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Abstract. In this paper, I discuss the concept of adaptive rationality. I present
a simple model of ecology and the set of decision rules. The basic structure of
the process of cognitive adaptation to ecology is described as a structure com-
prising (1) perceptual space, (2) a function valuating perceived items, (3) a set
of available decision rules and (4) the adaptation process – identification and
selection of the best strategies in given ecological conditions. The presented
model of ecosystem allows a conclusion that completely opposite strategies may
be compatible with the assumption of adaptive rationality.
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Introduction

People’s attitudes to situations of uncertainty (risk) – that is, situa-
tions where we can achieve success but are also at risk of failure – are
rather varied. Some people, counting on gaining benefits which may enable
them to better their circumstances or status, readily engage in risky be-
haviors – bold, daredevil actions which may seem to outside (uninvolved)
observers to be reckless, careless, and unreasonable. Others prefer hedg-
ing strategies which, characterized by excessive cautiousness, evidence their
fearfulness, pusillanimity, cowardice, timidity, suspiciousness, and tendency
toward conformism. Readiness to apply risky strategies seems to be a re-
quirement of achieving success, an inseparable dimension of activity and of
an exploratory attitude, while hedging can lead to conservative behaviors,
passivity, inability to take advantage of chances, as well as a tendency to-
wards ritualism and adherence to old (tried-and-tested) behavioral models.
Everyday observation shows that variations along the continuum between
hedging and risk-taking can be related to one’s gender, place within social
structures, age, knowledge, and the ability to ascertain the probability of
events seen as positive or negative, those which we either strive to achieve or
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to avoid; to our competence in predicting and controlling events; and to the
factors which specify the availability of alternatives. One may ask whether
the polarity of risk-taking and hedging testifies to a departure from the ra-
tional model (“cold calculation”), which does not include emotions (bravado
or cowardice). Perhaps, though, these are rational action strategies in par-
ticular conditions of ecology, the uncertainty of events, and their judgment
(valuation). What is needed is a model of decision-making situations which
would make it possible to capture the relations between the basic parameters
which define the rationality of actions (decisions).

1. The model of cognitive adaptation to ecology

The basic structure of the process of cognitive adaptation to ecology
is described as a structure comprising (1) perceptual space, (2) a function
estimating (valuating) perceived items, (3) a set of available decision rules,
and (4) the learning (adaptation) process – identification and selection of
the best strategies in given ecological conditions. I will illustrate the gen-
eral formal structure of the presented model by referring to an intuitive
experience of hunting wild mushrooms1.

Table 1

Formal parameters of the model of cognitive adaptation to ecology

Ecology

Perceptual Space Ω ω1 ω3 . . . ωi . . . ωn−1 ωn

Event X P (Ω) p1 p2 . . . pi . . . pn−1 pn U(X) P (X)

Positive Event (success) 1− q 1 1− q2 1− qi 1− qn−1 0 B 1− q∗

Adverse Event (failure) q 0 q2 . . . qi . . . qn−1 1 −C q∗

Attributes A1 0 0 . . . 1 . . . 1 1 q∗1

A2 0 0 . . . 0 . . . 1 1 q∗2

. . . 0 0 . . . 0 . . . 1 1 . . .

Ak 0 1 . . . 0 . . . 0 1 q∗k

Prospect Value v v1 v2 . . . vi . . . vn−1 vn

Prospect Expected Value w v1p1 v2p2 . . . vipi . . . vn−1pn−1 vnpn

Decison Rules R1 1 0 . . . 0 . . . 0 0

R2 1 1 . . . 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

Rn 1 1 . . . 1 . . . 1 1
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Perceptual space Ω
Each item (entity) within perceptual space can be represented as a con-

figuration of binary attributes which describe it. We have, therefore, a set k
of attributes A = {A1, A2, . . . , Ak}. For example, the attribute A1 can stand
for the “color of the mushroom’s cap” (1 – “red”, 0 – any other color).
An “attribute” is therefore a certain feature, that is, a property of the item,
and the value of 1 is its highlighted “variant” to which we pay attention. All
forest mushrooms can be described as types characterized by a configuration
of attributes: Ω = A1×A2× . . .×Ak. There are n = 2k of all types of items
within perceptual space Ω = {ω1, ω2, . . . , ωn}. In the model of perception
adopted here we assume that each item can be assigned a “quality”, and one
can easily and simultaneously identify all values of its attributes. Perceptual
space is a rational classification of all mushroom specimens: none belongs
to two different types and there is no specimen which belongs to no type.
In the space Ω, the function P (Ω), which ascribes to each type of item
ω ∈ Ω the number p designating the frequency with which the type appears
in the ecosystem is specified. We assume that for each type ω1 the number
p1 ∈ (0, 1) and

