
as input and returns a numeric value corresponding to the quality of R.

The regular expression R is used for each positive example and each
negative example. As a result of applying R to a single example, the first
matching substring found by R is taken. There are also cases where R is
unable to find anything in a particular example. The following parameters
are specified:

TP — number of positive examples where R correctly found the value,

FN — number of positive examples where R did not find the value or found
an invalid substring,

FP — number of negative examples where R incorrectly found a substring,
TN — number of negative examples where R correctly found nothing.

Based on these counts, a value between —1 and 1 is assigned to the regular

198

Automatic Generation of Regular Ezxpressions for Extracting Attribute...

expression R by calculating the Matthews correlation coefficient (MCC)
(Matthews, 1975):

TP-TN + FP-FN

Mee = J{TP+FP)(IP + FN){IN + FP)(IN + FN)

The MCC value equaling 1 represents the perfect situation, i.e. R correctly
found the values in all positive examples and correctly found nothing in all
negative examples. The MCC value equaling 0 is a result no better than
a random result. The MCC value equaling —1 indicates a total disagree-
ment between the received and the expected results, i.e. R found nothing or
incorrect substrings in all positive examples and incorrectly found substrings
in all negative examples.

For the purpose of implementation, the final form of the fitness function
is corrected as follows:

fitness(R) = 100 — 100 - MCC + 0.001 - length(R),

where length(R) returns the number of characters in the regular expres-
sion R.

The fitness(R) values are within the range (0,~200). The smaller the
fitness(R) value, the better the regular expression R. In addition, if two
regular expressions find exactly the same substrings, the shorter is the bet-
ter one.

After selecting the best individuals from the current population, they
are used to obtain the next generation. The new generation individuals
are formed by means of crossover of individuals of the present population
(Forrest, 1993).

In the authors’ approach, k (k < 100) regular expressions Ry, R, ..., R
with the lowest values of the fitness function are chosen from the cur-
rent population. Best regular expressions R1, Ro, ..., R are used to create
crossovers. Each best regular expression R; (1 <i < k) creates a crossover
with each of the remaining k — 1 regular expressions R; (j #). The scheme
of generating crossover of two regular expressions R; and R; is shown in be-
low equation. The result of the crossover operation is the regular expres-
sion R;y ;, which is able to find at least those substrings found by expression
R; or R;.

R;=e;1 e (€i3 c€iq eiS) €6
Rj = ej1-(ej2) - €53
Rixj = ei17 . (7 . €i2|€j1) . ((7 . €i3|ej2) . €i4? . €i5?) . (7 : ei6|ej3)

199

Tomasz Lukaszuk, Mariusz Ferenc

The second most commonly used genetic operator, apart from crossover,
is mutation. In the classic genetic algorithm, mutation is a random tweak
of a part of an individual (Koza, 1992).

In the authors’ approach, individual regular expressions are not mu-
tated. Instead, mutation is performed on the whole population. This
works in the following manner: after choosing k best regular expressions
Ri,R5,...,R; from the current population, and before creating their
crossovers as the next generation, a random regular expression Ry is ap-
pended to the pool of best expressions. The regular expression Ryyq is
the best matched random regular expression selected from 10,000 random
regular expressions, according to the fitness(R) function. The mutated pop-
ulation is used to create a new generation of regular expressions.

The algorithm can create quite complex regular expressions, especially
as a result of crossover. Some of their elements can be removed or simpli-
fied without affecting the found values. The simplified regular expression
assumes exactly the same fitness(R) value as the expression before sim-
plification. Simplification of regular expressions takes place after the best
expressions from the current population are selected. The expressions used
to create crossovers are simplified expressions.

Finally, what remains to be clarified are the issues of initiating and
stopping the iteration process. The initial population of regular expressions
is created on the basis of positive examples. For each such example, one reg-
ular expression is built and added to the initial population. Each character
in the substring indicated by the expert as a value is replaced by the appro-
priate predefined character class \d, \w or \s. In addition, the literal words
preceding and following the substring indicated by the expert are added to
the regular expression as terminals. The quick rule of building individuals
of the initial population is presented in Table 1.

