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Abstract. The study investigates the possibility of applying texture analy-
sis (TA) for testing Duchenne Muscular Dystrophy (DMD) therapies. The work
is based on the Golden Retriever Muscular Dystrophy (GRMD) canine model,
in which 3 phases of canine growth and/or dystrophy development are identified:
the first phase (0–4 months of age), the second phase (from over 4 to 6 months),
and the third phase (from over 6 months to death). Two differentiation prob-
lems are posed: (i) the first phase vs. the second phase and (ii) the second phase
vs. the third phase. Textural features are derived from T2-weighted Magnetic
Resonance Imaging (MRI) images. In total, 37 features provided by 8 differ-
ent TA methods (statistical, filter-based, and model-based) have been tested.
The work focuses on finding such textural features that evolve along with the
dog’s growth. These features are indicated by means of statistical analyses and
eliminated from further investigation, as they may disturb the correct assess-
ment of response to treatment in dystrophy. The relative importance of each
remaining feature is then assessed with the use of the Monte Carlo (MC) pro-
cedure. Furthermore, feature selection based on the MC procedure is employed
to find the optimal subset of age-independent features. Finally, three classi-
fiers are used for evaluating different sets of textural features: Adaptive Boost-
ing (AB), back-propagation Neural Network (NN), and nonlinear Support Vec-
tor Machines (SVM). The best subsets of age-independent features ensure 80.0%
and 78.5% of correctly identified phases of dystrophy progression, for the first
(i) and second (ii) differentiation problem respectively.

Introduction

Duchenne muscular dystrophy (DMD) is a hereditary genetic disorder
caused by the absence or reduced expression of dystrophin, a protein that
plays a key structural role in muscle fiber function (Guiraud et al., 2015).
The disease is found predominantly in male children and young men, and
results in a progressive destruction of all the striated muscles. The affected
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individuals usually die by the age of 30, due to respiratory failure (Lo-
Mauro et al., 2015) or cardiomyopathy (Spurney, 2011). So far, many ex-
tensive attempts have been made to elaborate therapies for DMD (Salma-
ninejad et al., 2018; Shieh, 2015); however, none of them turned out to be
effective enough. For the time being, there is no cure and various healthcare
practices can only improve the life expectancy or alleviate the patient’s suf-
fering (Birnkrant et al., 2018a, 2018b). In view of the above, the search for
an efficient DMD therapy is continually of vital interest.
An important problem encountered while elaborating therapeutic stra-

tegies is the right choice of protocols for the assessment of treatment effects.
Seeing that such an assessment must often be made repeatedly over a period
of time, the use of invasive procedures, even highly effective ones, is unde-
sirable here. For instance, biopsies for histopathological analysis can alter
muscle integrity and weaken the muscles, already damaged by the disease.
In turn, other measurement tools, e.g. evaluating motor function, muscle
strength, respiratory function or disability, are not entirely satisfactory and
sometimes difficult to perform on non-ambulant patients (EMA, 2015). In
this context, great hope is placed in Magnetic Resonance Imaging (MRI)
techniques, which are non-invasive and can provide relevant information
about the stage of neuromuscular disorders (Finanger et al., 2012). Nev-
ertheless, as a proper interpretation of image content is not a trivial task,
muscle imaging is still used as complementary to clinical and electrophysi-
ological examination in neuromuscular disease (Simon et al., 2016). Its role
could be increased by using (semi)automated computer-aided methods for
the analysis and interpretation of muscle images. Those based on texture
analysis (TA) seem to be particularly promising (de Certaines et al., 2015;
Lerski et al., 2015).
Some works assessing the possibility of applying texture analysis for

muscular (dystrophic) tissue characterization have already been undertaken,
using different animal models, dogs- or mice-based. They focused either on
differentiation between groups of healthy and dystrophic muscles at sev-
eral stages of animal growth and/or disease progression (Duda et al., 2015;
Fan et al., 2014; Wang et al., 2013; Yang et al., 2015), or differentia-
tion among several phases of dystrophy development in affected animals
(Duda et al., 2016; Martins-Bach et al., 2015). These works showed that the
use of textural features as tissue descriptors can lead to a relatively high dis-
tinguishability of the considered muscle groups (see, for example, the study
by Duda et al. (2015)) and that textural features can demonstrate a bet-
ter potential, in comparison with other, non-texture-based, MRI biomarkers
(Fan et al., 2014; Martins-Bach et al., 2015). Furthermore, they allowed to
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determine which texture analysis methods can provide the most useful infor-
mation, in terms of the considered discrimination process. In general, highly
effective features turned out to be those derived from the co-occurrence
matrices (Haralick et al., 1973), the run-length matrices (Galloway, 1975),
the gray level difference matrices (Weszka et al., 1976), or the gray level
histogram.
It should be noted that evolution of muscle texture properties over time

could result from (at least) two processes taking place simultaneously: the
individual’s growth and disease progression. However, the afore-cited works
did not evaluate how each of these two processes influences the character-
istics of muscle texture separately. If a textural feature varied significantly
form one dystrophy phase to another, or if its values were significantly dif-
ferent for healthy and affected animals, the feature was considered as “po-
tentially useful” in the differentiation between the examined muscle classes.
It was not estimated whether or how the feature value depended on the an-
imal’s age itself, while differentiating among several phases of dystrophy
development (progressing with age) in affected animals. If texture analysis
was to be used to test the therapy’s effects, special attention should be paid
to features whose value evolves along with the individual’s growth. Ignoring
such an evolution could alter the correct assessment of dystrophy progres-
sion or its response to treatment. On the other hand, constructing a tool
for therapy assessment based on age-dependent features could be difficult
if it is not known how slowing down the disease can influence the summary
changes in feature values.
The first objective of the present study is to evaluate which textural

features may significantly change with the individual’s growth. Such fea-
tures are indicated by means of statistical analyses and eliminated from
further investigation. The second objective is to measure the relative impor-
tance of each remaining (age-independent) feature in identifying the dys-
trophy phase. This task is accomplished by applying the modified Monte
Carlo (MC) procedure. Furthermore, the study assesses the best possible
differentiation of dystrophy phases that could be achieved solely with the
use of features that do not depend on the individual’s age. At this stage,
apart from the whole set of age-independent features, its different subsets,
found based on the modified Monte Carlo procedure, are also examined.
The subsets are tested with the use of three classifiers: the Adaptive Boost-
ing – AdaBoostM1 (AB), the back-propagation Neural Network (NN), and
nonlinear Support Vector Machines (SVM).
The study is based on the Golden Retriever Muscular Dystrophy