∑

pi = 1. The function P (Ω) can be specified by the covari-
ance matrix of attributes Cov(A). In particular, when diagonal elements
Cov(A) = 1/4, that is, variances of attributes reach maximum values, and
the covariances equal zero for all pairs of attributes, the matrix Cov(A) gen-
erates the function P ∗(Ω), which ascribes to each item an equal frequency,
p(ω) = 2−k. This is a case of equal distribution in space Ω. The space
is characterized by maximum entropy: the probability of an item having
a variant of a given attribute equals 1/2 for each variant, and attributes
are independent. Perceptual space, the ecosystem E, is specified by a pair
E = {Ω, P (Ω)}.

The space of item valuation
Items present in perceptual space are estimated in a particular way.

Each item ω ∈ Ω is linked to two kinds of consequences: positive (pay-
off B acquired as a result of consuming mushrooms) and negative (cost C,
if it turns out that the mushroom was poisonous). The item (mushroom) is
not merely something one perceives within the space of attributes Ω, but
also something which either prognosticates positive consequences or consti-
tutes a threat. Consuming mushrooms carries a risk: if it turns out that the
mushroom was edible, one can consider this a success; if not, poisoning will
certainly incur costs (failure). Each item is not only a perceived object, but
also a prospect which may bring positive consequences B(1−q) or negative
results (losses) −Cq. The value of q ∈ [0, 1] is the probability of failure (poi-
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soning) and the measure of risk factor (threat). From a psychological point
of view, B(1 − q) is something we desire, while −Cq constitutes a threat,
a loss which we would like to avoid, something the anticipation (imagining,
expecting) of which can arouse fear. While perception concerns attributes,
the prospect refers to future (anticipated) states. It is linked to uncertainty
“perceived” as risk. Each item ω ∈ Ω will carry a certain risk comprising
two elements: an estimate of the weight of loss C and the probability of
its occurrence. The set Ω is specified by a function Q(Ω) which ascribes
the value of qi to every item ωi ∈ Ω. As a result, we can ascribe its value:
vi = B(1− qi)− Cqi to every item ω ∈ Ω as a prospect.
In this model we assume that all items (prospects) share the values

of B and C, and the only differentiating parameter is the risk factor qi.
Let us note that the prospect ω1 is absolutely safe, with the risk quotient
of poisoning q1 = 0. The prospect ωn, on the other hand, is extremely
harmful, with the risk quotient qn = 1. If the level of risk quotient between
the prospects differs, they can be ordered: q1 = 0 < q2 < . . . < qn−1 <
qn = 1. As a consequence, the values of the prospects will also be ordered:
v1 = B > v2 > . . . > vn−1 > vn = −C.
We can connect the function specifying the values of risk quotients to

the space of attributes. Let us use q∗k to signify the probability that an item
characterized by one highlighted variant of the k-th attribute shows itself
to be harmful (poisonous). If the conditions below are fulfilled:

l−1
∑

i=1

q∗i < q∗l

that is, the attributes can be ordered in accordance with their power to
anticipate negative consequences, and each subsequent attribute (beginning
with the weakest) has a higher power than the sum of those which precede it,
and

k
∑

i=1

q∗k = 1

the value of qi for an item is the sum of risk quotients connected to the
attributes which describe it. In other words, all classes of items are dif-
ferentiable according to their risk quotient qi. Such an additive model of
generating function Q∗(Ω) can be obtained from:

q∗i =
2k−i

2k − 1
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Risk quotient is then a function of the index i for items ω ∈ Ω

qi =
i− 1

2k − 1

Table 2

Space for k = 4 and function

For item ω2 highlighted is the variance of risk quotient A4, for ω3 – of
the attribute A3, for ω5 – attribute A2, and for ω9 – attribute A1. Item ω1 is
absolutely safe q1 = 0, while the item ω16 is deadly, q16 = 1. The values of qi
differ by a constant interval of 2−k−1 and constitute an example of a per-
fect ordering of Ω as concerns the dominance (significance) of attributes
specified by the risk of poisoning: A1 is characterized by the highest risk,
A4 – the lowest. The first line shows the items of Ω as ordered according
to attribute A1, followed by A2 etc. The function Q∗(Ω), generating risk
factors for particular items in perceptual space, can take a shape which
differs from the additive model, which may mean that the risk quotients
expressed by attributes can enter various (intensifying or reducing) interac-
tions. In other words, the function ordering the attributes presented here is
characterized by the fact that there are no interactions between attributes
(no rearrangements disturb the order of dominance).
An ecological model E = {Ω, P (Ω), Q(Ω)}, where the function P ∗(Ω) =