Table 1. Examples of the creation of regular expressions added to the initial
population

Positive example Initial population regex

amplate skirt 384 wells flex plates blue skirt\s(\d\d\d) \swells
plate well .2ml 96u 2m1\s (\d\d)u

The iterative process stops when a regular expression for which the value
of the fitness(R) function is less than 1 is obtained, or when no regular
expression with a smaller fitness(R) function value than in the previous
iteration can be obtained in the next iteration.

200

Automatic Generation of Regular Ezxpressions for Extracting Attribute...

Experimental Evaluation

In this section, an experimental evaluation of the authors’ approach
described in the previous section is presented. Two experiments were con-
ducted and an attempt was made to construct regular expressions that
would allow to extract fragments representing the values of the considered

product attributes from short product descriptions.

The first experiment was of an academic character. It was intended to
confirm the correctness of the authors’ approach on a relatively simple case,
in which it was not difficult for a person to construct an appropriate regular

expression.

Table 2. Input data for experiment 1 — selected products from
the “Microplates” category

Product description Value
plate 34 microwpll 96 well microtite polystyrene disposable styrene vinyl 96
bottom nonsterile
plate 23 assay 96 well vinyl alpha numeric gird round u bottom 96
amplate skirt 384 wells flex plates blue 384
amplate 96 wells flex. plates pp blue 96
plate tissue culture 12 well multidishes and microwell thermo scientic biolite 12
plate tissue culture 330ul 96 well clear polystyrene standard bottom flat 96
bottom nontreated lid sterile
plate 48 well 5ml assay microwell polypropylene flat rectangular bottom 48
nonsterile
plate assay 0.19ml 96 well clear half area polystyrene untreated flat bottom 96
plate well .2ml 96 u 96

axygen storage microplates

plate multiwell 100 um clear nonsterile multiscreen mesh

lid plate assay sterile rigid styrene with short lip for bar code reader
without notch

plate microplate type p4

v-bottom collection plates

well plate bioblock blue

system plate 0.5ml topas with glass flat bottom vial multitier

The input data are descriptions of products assigned to the “Micro-
plates” category (Table 2). One of the attributes that characterizes the plate
is the number of wells. The values of the attribute are integers. In 9 descrip-

201

Tomasz Lukaszuk, Mariusz Ferenc

tions, the desired fragments, which should be found by the resulting regular
expression, are indicated (positive examples). In the remaining 7 descrip-
tions, the resulting regular expression should not find anything, as there is
no attribute value in the description (negative ezamples).

The regular expression resulting from the procedure described in the
“Methods” section is formulated as follows:

(\d\d(?:\d)?)\s(?:u|well|wells)

The expression used for input descriptions gives an error-free result, i.e. in all
descriptions where the desired value to be found is marked, the expression
finds the value, while in all descriptions where the value is not marked,
the expression returns an empty answer. The obtained result, i.e. the ef-
fective regular expression, initially confirms the validity of the authors’ ap-
proach.

The second experiment is more closely related to a practical situation,
i.e. one that is likely to happen in real life.

The input data are descriptions of products assigned to the “Dental
drills” category (Table 3). The attribute under consideration is the length of
the drill bit measured in millimeters. The attribute can take values that are
integers, as well as values expressed as a range with minimum and maximum
lengths. The input data consists of 121 examples, 66 positive examples and
55 negative examples.

Table 3. Input data for experiment 2 — products from the “Dental drills”
category

Product description Value

drill twist 127mm od1.9mm without stop nonradiolucent dental end for 97
variax hand locking plate system

mini-line angular drill att.dental shank

drill 28mm right angle assort gates glidden nti 28

drill twist 4.2 short tiger

drill twist 4.70mm 5 sm blue for implant

drill twist 3.35 8-13mm sp 8-13
drill dental 125mm od3.3mm short bone level tapered prole stainless steel 25
drill twist 110-18mm 0d2.4-2.8mm step parallel disposable 10-18

zimmer dental drill stop kit

202

Automatic Generation of Regular Ezxpressions for Extracting Attribute...