(GRMD) canine model, which is acknowledged to be the closest to hu-
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man DMD and commonly used in research on dystrophy progression or
therapy trials (Kornegay, 2017). In the model, three phases of canine growth
and/or dystrophy development are distinguished, in reference to histolog-
ical changes in muscle structure, caused by disease progression (de Cer-
taines et al., 2015): the first phase (0–4 months of age), the second phase
(from over 4 to 6 months), and the third phase (from over 6 months to
death). Due to the fact that it is still relatively difficult to differentiate
among the three considered dystrophy phases (Duda et al., 2016), this
preliminary work focuses on two-class classification problems, distinguish-
ing only between adjacent phases: (i) the first phase vs. the second phase
and (ii) the second phase vs. the third one. Textural features are derived
from T2-weighted MRI images of canine hindlimb muscles. In total, 37 fea-
tures obtained with eight different TA methods (statistical, filter-based, and
model-based) are tested.

Materials and Methods

Four experiments were planned and carried out separately for each dif-
ferentiation problem, i.e. for (i) the first phase vs. the second phase and
(ii) the second phase vs. the third phase. The objective of the first (pre-
liminary) experiment was to determine whether it was at all possible to
distinguish among healthy dogs at different phases of their growth. At this
step, all the possible textural features (37 in total) were used. In the second
experiment, only healthy dogs were considered and statistical analyses were
performed in order to find the features whose values could evolve along
with the dog’s growth. Such features were excluded from further analy-
ses. In the third experiment, one concerning dystrophic dogs, the relative
importance (in terms of the discrimination process) of each remaining fea-
ture was evaluated and feature selection was performed to find optimal
subsets of age-independent features. Finally, in the fourth experiment, dif-
ferent classifiers were used to examine which subsets of age-independent
features can ensure the best possible identification of the dystrophy phase
in GRMD dogs. The results obtained at this step were compared to those
corresponding to the use of all the initially tested features (age-dependent
and age-independent put together).

Creation of the Data Base. The experiments were conducted on
a total of 422 T2-weighted MRI images, derived from five GRMD dogs
and five healthy controls. The dogs were bred in a dedicated gene therapy
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facility at the National Veterinary School of Alfort, France and were imaged
at the Nuclear Magnetic Resonance Laboratory of the Institute of Myology
in Paris, France. All the procedures applied to the dogs during the course of
the trial were carried out in conformity with the Guide for the Care and Use
of Laboratory Animals (National Research Council, 2011) and approved by
the Institutional Animal Use and Care Committee, respecting the European
legislation on laboratory animals and animal studies.
All the details concerning the acquisition protocols were fully described

by Thibaud et al. (2012). According to their specification, images were ac-
quired on a 3T Siemens Magnetom Trio TIM imager/spectrometer (Siemens
Healthcare, Erlangen, Germany) with a standard, circularly polarized ex-
tremity coil. The in-plane resolution was 0.56 mm × 0.56 mm, the slice
thickness was 3 mm, and the inter-slice gap was 7.5 mm. The slice ori-
entation was axial with respect to the long axis of the muscle. As for
the considered series of T2-weighted images, the repetition time (TR) was
3,000 ms, the first echo time (TE1) and the second echo time (TE2) were,
respectively, 6.3 ms and 50 ms. The size of all images was 240 × 320
pixels.
For each dog, between 3 and 5 examinations were performed over a max-

imum of 14 months, which amounted to 38 examinations in total. For the
needs of the present study, each examination was assigned to one of the
three considered phases of canine growth and/or dystrophy development.
This attribution was based on the age of the dog at the time of exami-
nation. It was assumed that both the dog’s development and the course of
the disease were fairly similar across different dogs. In total, 14, 9, and 15 ex-
aminations were assigned to the first, second and third phase, respectively.
The exact examination moments, with respect to the dog’s age, are marked
for each dog in Table 1.
Only one series of T2-weighted images per examination was selected for

the study. Each series contained between 12 and 14 images. A small number
of images located at the very beginning or end of the series were not con-
sidered because it was impossible to identify any quite large and well visible
muscle areas on them. On the remaining images, up to four different types of
muscles were segmented: the Extensor Digitorum Longus (EDL), the Gas-
trocnemius Lateralis (GasLat), the Gastrocnemius Medialis (GasMed), and
the Tibial Cranialis (TC). If a given muscle was visualized in the image, two
Regions of Interest (ROIs) were designated for it, one for each limb – left
and right. Only ROIs with the size of at least 100 pixels were considered
suitable for analysis.
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Table 1. The examination moments (marked with ‘E’), with respect to the
dog’s age given in months. Each examination is assigned to one of the
three phases of canine growth and/or dystrophy development. Each
row of the table corresponds to a different dog

phase of canine growth and/or dystrophy development
cohort dog’s:

first second third
type no./age

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 – E – E – E – E – – – – – –

2 – – – E E – – E – – – – – –

GRMD 3 – E – – E – – – E – E – – –

4 – – – E E – – E – – E – – –

5 – E – E – E – – – – – – – –

1 – – – – E – – E – – E – – –

2 – E E – E – – E – – – – – E

healthy 3 – E – E – E – E – – – E – –

4 – – – E – – – E – – E – – –

5 – E E – E – – E – – – – – –

Figure 1 shows two sample T2-weighted MRI images, used in the ex-
periments. The images were acquired on one GRMD dog (the left one)
and one healthy control (the right one), at the age of 8 months. Delin-
eated ROIs cover the four types of muscles considered in the study: EDL,
GasLat, GasMed, and TC. Tables 2 and 3 contain, respectively, the num-
bers of corresponding ROIs and the average ROIs’ sizes given separately for
each cohort type (GRMD, healthy), each muscle, and each phase of canine
growth and/or disease development.
As the average pixel value of the reference object (placed in the image

view) varied significantly between different images, even those belonging to
the same series, images had to be pre-processed. The pre-processing con-
sisted in linear transformation of image pixel values, so that the reference
object was of the same average pixel value on all the resulting images. Af-
ter completing the procedure, the images were converted from the initial
Analyze format to the 8-bit BMP format. In the course of the conversion,
only a part of the full range of the initial pixel values from Analyze im-
ages (so-called Window) was mapped to a range of 0 to 255 gray levels
in the resulting BMP images. The Window parameter was chosen so as
to cover only the full range of pixel values observed in the whole set of
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(a) GRMD dog (b) healthy dog

