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Abstract. The use of conventional logical connectives either in logic, in math-
ematics, or in both cannot determine the meanings of those connectives. This
is because every model of full conventional set theory can be extended con-
servatively to a model of intuitionistic set plus class theory, a model in which
the meanings of the connectives are decidedly intuitionistic and nonconven-
tional. The reasoning for this conclusion is acceptable to both intuitionistic and
classical mathematicians. En route, I take a detour to prove that, given strictly
intuitionistic principles, classical negation cannot exist.
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1. Preliminaries and Disclosures

I have three things to accomplish. First, I will give definitive and unas-
sailable answers to such questions as “What is a truth value?” and “What
is negation?” Second, I will remind you that any model of a conventional
(aka classical) set theory can be extended conservatively to a model of
a strictly intuitionistic set and class theory. To mathematical logic insiders,
this hardly counts as breaking news. However, it is well worth underscoring
for the sake of point number three: no widely popular and repeated use of
the conventional syntactic rules governing the propositional signs ∧, ∨, →,
and ¬, known to college freshmen everywhere, determines the meanings of
those signs. This remains true even when those rules get added to principles
and theorems of conventional transfinite set theory.
In a spirit of full disclosure, I should let you know that I am an intu-

itionist in lineal intellectual descent from du Bois-Reymond, Brouwer, and
Heyting. Except for one small point, which I note infra, this biographical
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fact will however not disturb the plain cogency of the argumentation in this
essay: conventional mathematicians must acknowledge it as correct through-
out. As a practicing intuitionist, I reject categorically the pipe-dream that
there are specifically intuitionistic connectives, in other words, that the in-
tuitionist can somehow, by magical means known only to initiates, imbue
the signs ∧, ∨,→, and ¬ with meanings distinct from those attached some-
how to the same signs as employed conventionally. My thoroughgoing re-
jection of the fantastical ‘intuitionistic meanings’ is neither premise or pre-
supposition to my reasoning herein. Should I, from time to time, mention
‘intuitionistic connectives’ or ‘intuitionistic truth values,’ I am not lapsing
into lingua vulgaris. I am, for the sake of argument, presuming the defective
views of my fell adversaries pro tem–in order to squelch them.

2. What is a Truth Value?

Negation is a truth function, a logical operation. Here is a partial graph
of that function.

T 7→ F

F 7→ T

To what do the letters T and F refer in this childish diagram? Of course,
they refer to truth values, to Frege’s ‘The True’ and ‘The False,’ respectively.
And what is a truth value? It is a subset of {0}, a member of the set P({0}).
I shall now prove this.

Theorem: The truth values are (isomorphic to) the subsets of {0}.

Proof. Let A be any mathematical statement. Map A to Â where

Â = {0|A} = {x|x = 0 ∧A},

which is plainly a member of P({0}). This map is surjective because, for
S εP({0}), the mathematical statement

0 ε S

maps into the set

0̂ ε S = S.

Extensionality shows that the map A 7→ Â is injective, because for
statements A and B,

A↔ B
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just in case

Â = B̂.

Moreover, the map is a logical isomorphism for, under it, ∧ maps into ∩,
∨ into ∪, ¬ into the set operation of complementation, F into ∅ (the ⊆-
least truth value), and T into {0} (the ⊆-greatest truth value). (Left as an
exercise for the reader.) �

With this picture of the set of truth values in mind, and a smidgeon of
set theory, one can define ¬ outright, without circularity: for p εP({0}),

¬p =
⋃

{q εP({0})|q ∩ p = ∅}.

So, in answer to my original questions, a truth value is just an ele-
ment of P({0}), and negation is the function taking p into the ⊆-largest
member of P({0}) disjoint from it. The interested reader will find further
investigation and elaboration of these answers in [McCarty 2018].