2−k generates continuous uniform distribution (maximum entropy), and the
function Q∗(Ω) which generates maximum order of attribute dominance will
be called the standard model.
The function specifying the value of the prospect vi = B(1− qi)− Cqi

shows that the prospect’s value is nonnegative, vi ≥ 0, if the condition below
is fulfilled:

B

(

1− qi
qi

)

≥ C

If qi > 0.5, the coefficient δ = (1 − qi)/qi ∈ [0, 1], and we encounter
a typical risk situation: the payoffs B must be significantly higher than the
potential costs C, and the coefficient δ discounts B vis-a-vis C. If qi < 0.5,
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the prospect can also have a positive value when the cost C is exceptionally
high and the payoffs B are low B < C. In the above case we are dealing
with more than a risk – it is gambling.
A prospect’s attractiveness (its “utility”, when we consider the prospec-

tive outcome of mushroom-hunting) wi depends on its value but also on how
often it appears in the ecosystem: wi = vipi. That is why the total attrac-
tiveness of all the prospects equates the average value of the prospects:

n
∑

i=1

wi =
n
∑

i=1

vipi = B(1− q∗)− Cq∗

where average risk q∗ =
∑

qipi. This measures an overall yield of the ecosys-
tem when we assume a particular model of behavior: the mushroom hunter
picks all mushrooms. S/he has no knowledge about mushrooms and pays no
attention to their attributes. No features of these items inform him/her of
danger. One can surmise s/he behaves totally irrationally or else is utterly
ignorant.

Decision rules
It seems reasonable that a rational mushroom-hunter will pick them

with care: he will accept some items (prospects) and reject, ignore – others.
The decision rule specifies the set of acceptable items and the set of inac-
ceptable items. It is therefore a function which ascribes to each item ω ∈ Ω

the number 0 – “a rejected item”, 1 – “an accepted item”, Ri(Ω) → {0, 1}.
A set of decision rules R(Ω) is a power set of the space Ω. In brief, the
number of decision rules equals the number of sub-sets into which the set Ω,
that is |R(Ω)| = 22

k

, can be divided. Decisions taken by the decision-maker
are “deterministic” in character: if an item fulfills the demands of the rule,
it is accepted, if not – it is rejected. This is a special case of a more general
model where decisions can be probabilistic in character; that is, the function
Ri(Ω) : ω ∈ Ω → [0, 1] would ascribe to items belonging to its domain (rule)
only the probability of choice (rejection).
Decision rules allow a characterization of various “modes of operation”.

The rule R0 = {∅} is a rule, whose domain is an empty set – the rule accepts
no items (that is, the mushroom hunter does not pick mushrooms, s/he does
not like mushrooms). Its opposite, the rule Rn = {Ω}, accepts each prospect
– that is, the mushroom hunter picks (accepts) all mushrooms s/he sees in
the forests. In fact, the mushroom hunter does not need to know anything
about mushrooms (s/he does not need to distinguish between them; only
a minimal competence of differentiating mushrooms from stones and other
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items is required). That means that s/he gathers all mushrooms, both edible
and poisonous. All types of mushrooms find their way to his/her basket,
proportionally to the frequency with which they appear in the ecosystem2.
In between these extreme “rules” there are others. It is worth noticing that
ordering items according to their value, vi, makes it possible to radically
narrow down the set of rules. Let us imagine that our mushroom hunter
equips him/herself with a mushroom guidebook which describes mushrooms
and informs the reader what risk there is of encountering poisonous types.
The book symbolizes the knowledge which can come from the mushroom
hunter’s own experience or be part of common knowledge in his/her society
(culture). The rules R0 and Rn can also constitute knowledge (convention)
– the first being a categorical prohibition on consuming mushrooms, the last
– a general consent to it or a feature characteristic for the beginning phase
of learning.

Hedging Strategy
The rule R1 = {ω1}, whose domain comprises one item, ω1, may be

called an extreme hedge strategy – the mushroom hunter accepts only the
mushrooms which are absolutely safe, where the risk of being poisoned
equals zero (q1 = 0), and so the value of the prospect is highest and
amounts to B. The mushroom hunter chooses the mushrooms which are
no doubt edible, there is no risk of being poisoned. These mushrooms {ω1}
are permitted (commanded), the rest – forbidden. Therefore, s/he acts in
accordance with the rule: all that is not permitted is forbidden [Lewicka
1993: 139]. S/he keeps to what s/he knows. His/her strategy is exploitative
in character. S/he is risk averse, since accepting other mushrooms equals ac-
cepting the risk of poisoning. As a consequence s/he does not learn (does not
come to know new mushrooms). S/he is monophagous. The hedging strat-
egy guarantees s/he will not be poisoned. Adhering to the hedging strategy,
s/he can count on (expect) an average “payoff” R̄1 = v1p1 = Bp1, which
benchmarks the attractiveness of the prospect which confirms to rule R1.
The value of R̄1 is a measure of effectiveness of the strategy (decision
rule R1). When p1 → 0, the effectiveness of strategy R1 falls, yet the conclu-
sion that the mushroom hunter must change it does not follow: s/he would
have to have a better (more effective) alternative!