Figure 1. Examples of T2-weighted MRI images, used in the experiments.
The images were acquired on a GRMD dog (a) and one healthy
control (b), at the age of 8 months. Delineated ROIs cover the four
types of muscles considered in the study: EDL, GasLat, GasMed,
and TC. Each of the ROIs has a size larger than 100 pixels

Table 2. Numbers of ROIs used in the experiments

Muscle
phase cohort type

EDL GasLat GasMed TC

healthy 52 30 60 73
first

GRMD 45 43 64 53

healthy 48 24 37 64
second

GRMD 56 34 43 87

healthy 136 85 113 157
third

GRMD 73 31 60 81

the available ROIs. The original pixel values below the lower and above the
upper limit of Window were transformed to 0 and 255, respectively. This
allowed to obtain the maximum diversity of pixel gray levels in the ana-
lyzed ROIs.
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Table 3. Average sizes of ROIs used in the experiments

Muscle
phase cohort type

EDL GasLat GasMed TC

healthy 202 161 290 205
first

GRMD 156 189 293 165

healthy 239 184 395 255
second

GRMD 189 220 379 250

healthy 279 220 426 316
third

GRMD 160 199 328 236

Then, eight different texture analysis methods (statistical, filter-based,
and model-based) were applied in order to characterize the muscular tissue
within each ROI. They were implemented in the homemade application
Medical Image Processing (Duda, 2009). In total, 37 textural features were
calculated:
– Avg (average), Var (variance), Skew (skewness), and Kurt (kurtosis)
– first order statistics (abbreviated FOS), obtained from a gray level
histogram,
– AngSecMom (angular second moment or energy), Contrast (contrast or
inertia), Corr (correlation), SumSqr (sum of squares or variance), In-
vDiffMom (inverse difference moment or local homogeneity), SumAvg
(sum average), SumVar (sum variance), SumEntr (sum entropy), Entr
(entropy), DiffVar (difference variance), and DiffEntr (difference en-
tropy), from the co-occurrence matrices (COM) introduced by Haral-
ick et al. (1973),
– ShortEmph (short run emphasis), LongEmph (long run emphasis),
GlNonUni (gray level non-uniformity), RlNonUni (run length non-
uniformity), Fraction (fraction of image in runs), LowGlrEmph (low
gray level runs emphasis), HighGlrEmph (high gray level runs em-
phasis), and RlEntr (run length entropy), from the run length matri-
ces (RLM), a set of features proposed by Galloway (1975), then ex-
tended by Chu et al. (1990) and Albregtsen et al. (2000),
– GldmAngSecMom (angular second moment), GldmEntr (entropy), and
GldmMean (mean), form the gray level difference matrices (GLDM)
(Weszka et al., 1976),
– EntrE3L3, EntrS3L3, EntrS3E3, EntrE3E3, EntrS3S3 – entropy of an
image region filtered, respectively, with the following pairs of Laws’
masks: E3L3 and L3E3, S3L3 and L3S3, S3E3 and E3S3, E3E3 and
E3E3, and S3S3 and S3S3 (LTE) (Laws, 1980),
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– GradAvg (average), GradVar (variance), GradSkew (skewness), and
GradKurt (kurtosis), from the gradient matrix (GM) (Lerski et al.,
1993),
– FractalDim – fractal dimension based on the fractional Brownian motion
model (FB) described by Chen et al. (1998),
– AutoCorr – normalized autocorrelation coefficient (AC) (Gonzalez
& Woods, 2002).
Four standard directions of pixel runs (0◦, 45◦, 90◦, and 135◦) were

considered when applying the COM, RLM, GLDM, FB, and AC methods.
Since many ROIs were rather narrow and of an irregular shape, only the
smallest possible distances between pairs of pixels (1 and 2) were taken into
account for the COM, GLDM, FB and AC methods. In fact, with the use
of larger distances, a rather considerable number of ROIs would have to
be excluded from the analysis. This would have been undesirable due to
the limited size of the available data set. Moreover, for the COM, RLM
and GLDM methods, the number of gray levels was reduced from 256 to 64,
due to the fact that such a reduction proved to be the most advantageous,
leading to the best classification results (Duda et al., 2016).
The co-occurrence matrices, run length matrices, and gray level differ-

ence matrices were constructed separately for each possible direction of pixel
runs and (if applicable) for each of the two considered distances between
pairs of pixels. Features calculated at different directions and/or distances
were averaged.

Statistical Analysis. The statistical analyses concerned only those
features that were obtained from healthy dogs. They were performed for
each feature separately, in order to determine whether the differences
in the feature values observed between two compared phases of canine
growth were statistically significant. The following pairs of phases were con-
sidered: (i) the first and the second phase and (ii) the second and the third
phase.
The choice of appropriate statistical tests turned out to be a non-trivial

task. An important property of the database was that it contained images
acquired repeatedly on the same individuals, at different moments of their
lives. Effectively, the values of a feature derived from several examinations
of the same individual might be related one to another. However, the use of
tests for dependent variables became problematic due to the fact that each
individual was examined a different number of times and at different ages,
within the same phase of its growth. Furthermore, the numbers of ROIs
(from which the features were calculated) varied from one examination to
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another. Finally, ROIs designated for each examination corresponded to sev-
eral different slice locations within a given muscle. In this case, it was not
possible to create triples of feature values (or n-tuples, with n > 3) in which
values at a given position would correspond to the same conditions of mea-
surement: the same moment of an individual’s life and the same image slice.
Therefore, only information about the phase attributed to each value of fea-
ture was used. As the aim of this preliminary study was to find the features
whose values might generally differ between phases of growth, regardless of
the individual taken into account, the best possible solution seemed to be
performing such tests as for independent samples.
In all the cases, the standard significance level (α = 0.05) was used.