3. There is Only One Negation

This is an intermission feature, ancillary to the main points of the essay.
I prove here that the imaginary ‘classical negation’ is indeed imaginary.
It cannot exist. Of course, to prove that, I will need to assume a specifically
intuitionistic principle, the Uniformity Principle. After that, I prove, without
recourse to Uniformity, there to be exactly one negation operation, despite
the tedious cavils of nonstandard logicians, inter alios.

Theorem: The ‘negation operation’ governed by conventional logic does
not exist.

Proof. Over P({0}), all assignments of natural numbers in N to truth-values
must be perfectly uniform [Troelstra 1980], in other words, for R any binary
mathematical relation,

∀p εP({0})∃n εN.R(p, n) → ∃n εN ∀p εP({0}).R(p, n).

Intuitionists call this The Uniformity Principle orUP for short. It is a truth,
first cousin to Brouwer’s Principle for Numbers [Troelstra & van Dalen
1988 209], which guides the way to proving Brouwer’s famous Continuity
Theorem on the reals.

91



Charles McCarty

For the nonce, let ∼ be a sign for the mythical conventional negation.
Were ∼ to exist it would have to map P({0}) into P({0}) in a nonconstant
fashion, and to satisfy the condition [⋆]:

[⋆] ∀p εP({0})((∼ p) = T ∨ (∼ p) = F ).

The truth of the formula above is required by the (false) laws of conventional
logic: any truth value must be either true or false.
Now, let R be the relation over P({0})×N where R(p, n) holds just in

case

[(n = 0 ∧ (∼ p) = F ) ∨ (n = 1 ∧ (∼ p) = T )].

Because of [⋆], we know that

∀p εP({0})∃n εN.R(p, n).

By UP,

∃n εN ∀p εP({0}).R(p, n).

Therefore, there is a single natural number n to which all truth values p are
related by R. Since ∼ is nonconstant, this is a contradiction. Consequently,
‘classical negation’ ∼ cannot exist. �

Now I prove, without the aid of intuitionistic principles, that there can
be only one negation in the intelligible universe. There can be no other. For
the proof, it suffices to assume that negation maps F into T , as in the graph
above, and that p and ¬p cannot both be true simultaneously.

Theorem: There is a single negation operation only.

Proof. Assume, for reductio, that f is a function on P({0}) that obeys the
logical laws of negation, to whit, that

f(F ) = T,

and that, for any truth value p, p and f(p) cannot both be true simultane-
ously:

∀p εP({0})(p ∧ f(p)) = F.

These are the sole assumptions of the proof.
By definition, every truth value p is a subset of {0}. Hence, it makes

sense to ask if 0 ε p or 0 ε f(p), and we know that

0 ε f(p) ↔ f(p) = T.
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As we have seen, the intersection of p with f(p) is always ∅ and f(F ) = T .
Therefore,

p = F ↔ f(p) = T.

The very same properties hold of the genuine operation of negation ¬. It
follows that

p = F ↔ (¬p) = T ↔ 0 ε (¬p).

Once we have these three rows of true biconditionals, we see that

0 ε f(p) ↔ 0 ε (¬p).

By Extensionality for subsets of {0}, the operations f(p) and ¬p are iden-
tical, for any p εP({0}). �

Nota Bene: For the last proof, no proprietary intuitionistic principle such
as UP was employed. Any conventional mathematician should accept the
reasoning.

En passant, it is well worth asking, in the face of the mathematical fact
that there is and can be only one negation, why some logicians think that
there is more than one. These clever folks chat merrily about ‘nonstandard
negation’ and ‘weak negation.’ When they utter such stuff, they seem to be
refering to symbols in various formal systems of logic, e.g., the symbol ∼ in,
say, classical logic or some intermediate logic. Were those systems sound in
the usual way, we might allow that those symbols, once interpreted, man-
ifest some, but not all, of the mathematical properties we rightly look for
in the ¬ operation. However, to say that we can create a formal system with
a feature that describes X is not to say that the feature does indeed de-
scribe X, or even that X exists at all! In the twinkle of an eye, I can create
a formal system that codifies and represents properties of transparent cats,
e.g., it contains as axioms the claims ‘They make mewing noises,’ and ‘You
can see right through them.’ The trouble is that there are no transparent
cats, just as there are no nonstandard negations.