In this case the task was so complex that the procedure described in the
“Methods” section failed to generate a regular expression that would cor-
rectly find the values in all the input descriptions. The best regular expres-
sions, i.e. those with the lowest fitness value are as follows:

(7:5mmx 1) (\d(?7:\d)?7(?:\=-1\.)?7(?:\d)?(?:\d)?) (?:\s|mm |mm1)
(7:\)7(7:5mmx | \s 1) (\d(7:\-\dI\s) (7:\. [\ ?7(?:\d)?) (?:mm | mm1)

The first one was able to find a value correctly in 35 positive examples,
whereas in the remaining 31 positive examples and in all the 55 negative
examples, the expression returned an empty value. The second expression
correctly found the value in 56 positive examples, whereas in 10 positive
examples and in all the 55 negative examples it returned an empty value;
in the case of 2 positive examples, however, it found a value other than the
correct one. The last situation is the most undesirable, as it is less of an error
not to find the value than to find an incorrect value.

Conclusions and Future Works

The paper presents the concept of a procedure that allows to generate
a regular expression to extract the value of attributes of medical products
from their text descriptions. The approach is based on the genetic algo-
rithm and the authors’ elaborations in the area of representing the regular
expression and assessing its quality, as well as that of the genetic operators
of crossing and mutation.

The conducted experiments presented in the paper showed the effec-
tiveness and considerable possibilities of the proposed method. At the same
time, the course and results of the experiments highlighted the shortcom-
ings and possible directions for improvement of the proposed approach. One
problem to be solved in the future is calculation time. In essence, a genetic
algorithm is not a computationally efficient procedure, but some of its ele-
ments can be implemented using parallel programming. Another improve-
ment may consist in adapting the procedure to the possibility of generating
several outputted regular expressions, each covering only some of positive
examples.

Acknowledgments

This work was supported by the grant S/WI/2/2018 from Bialystok
University of Technology founded by Ministry of Science and Higher Edu-
cation.

203

Tomasz Lukaszuk, Mariusz Ferenc

REFERENCES

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., & Etzioni, O. (2007).
Open information extraction from the web. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (pp. 2670-2676).
1JCAI, Hyderabad, India.

Chang, C.-H., Kayed, M., Girgis, M. R., & Shaalan, K. F. (2006). A survey of web
information extraction systems. IEFE Transactions on Knowledge and Data
Engineering, 18(10), 1411-1428.

Forrest, S. (1993). Genetic algorithms — principles of natural selection applied
to computation. Science, 261(5123), 872-878.

Ghani, R., Probst, K., Liu, Y., Krema, M., & Fano, A. (2006). Text mining for
product attribute extraction. ACM SIGKDD Ezxplorations Newsletter, 8(1),
41-48.

Hazel, P. (2012). PCRE — Perl-compatible reqular expressions (original API) [Li-
brary Functions Manual]. Retrieved from http: //pecre.org/pere.txt

Kopcke, H., Thor, A., Thomas, S., & Rahm, E. (2012). Tailoring entity resolu-
tion for matching product offers. In Proceedings of the 15th International
Conference on Extending Database Technology (pp. 545-550). ACM, Berlin,
Germany.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Vol. 1). Cambridge, MA: MIT Press.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) -
Protein Structure, 405(2), 442-451.

Petrovski, P., Bryl, V., & Bizer, C. (2014). Learning regular expressions for the
extraction of product attributes from e-commerce microdata. Proceedings of
the Second International Conference on Linked Data for Information Ex-
traction, 1267, 45-54.

Popescu, A.-M., & Etzioni, O. (2007). Extracting product features and opinions
from reviews. In A. Kao & S. R. Poteet (Eds.) Natural Language Processing
and Text Mining (pp. 9-28). London: Springer.

Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases,
1(3), 261-377.

Thompson, K. (1968). Programming techniques: Regular expression search algo-
rithm. Communications of the ACM, 11(6), 419-422.

Wu, F., & Weld, D. S. (2010). Open information extraction using Wikipedia. In Pro-
ceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (pp. 118-127). Association for Computational Linguistics, Upp-
sala, Sweden.

204