First, the Shapiro-Wilk test was used to determine whether each of the
two compared samples of feature values followed the normal distribution.
If both samples met this condition, the T-test was applied to check if the
mean values of two samples were statistically different from each other, at
a significance level of 0.05. Otherwise (if at least one of the samples did
not meet this condition), the Mann-Whitney U-test was used to check the
above. All the statistical analyses were performed with Statistica software,
version 13.1 (StatSoft, Inc., 2016).

Assessing the Relative Importance of Feature, Selection of

Features, and Classification. The relative importance (usefulness) of
each textural feature in identifying the phase of dystrophy in GRMD dogs
was assessed using the Monte Carlo procedure, initially described by Dra-
miński et al. (2008). Its modified version, used in this study, was proposed
by Duda et al. (2016) and consisted in multiple repetitions of a single selec-
tion procedure, run on a “truncated” data set. Such data set was created
by a random choice of 2/3 initial observations and no more than 20% of the
initially used features (6 features were always chosen here). A single selec-
tion procedure was repeated 250,000 times, each time with a different subset
of observations and features, and was based on the best-first strategy with
the forward search algorithm. During this process, a supervised, wrapper
method (Kohavi & John, 1997) combined with C4.5 tree (Quinlan, 1993)
and 10-fold cross-validation was applied for the evaluation of each candidate
subset of features.
After completing the entire MC selection procedure, the “incidence fre-

quency rate” (IFR, the ratio between the number of cases in which the
feature was selected and the number of times it occurred in the subsets of
randomly chosen features in truncated data sets) was calculated for each fea-
ture and was considered as a determinant of feature usefulness. The features

130



MRI Texture-Based Recognition of Dystrophy Phase in Golden...

were then ranked according to their IFR values (from the most to the least
selected) and different numbers of the top ranked features were tested. The
subset of features ensuring the best identification of the dystrophy phase
was finally assumed as optimal.
All the selection procedures were performed with Weka software

(Hall et al., 2009). Additional tools for generating truncated data sets in
the modified MC procedure and creating feature incidence frequency rank-
ings were implemented by the author in C++ language.
The usefulness of each of the obtained subsets of textural features (com-

posed of: all tested features, all age-independent features, and features se-
lected from among the age-independent ones) was assessed on the basis of
the classification accuracy that the subset could ensure. Classification exper-
iments were also performed withWeka. At this step, the following classifiers
were separately used:
– Ensemble of Classifiers with an Adaptive Boosting voting scheme –
AdaBoostM1 (AB) (Freund & Schapire, 1997) using C4.5 classifier as
the underlying algorithm,
– back-propagation Neural Network (NN) (Bishop, 1995) with a sigmoidal
activating function and one hidden layer wherein the number of neurons
was equal to the average value of the number of features and the number
of classes,
– Support Vector Machines (SVM) (Vapnik, 2000) using the Sequential
Minimal Optimization (SMO) algorithm (Platt, 1998) and a second-
degree polynomial kernel.
Classification accuracies were assessed using 10-fold cross-validation,

repeated 10 times. Each time, 100 partial results were averaged.

Results and Discussion

All the experiments were repeated separately for each of the considered
types of muscles: EDL, GasLat, GasMed, and TC.

Differentiation Between Phases of Growth in Healthy Dogs.

The classification accuracies (with standard deviation) for the preliminary
experiment are presented in Table 4, separately for each classifier, i.e. Adap-
tive Boosting, Neural Network, and Support Vector Machines. Moreover, Ta-
ble 4 contains (for comparison purposes) the classification results obtained
when phases of dystrophy development in GRMD dogs were differentiated
with all the possible features.
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It could be observed that the percentage of correctly identified phases
of canine growth in healthy dogs is quite high, exceeding 84% for both
the differentiation problems, i.e. (i) and (ii). This suggests that there may
exist features that evolve with the dog’s growth and that their differences
between the adjacent phases may possibly be so large as to enable the correct
identification of the dog’s age. When comparing the results provided by
the same classifier, for the same differentiation problem, and for the same
type of muscle, it could be noticed that differentiation between phases of
canine growth in healthy dogs is often more pronounced than differentiation
between dystrophy phases in GRMD dogs (differences reaching up to 9.2%
for problem (i) and up to 28.9% for problem (ii)). One could therefore
suppose that a good “recognition of dystrophy phase” in GRMD dogs could
actually be related to changes in muscles occurring with the dog’s growth
and not necessarily with dystrophy development. Nevertheless, it is not
known if these are the same features that ensure a good recognition of the
considered phases in healthy and in GRMD dogs. This justifies the need for
further analyses.

Table 4. Classification accuracies (and standard deviations) [%] achieved with
the use of all the 37 initial features, for two differentiation problems:
(i) the first phase vs. the second phase and (ii) the second phase
vs. the third phase. The experiment consisted in identifying the
phase of canine growth in healthy dogs and the phase of dystrophy
development in GRMD dogs. The results were obtained by application
of Adaptive Boosting (AB), Neural Network (NN), and Support Vector
Machines (SVM) classifiers

Muscle
problem classifier cohort type

EDL GasLat GasMed TC

(i)
first phase
vs.

second phase

healthy 71.0 (6.7) 71.0 (9.1) 70.3 (7.4) 75.7 (5.3)
AB

GRMD 76.2 (7.4) 68.8 (8.1) 76.6 (5.3) 75.1 (5.0)

healthy 80.5 (6.0) 67.5 (7.8) 73.0 (6.6) 76.4 (5.8)
NN

GRMD 72.5 (6.6) 67.8 (7.5) 78.8 (5.6) 75.0 (5.3)

healthy 84.5 (5.2) 71.3 (8.9) 80.1 (6.1) 82.6 (5.5)
SVM

GRMD 75.3 (6.7) 70.3 (7.9) 81.6 (5.9) 76.0 (5.1)

(ii)
second phase
vs.