4. Laws of Logic

Once the truth values and logical operations are identified, one can,
from a suitable and obvious definition of valid inference and a little more
set theory, determine the laws of logic.
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Definition: (logical validity) For propositional formulae Θ(p, q) and Ψ(p, q),
the inference

Θ(p, q) ⊢ Ψ(p, q)

is logically valid if and only if, for any mathematical statements A and B,
̂Θ(A,B) ⊆ ̂Ψ(A,B).

To repeat, the map A 7→ Â is the canonical function from statements
into their truth values. The above definiens is a plain, set-theoretic state-
ment describing a truth functional relation on P({0}). From that definition,
it is easy to certify various inferences as valid.

Theorem: The following inferential statements are all demonstrable.

1. ⊥ ⊢ Θ,

2. Θ,¬Θ ⊢ ⊥,

3. If Θ,Ψ ⊢ ⊥, then Θ ⊢ ¬Ψ, and

4. (under the false assumption that T and F are the sole truth values) If
Θ,¬Ψ ⊢ ⊥, then Θ ⊢ Ψ.

So, set-theoretic mathematics plus obvious definitions determine the
rules of deductive logic.

5. Extending Models of Set Theory

In effect, the next questions before us will be, “Can one go the other
way? Can the adoption of a particular set of syntactical rules for logical
deduction determine, in reverse, the meanings of the connective symbols in
those rules?” I will prove that the answer is a resounding “No.”

Theorem: Every model of conventional set theory can be extended con-
servatively to an intuitionistic model of set and class theory, one featuring
distinctly ‘intuitionistic’ truth values, ones other than T and F .

Proof. Let M be any model of conventional set theory. We extend it to
an intuitionistic model Mτ with topologically-valued sets and classes over
the usual order topology τ on Sierpinski space {0, 1} where 0 < 1. Mτ has,
therefore, exactly three truth values:

∅, {1}, and {0, 1}.

In this interpretation, F denotes the ⊆-least value, ∅, and T denotes the
greatest, {0, 1}.
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Here, capital Roman letters from the beginning of the alphabet A,
B, etc. range over maps from the domain of M , |M |, into open sets in τ .
φ and ψ are sentences in the multi-sorted, first-order language for sets and
classes in which ε is the sole primitive predicate. φ and ψ may feature pa-
rameters for sets in M and classes in Mτ . As usual in these contexts, the
wide brackets on a formula φ or other syntactic item,

[[φ]],

denotes the semantic value of the formula or item over Mτ . I is the interior
operation in τ . This time, ∼ is ordinary set complement relative to {0, 1},
and ⇒ is the usual Heyting implication in τ .

Definition: (topological model Mτ )

[[A]] is a function from |M | into τ , for all A.

For a, b ε |M |, [[a]] is a function from |M | into τ such that

[[a]](b) =

{
T M |= b ε a
F otherwise

For a, b ε |M |, [[a ε b]] = [[a]](b)

[[a εA]] = [[A]](a)

[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∪ [[ψ]]

[[¬φ]] = I(∼ [[φ]])

[[φ→ ψ]] = [[φ]] ⇒ [[ψ]]

[[∃x.φ(x)]] =
⋃

a ε |M |[[φ(a)]]

[[∀x.φ(x)]] = I(
⋂

a ε |M |[[φ(a)]])

[[∃A.φ(A)]] =
⋃

A[[φ([[A]])]]

[[∀A.φ(A)]] = I(
⋂

A[[φ([[A]])]])

Finally, Mτ |= φ if and only if [[φ]] = T .

Theorem: For φ and ψ sentences in a standard, two-sorted, first-order
language for set and class theory, if φ ⊢ ψ in Heyting’s predicate calculus,
then [[φ]] ⊆ [[ψ]] over Mτ .