third phase

healthy 78.5 (3.7) 73.3 (5.6) 79.5 (4.1) 80.3 (3.3)
AB

GRMD 72.8 (5.8) 59.3 (9.6) 65.6 (7.2) 69.5 (5.6)

healthy 76.0 (4.1) 81.5 (5.9) 80.3 (4.2) 75.9 (4.3)
NN

GRMD 68.2 (6.6) 52.6 (9.2) 64.7 (7.5) 71.9 (5.0)

healthy 78.6 (4.0) 76.0 (5.2) 84.2 (3.8) 80.1 (3.5)
SVM

GRMD 79.9 (5.3) 60.1 (9.3) 62.0 (7.6) 74.5 (4.8)
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Evaluating the Usefulness of Each Feature and Feature Selec-

tion on Age-Independent Features. The results for the second and the
third experiment are combined and presented in common tables: in Table 5 –
for the first (i) differentiation problem (the first phase vs. the second phase)
and in Table 6 – for the second (ii) differentiation problem (the second phase
vs. the third phase). For each table, the features with statistically significant
differences (α = 0.05) between values in two considered phases of growth
in healthy dogs are marked with an em dash (“—”). These were eliminated
from further analyses. The remaining features were used in differentiation
between phases of dystrophy progression in affected dogs. The correspond-
ing numbers are the frequencies of selections (IFR) in the modified Monte
Carlo procedure.
It can be seen that sets of features considered to be dependent on the

dog’s age are different for each differentiation problem, (i) and (ii) and vary
between the four analyzed types of muscles, i.e. EDL, GasLat, GasMed
and TC. For example, when the first two phases of the dog’s growth were
differentiated based on EDL’s texture – only 8 features (of the 37 tested)
showed statistically significant differences between phases. However, when
distinguishing between the second and third phase, based on the same
muscle, as many as 20 features demonstrated significant differences. Only
3 features belonged to the common part of the aforementioned feature sets.
In turn, TC muscle provided 24 and 7 textural features differing from one
phase to another, respectively for the first (i) and the second (ii) differen-
tiation problem. The obtained results suggest that some features can only
evolve from the dog’s birth to a certain moment of its life, while other
features begin to change only after the dog reaches a certain age. More-
over, they indicate that the texture of each muscle type in a given phase
of the dog’s growth can have different properties. Therefore, it would not
be advisable to process all muscles at a time, ignoring their type.
Finally, it can be noted that many textural features identified in the ref-

erenced works as “potentially useful” for the characterization of dystrophy
development turned out to be age-dependent and thus were designated for
elimination. In some cases, this concerned as many as over half the number
of COM-, RLM-, and GLDM-based features (see, for example, the results
for GasMed and TC muscles in the first differentiation problem (Table 5)
or GasMed muscle in the second differentiation problem (Table 6)). As for
the remaining (age-independent) COM-, or RLM-based features, they still
demonstrated their usefulness, being quite frequently selected by the modi-
fied MC procedure. Depending on the differentiation problem, other features
were also present in the selected subsets of features, e.g. FOS – for prob-
lem (i) or LTE-based – for problem (ii).
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Table 5. The first (i) differentiation problem: the first phase vs. the second
phase. Features marked by an em dash (“—”) demonstrated statistically
significant differences between the considered phases of growth in
healthy dogs (α= 0.05). The remaining features were used in the
identification of dystrophy phases in GRMD dogs. The corresponding
numbers are incidences of selections [%] in the modified MC procedure

Muscle
Feature

EDL GasLat GasMed TC

Avg — — 21.16 —
Var 29.96 35.47 — —
Skew 28.34 — 38.23 27.06
Kurt 60.79 12.97 34.83 —
AngSecMom 68.53 22.40 — 34.37
Contrast 46.47 63.59 — —
Corr 10.04 12.17 25.08 15.37
SumSqr 19.42 56.07 — —
InvDiffMom 81.42 29.58 — —
SumAvg — — 28.67 —
SumVar 17.04 17.19 — 22.82
SumEntr 27.26 22.84 — 14.74
Entr 33.76 18.45 — 74.78
DiffVar 39.60 63.41 62.41 —
DiffEntr 32.87 56.41 — —
ShortEmph 15.66 26.51 — —
LongEmph 48.76 23.79 — —
GlNonUni 42.58 19.41 — —
RlNonUni 15.88 21.12 — 61.92
Fraction 30.68 19.02 — —
LowGlrEmph — — 27.44 —
HighGlrEmph — — 17.87 —
RlEntr — 25.74 72.54 27.47
GldmAngSecMom 57.24 24.89 — —
GldmEntr 32.30 46.27 — —
GldmMean 36.35 32.37 — —
EntrE3L3 31.89 11.45 — 20.89
EntrS3L3 19.31 — — —
EntrS3E3 19.71 16.06 — 15.67
EntrE3E3 45.51 19.51 — 17.86
EntrS3S3 — 21.00 — 15.36
GradAvg 50.99 43.30 — —
GradVar — 26.60 60.13 —
GradSkew 60.22 10.77 25.76 —
GradKurt 48.04 8.64 18.15 —
FractalDim 9.84 9.03 24.37 —
AutoCorr — 21.59 — 11.83
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Table 6. The second (ii) differentiation problem: the second phase vs. the third
phase. Features marked by an em dash (“—”) demonstrated statistically
significant differences between the considered phases of growth in healthy
dogs (α= 0.05). The remaining features were used in the identification
of dystrophy phases in GRMD dogs. The corresponding numbers are
incidences of selections [%] in the modified MC procedure

Muscle
Feature

EDL GasLat GasMed TC

Avg 50.51 — — 53.61
Var — 15.71 19.47 38.70
Skew — 24.08 14.85 —
Kurt — 13.49 12.53 —
AngSecMom 12.26 — — 16.37
Contrast — 12.34 — 15.46
Corr 17.16 13.44 — 19.30
SumSqr — 33.09 17.58 27.14
InvDiffMom 9.70 — — 42.20
SumAvg 55.86 — — 56.22
SumVar — 9.50 12.83 22.19
SumEntr 10.17 10.55 17.70 29.57
Entr 23.12 15.34 35.52 17.84
DiffVar — 10.54 20.90 22.10
DiffEntr — 24.89 — 27.52
ShortEmph 9.56 — — 11.79
LongEmph 16.99 — — 11.79
GlNonUni 34.10 — 39.27 —
RlNonUni — 36.78 71.41 —
Fraction 14.75 — — 13.94
LowGlrEmph 47.15 — — 67.00
HighGlrEmph 56.93 — — 42.59
RlEntr — 23.09 11.27 9.37
GldmAngSecMom 24.16 17.55 — 29.87
GldmEntr — 26.73 — 23.90
GldmMean — 18.83 — 28.64
EntrE3L3 — 27.91 20.75 13.83
EntrS3L3 15.78 20.75 — 23.69
EntrS3E3 23.20 26.52 — 9.49
EntrE3E3 — 14.02 82.40 10.45
EntrS3S3 32.42 43.41 — 9.41
GradAvg — 13.50 13.59 22.69
GradVar — 9.40 15.43 —
GradSkew — — — —
GradKurt — — — —
FractalDim — 7.07 — 18.57
AutoCorr — 21.62 15.14 16.41
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Classification-Based Evaluation of Different Sets of Age-

Independent Features. At the end, two sets of age-independent features
were used for the characterization of dystrophic tissue in the differentiation
between the consecutive phases of dystrophy development: (i) the first phase
vs. the second phase and (ii) the second phase vs. the third phase. The first
set comprised of all the features independent of the dog’s age, whereas the
second one constituted the best combination of the top-ranked features from
the feature incidence frequency ranking created by the MC procedure. Clas-
sification accuracies (with standard deviation) obtained with the use of these
sets are presented in Table 7. As in the preliminary experiment, differentia-
tion was performed with the use of three classifiers, i.e. Adaptive Boosting,
Neural Network, and Support Vector Machines.

Table 7. Classification accuracies (and standard deviations) [%] achieved with
age-independent features, separately for each differentiation problem:
(i) the first phase vs. the second phase and (ii) the second phase vs.
the third phase. The tested sets were composed of: all the features
independent of the dog’s age (denoted “all”) and the features selected
applying the modified MC procedure (optimal set, denoted “max MC”).
For the latter case, the number of the top-ranked features for which the
best classification result was achieved is given in square brackets. The
results were obtained by application of the AB, NN, and SVM classifiers

Muscle
problem classifier feature set

EDL GasLat GasMed TC

(i)
first
phase
vs.
second
phase

all 76.5 (6.5) 66.8 (8.0) 71.3 (6.7) 69.4 (5.8)
AB max MC 77.8 (6.7) 72.9 (7.1) 71.9 (6.7) 70.8 (5.3)

[24] [6] [6] [4]

all 72.4 (6.5) 66.2 (8.2) 74.4 (5.8) 69.3 (6.0)
NN max MC 79.4 (6.5) 74.9 (6.4) 78.1 (5.7) 75.9 (5.5)

[12] [1] [7] [3]

all 76.9 (6.7) 73.7 (9.2) 77.3 (5.5) 72.6 (5.3)
SVM max MC 80.0 (7.1) 78.1 (8.4) 77.3 (5.5) 74.9 (5.3)

[14] [25] [13] [10]

(ii)
second
phase
vs.
third
phase

all 68.8 (5.9) 57.8 (8.2) 67.5 (6.3) 68.4 (5.3)
AB max MC 71.1 (6.1) 59.6 (8.5) 72.2 (5.7) 71.6 (5.9)

[7] [12] [3] [23]

all 68.4 (6.3) 61.2 (9.1) 68.6 (7.3) 73.3 (5.9)
NN max MC 75.2 (5.4) 66.2 (8.2) 71.9 (6.5) 77.6 (5.2)

[6] [6] [3] [8]

all 75.1 (5.4) 61.6 (9.0) 70.9 (6.8) 73.5 (5.0)
SVM max MC 78.5 (5.6) 64.8 (8.9) 72.5 (5.9) 76.0 (4.6)

[11] [14] [8] [22]
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First, the results obtained using the whole set of features independent
of the dog’s age were compared to those obtained using all the 37 fea-
tures considered in the study (the latter ones could be found in Table 4).
It could be observed, that the classification accuracies obtained with these
two sets do not differ too much. For the first (i) differentiation problem (the
first phase vs. the second phase), eliminating features that evolve along
with the dog’s growth led more often to a slight worsening of the classifi-
cation accuracies (up to 5.7%), in comparison to the results obtained for
the whole set of 37 features. However, in most cases this worsening was
not statistically significant at a significance level of 0.05. For the second (ii)
differentiation problem (the second phase vs. the third phase), eliminating
the age-dependent features very often led to an improvement of classifica-
tion accuracy, form 0.2% (not statistically significant) to 8.9% (statistically
significant at a significance level of 0.05) and the maximum worsening of
classification results was 4.8%.
The application of feature selection based on the modified Monte

Carlo procedure always resulted in the amelioration of classification results,
up to 8.7%, in comparison to results corresponding to the use of all the
age-independent features (apart from only one exception – no difference
observed). Even if sometimes this amelioration was not statistically signifi-
cant, a significant reduction in the size of feature sets was at least achieved.
It is also with the MC strategy, that the best overall classification result
with age-independent features was observed, both for the first and for the
second differentiation problem – respectively 80.0% and 78.5% of correctly
identified phases of dystrophy progression (always with the SVM classifier
and for EDL muscle). Such results are inferior to these obtained with all
the 37 features tested (dependent on and independent of the dog’s age) by,
respectively, 1.6% and 1.4%, but these differences are not statistically sig-
nificant.

Conclusions and Future Work

The study assessed the possibility of applying MRI texture analysis for
evaluating Duchenne Muscular Dystrophy therapies. The work was based on
the popular Golden Retriever Muscular Dystrophy canine model, in which
three phases of canine growth and/or dystrophy development were consid-
ered: the first phase (0–4 months of age), the second phase (from over 4
to 6 months), and the third phase (from over 6 months to death). Two dif-
ferentiation problems were posed, i.e. (i) the first phase vs. the second phase
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and (ii) the second phase vs. the third phase. The main objective of the
work was to investigate which of the commonly used textural features can
evolve as the dog grows. It was assumed that the use of such features could
alter the right assessment of dystrophy progression or its response to treat-
ment. In total, 37 features, derived from T2-weighted images were tested.
8 different TA methods (statistical, filter-based, and model-based) were con-
sidered. Experiments were conducted separately for four types of muscles:
EDL, GasLat, GasMed, and TC. Statistical tests (the Mann-Whitney U-test
and the T-test) were used for finding the age-dependent features. The mod-
ified Monte Carlo procedure was used on the remaining features in order
to find the best set of features independent of the dog’s age. Three classi-
fiers (Adaptive Boosting, Neural Network, Support Vector Machines) were
finally applied for the evaluation of different sets of tested features.
The experiments showed that there exists a relatively large group of