Proof. Familiar from such literature as [Grayson 1979]. �
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6. Internal Mathematics: Main Theorem

What then is the internal mathematics of Mτ?

Lemma: (absoluteness) For φ a strictly first-order sentence in the language
of set theory without variables or parameters for classes, Mτ |= φ just
in case M |= φ.

Proof. Proof of lemmas like this proceed by induction on formulae φ, and
are standard in the literature. Vide [Bell 1977] or [Grayson 1979]. �

Theorem: The topological model Mτ satisfies Zermelo-Frankel set theory
plus an intuitionistic class theory with full Comprehension.

Proof. From the Lemma and standard results as in [Grayson 1979]. �

What does the set of truth-values in Mτ look like? As remarked, when
viewed externally, there are three ‘intuitionistic truth values,’ the τ -open
sets ∅, {1}, and {0, 1}. The conventional Tertium non Datur, ∀p(p ∨ ¬p),
does not hold over Mτ since, when [[p]] = {1}, [[¬p]] = ∅. Hence, our
opponents–those who believe that there are special, intuitionistic meanings
for the connective symbols and appeal to those meanings in a vain effort to
explain the failure of the Tertium non Datur in intuitionistic mathematics–
would insist that the meanings inMτ of connectives such as ¬ are definitely
intuitionistic.

7. The Determinacy of Meaning

At last to our third and final truth: any strictly syntactic use of the
rules for full conventional or classical predicate logic, plus Zermelo-Fraenkel
set theory, do not determine the meanings of the logical signs to be classical.
Readers may recall (or heard tell of) an argument Hilary Putnam con-

structed back in 1975, the Twin Earth argument [Putnam 1975]. The fa-
bled conclusion of that argument was that meanings aren’t in the head,
more precisely, that the narrowly individuated mental contents associated
in a speaker with a word do not determine the meaning and referent of that
word. On behalf of that conclusion, Putnam imagined a possible world he
named ‘Twin Earth.’ It is just like our own world in time up to 1750, includ-
ing the mental contents of speakers, apart from the important fact that all
the water-looking liquid on Twin Earth is not ordinary H2O, but a sensory
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Doppelgänger with chemical formula XYZ. The latter chemical looks and
tastes and feels just like water but, as far as anyone living before 1750 could
tell, it is not water, not H2O. The point of the fantasy is that the Twin-
Earthians entertain exactly the same mental contents as our ancestors on
Earth did when using the term ‘water,’ but that term does not pick out, on
Twin Earth, real water. Hence, since the Twin Earth scenario is possible,
the mental contents of whole tribes of speakers do not suffice to determine
the meanings and referents of their words.
I am far from endorsing the details of this famous Gedankenexperiment.

I wish merely to draw a high-level analogy between it and the demonstration
that closes this essay. The firm and repeated use of conventional rules gov-
erning classical logic, conceived as syntax and not with their (nonexistent)
meanings attached, do not suffice to determine the meanings and referents
of the signs deployed in those rules. Why? Not because some imaginary
Twin Earth might exist. Rather because a model Mτ is proved to exist–
one that agrees with conventional model M on its strictly first-order, set-
theoretic portion, logical rules included. Hence, conventional logicians and
mathematicians can use their rules as much as they want in developing con-
ventional set theory, indeed all of it. Yet, for all they know, the real model
for their theorizing is nothing but the classical portion of our Mτ . That is
possible because what is real is possible. There is no way that conventional
logicians and mathematicians can tell the difference, sinceM andMτ cannot
differ on strictly set-theoretic statements, thanks to absoluteness. However,
in Mτ , the ¬ sign denotes not the function whose entire graph is thought
to be

T 7→ F

F 7→ T

but the wholly distinct topological or intuitionistic operation on three-
valued τ ,

∅, {1}, and {0, 1}.

that takes, for example, {1} into ∅. So, meanings aren’t in the rules either.
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