textural features whose values change with the growth of the dog. Many of
them only evolve over a certain period of the dog’s life (at the transition from
the first phase to the second phase, or from the second phase to the third
phase). Such features were eliminated from further investigation (a separate
set for each differentiation problem). It was found that with proper selection
of features (from among the features independent of the dog’s age) the clas-
sification qualities in the identification of dystrophy phases in GRMD dogs
do not differ significantly from the results obtained for all the 37 features
tested. The subsets of features obtained with the modified MC procedure
ensured 80.0% and 78.5% of correctly identified phases of dystrophy pro-
gression, respectively for the first (i) and second (ii) differentiation problem.
These results were obtained using the SVM classifier, for the EDL muscle.
The approach adapted in the present study, consisting in the elimination

of features evolving with the dog’s growth, could be a satisfactory solution
only for the problem of differentiating between the adjacent phases of dys-
trophy. However, it might not be a good enough concept in a situation when
more than two phases of dystrophy progression are to be identified. In fact,
the sets of features whose values differ significantly among the three phases
of growth in healthy dogs were relatively small, regardless of muscle type.
A reasonable idea would be to build a model describing the differences be-
tween feature evolution with the dog’s growth and dystrophy progression.
However, testing such a model could turn out to be difficult if it is not
known how slowing down the disease may affect the summary evolution
of each feature.
In the future, if texture analysis were to be applied to test therapeutic

effects, experiments should undoubtedly be done on a much larger data set.
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The use of other MRI series (such as T1-weighted ones) should also be con-
sidered. It would be desirable to include more textural features in analyses,
especially model- or filter-based. Taking into account the fact that features
evolve in different ways for each type of muscle, a reasonable idea would be
to treat different types of muscles simultaneously. Finally, other methods
can be applied for assessing the usefulness of features in testing the effects
of a therapy (indicating the features that may evolve with the dog’s growth),
e.g. based on the feature incidence frequency rate in the MC procedure while
the dog’s age is identified.

Acknowledgements
I would like to thank Noura Azzabou from the Institute of Myology,

Nuclear Magnetic Resonance Laboratory, Paris, France for preparing and
providing the database of images and ROIs on which the experiments were
performed in this study. I also thank Jacques D. de Certaines and other par-
ticipants of the European COST Action BM1304, MYO-MRI for valuable
comments and discussions.
This work was supported by grant S/WI/2/18 (from the Bialystok Uni-

versity of Technology, Bialystok, Poland), founded by the Polish Ministry
of Science and Higher Education.

R E F E R E N C E S

Albregtsen, F., Nielsen, B., & Danielsen, H. E. (2000). Adaptive gray level run
length features from class distance matrices. In A. Sanfeliu, J. J. Villanueva,
M. Vanrell, R. Alqukzar, J. Crowley, & Y. Shirai (Eds.), Proceedings 15th
International Conference on Pattern Recognition. ICPR-2000. Vol. 3. Image,
Speech, and Signal Processing (pp. 738–741). doi: 10.1109/ICPR.2000.903650

Birnkrant, D. J., Bushby, K., Bann, C. M., Alman, B. A., Apkon, S. D., Black-
well, A., Case, L. E., et al. (2018a). Diagnosis and management of Duchenne
muscular dystrophy, part 2: respiratory, cardiac, bone health, and or-
thopaedic management. Lancet Neurology, 17(4), 347–361. doi: 10.1016/S14
74-4422(18)30025-5

Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brum-
baugh, D., Case, L. E., et al. (2018b). Diagnosis and management of
Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, re-
habilitation, endocrine, and gastrointestinal and nutritional management.
Lancet Neurology, 17(3), 251–267. doi: 10.1016/S1474-4422(18)30024-3

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, United
Kingdom: Clarendon Press.

139



Dorota Duda

Chen, E. L., Chung, P.-C., Chen, C.-L., Tsai, H.-M., & Chang, C.-I. (1998). An au-
tomatic diagnostic system for CT liver image classification. IEEE Transac-
tions on Biomedical Engineering, 45(6), 783–794. doi: 10.1109/10.678613

Chu, A., Sehgal, C. M., & Greenleaf, J. F. (1990). Use of gray value distribution of
run lengths for texture analysis. Pattern Recognition Letters, 11(6), 415–419.
doi: 10.1016/0167–8655(90)90112-F

de Certaines, J. D., Larcher, T., Duda, D., Azzabou, N., Eliat, P.-A., Escud-
ero, L. M., Pinheiro, A. M. G., et al. (2015). Application of texture analysis
to muscle MRI: 1-What kind of information should be expected from tex-
ture analysis? EPJ Nonlinear Biomedical Physics, 3:3. doi: 10.1140/epjnbp/
s40366-015-0017-1

Dramiński, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., & Ko-
morowski, J. (2008). Monte Carlo feature selection for supervised classifica-
tion. Bioinformatics, 24(1), 110–117. doi: 10.1093/bioinformatics/btm486

Duda, D. (2009). Classification d’images médicales basée sur l’analyse de texture
(Unpublished doctoral dissertation). University of Rennes 1, Rennes, France.

Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2015). MRI texture
analysis for differentiation between healthy and Golden Retriever Muscu-
lar Dystrophy dogs at different phases of disease evolution. In K. Saeed
& W. Homenda (Eds.), Computer Information Systems and Industrial Man-
agement. CISIM 2015 (pp. 255–266). Lecture Notes in Computer Science:
Vol. 9339. Springer, Cham. doi: 10.1007/978-3-319-24369-6 21

Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2016). MRI texture-
based classification of dystrophic muscles. A search for the most discrim-
inative tissue descriptors. In K. Saeed & W. Homenda (Eds.), Computer
Information Systems and Industrial Management. CISIM 2016 (pp. 116–
128). Lecture Notes in Computer Science: Vol. 9842. Springer, Cham. doi:
10.1007/978-3-319-45378-1 11

EMA (2015). Guideline on the clinical investigation of medicinal products for the
treatment of Duchenne and Becker muscular dystrophy. European Medicines
Agency, Committee for Medicinal Products for Human Use. Retrieved from
http://www.ema.europa.eu/docs/en GB/document library/Scientific guide
line/2015/12/WC500199239.pdf.

Fan, Z., Wang, J., Ahn, M., Shiloh-Malawsky, Y., Chahin, N., Elmore, S., Bag-
nell, C. R., et al. (2014). Characteristics of magnetic resonance imaging
biomarkers in a natural history study of golden retriever muscular dystrophy.
Neuromuscular Disorders, 24(2), 178–191. doi: 10.1016/j.nmd.2013.10.005

Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A.,
& Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and
monitoring disease progression in Duchenne Muscular Dystrophy. Physi-
cal Medicine and Rehabilitation Clinics of North America, 23(1), 1–10. doi:
10.1016/j.pmr.2011.11.004

140



MRI Texture-Based Recognition of Dystrophy Phase in Golden...

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Science, 55(1), 119–139. doi: 10.1006/jcss.1997.1504

Galloway, M. M. (1975). Texture analysis using gray level run lengths. Com-
puter Graphics and Image Processing, 4(2), 172–179. doi: 10.1016/S0146-
664X(75)80008-6

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing (2nd ed.).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Guiraud, S., Aartsma-Rus, A., Vieira, N. M., Davies, K. E., van Ommen, G.-
J. B., & Kunkel, L. M. (2015). The pathogenesis and therapy of muscular
dystrophies. Annual Review of Genomics and Human Genetics, 16, 281–308.
doi: 10.1146/annurev-genom-090314-025003

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.
(2009). The WEKA data mining software: an update. ACM SIGKDD Ex-
plorations Newsletter, 11(1), 10–18. doi: 10.1145/1656274.1656278

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image
Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
3(6), 610–621. doi: 10.1109/TSMC.1973.4309314

Kohavi, R., & John, G. H. (1997). Wrappers for Feature Subset Selection. Artificial
Intelligence, 97(1–2), 273–324. doi: 10.1016/S0004-3702(97)00043-X

Kornegay, J. N. (2017). The golden retriever model of Duchenne muscular dystro-
phy. Skeletal Muscle, 7:9. doi: 10.1186/s13395-017-0124-z

Laws, K. I. (1980). Textured image segmentation (Unpublished doctoral disserta-
tion). University of Southern California, USA.

Lerski, R. A., de Certaines, J. D., Duda, D., Klonowski, W., Yang, G., Coa-
trieux, J. L., Azzabou, N., & Eliat, P. A. (2015). Application of texture
analysis to muscle MRI: 2 – technical recommendations. EPJ Nonlinear
Biomedical Physics, 3:2. doi: 10.1140/epjnbp/s40366-015-0018-0

Lerski, R. A., Straughan, K., Shad, L., Boyce, D., Bluml, S., & Zuna, I. (1993).
MR image texture analysis – an approach to tissue characterization. Mag-
netic Resonance Imaging, 11(6), 873–887. doi: 10.1016/0730-725X(93)902
05-R

LoMauro, A., d’Angelo, M. G., & Aliverti, A. (2015). Assessment and management
of respiratory function in patients with Duchenne muscular dystrophy: cur-
rent and emerging options. Therapeutic and Clinical Risk Management, 11,
1475–1488. doi: 10.2147/TCRM.S55889

Martins-Bach, A. B., Malheiros, J., Matot, B., Martins, P. C. M., Almeida, C. F.,
Caldeira, W., Ribeiro, A. F., et al. (2015). Quantitative T2 combined with
texture analysis of nuclear Magnetic Resonance Images identify different
degrees of muscle involvement in three mouse models of muscle dystrophy:
mdx, Large(myd) and mdx/Large(myd). PLOS ONE, 10(2): e0117835. doi:
10.1371/journal.pone.0117835

141



Dorota Duda

National Research Council (2011). Guide for the Care and Use of Laboratory Ani-
mals.Washington, DC: The National Academies Press. doi: 10.17226/12910

Platt, J. C. (1998). Fast Training of Support Vector Machines using Sequential
Minimal Optimization. In B. Scholkopf, C. J. C. Burges, & A. J. Smola
(Eds.), Advances in Kernel Methods – Support Vector Learning (pp. 185–
208). Cambridge, MA, USA: MIT Press.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Salmaninejad, A., Valilou, S. F., Bayat, H., Ebadi, N., Daraei, A., Yousefi, M., Ne-
saei, A., & Mojarrad, M. (2018). Duchenne muscular dystrophy: an updated
review of common available therapies. International Journal of Neuroscience,
128(9), 854–864. doi: 10.1080/00207454.2018.1430694

Shieh, P. B. (2015). Duchenne muscular dystrophy: clinical trials and emerging
tribulations. Current Opinion in Neurology, 28(5), 542–546. doi: 10.1097/
WCO.0000000000000243

Simon, N. G., Noto, Y.-I., & Zaidman, C. M. (2016). Skeletal muscle imaging
in neuromuscular disease. Journal of Clinical Neuroscience, 33, 1–10. doi:
10.1016/j.jocn.2016.01.041

Spurney, C. F. (2011). Cardiomyopathy of Duchenne muscular dystrophy: cur-
rent understanding and future directions. Muscle & Nerve, 44(1), 8–19. doi:
10.1002/mus.22097

Thibaud, J. L., Azzabou, N., Barthelemy, I., Fleury, S., Cabrol, L., Blot, S., & Car-
lier, P. G. (2012). Comprehensive longitudinal characterization of canine
muscular dystrophy by serial NMR imaging of GRMD dogs. Neuromuscular
Disorders, 22 (Suppl. 2), S85–S99. doi: 10.1016/j.nmd.2012.05.010

Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York,
USA: Springer. doi: 10.1007/978-1-4757-3264-1

Wang, J., Fan, Z., Vandenborne, K., Walter, G., Shiloh-Malawsky, Y., An, H.,
Kornegay, J. N., & Styner, M. A. (2013). A computerized MRI biomarker
quantification scheme for a canine model of Duchenne muscular dystrophy.
International Journal. of Computer Assisted Radiology and Surgery, 8(5),
763–774. doi: 10.1007/s11548–012–0810–6

Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture
measures for terrain classification. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-6(4), 269–285. doi: 10.1109/TSMC.1976.5408777

Yang, G., Lalande, V., Chen, L., Azzabou, N., Larcher, T., de Certaines, J. D.,
Shu, H., & Coatrieux, J. L. (2015). MRI texture analysis of GRMD dogs
using orthogonal moments: A preliminary study. IRBM, 36(4), 213–219. doi:
10.1016/j.irbm.2015.06.004

142