Risk-seeking strategy
Unlike when applying hedging strategy, here the mushroom hunter re-

jects only those mushrooms which are certainly inedible, that is, those which
guarantee poisoning, ωn. Mushrooms ωn are forbidden, while others are per-
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mitted. S/he acts therefore in accordance with the rule: all that is not for-
bidden is permitted. Strategy Rn accepted all types of mushrooms, strat-
egy Rn−1 excludes only those mushrooms which are no doubt poisonous
but does not exclude those for which the risk of poisoning is qn−1 < 1. The
risk-seeking strategy is exploratory in character. The area of acceptance in-
cludes items {Ω − ωn}. The mushroom hunter is not risk-averse. S/he is
learning (coming to know new mushrooms). S/he is not monophagous: ex-
cept for the most poisonous mushrooms, s/he eats all kinds. Risk–seeking
strategy does not guarantee that s/he will not be poisoned. But it gives
the mushroom hunter hope s/he will eat his/her full. Adhering to strat-
egy Rn−1 s/he can count on (expect) an average payoff: R̄n−1 = Rn −Cpn.
All in all, if strategy R1 is a strategy of maximum hedging (of minimal
risk), strategy R2 is less a hedging strategy, because it accepts prospects
which may carry a risk, ω2. Each consecutive decision strategy broad-
ens its range of acceptance by another high-risk prospect. To sum up,
one can order the rules according to an increasing range of accepted risk:
R0 = ∅ ⊂ R1 ⊂ . . . ⊂ Rn−1 ⊂ Rn = Ω.
Each decision rule is linked to a measure of its efficacy, which is a sum

of attractiveness of the prospects comprising the domain of the rule:

R̄h =
h
∑

i=1

vipi

If decision rules differ in their efficacy, the question arises as to what
rule should a decision-maker adopt? Let us assume that we are dealing with
a rational (in its economic sense) mushroom hunter, who wants to gain
maximum payoffs. A rational “player” (mushroom hunter) should choose
the decision rule R∗, which ensures for him maximum payoffs in this “game
with nature”. Can the rule of maximum hedging be rational (maximize
payoffs?) The ordering of prospects according to their value enables one
to specify what condition determines whether extreme hedging is rational.
The value of the rule R1 equals R̄1 = Bp1, but the value of the rule that
follows is a value of a more general rule R1 ⊂ R2, that is R̄2 = R̄1 + v2p2.
The rule R1 = R∗ ⇐⇒ R̄1 > R̄2; that is, when v2p2 < 0. Because
p2 > 0, the condition is v2 < 0; that is, the second prospect must be
negative. That happens when the condition: B(1 − q2)/q2 < C is fulfilled.
In brief: when payoffs B are small, costs C are high, and the risk of poisoning
is high enough, the strategy of maximum caution is a rational strategy,
maximizing the payoffs in the game. If the condition is not fulfilled, the
strategy of maximum hedging is not rational; strategy R2 is better. That
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does not mean that R2 is the best R∗. Can the strategy of maximum risk-
taking Rn−1 be rational? This would mean that R̄n−1 > R̄n−2 i R̄n−1 > R̄n.
For pn > 0, and for large payoffs B and small costs C, the condition can be
fulfilled. If rationality conditions for the strategy of maximum hedging and
the strategy of maximum risk-taking are not fulfilled, the strategy R∗ may be
a broader R1 than a narrower Rn−1 which, as concerns efficacy, means that
the efficacy of strategy R∗ is always higher that the efficacy of R1 and Rn−1.
In particular, it is possible that extreme hedging and extreme risk-seeking
can be equally effective: R̄1 = R̄n−1. This will happen when:

B















n−1
∑

i=2

(1− qi)pi

n−1
∑

i=2

qipi















= C

The standard model
An example illustrating presented formalism.

Table 3

Standard model of the ecosystem: k = 4, P ∗(Ω) = 2−k,
Q∗(Ω) = (i− 1)/(2−k − 1), B = C = 1

Assumptions adopted regarding risk qi linked to prospects ω ∈ Ω order
these prospects according to their value, vi. The rules of maximum hedg-
ing and maximum risk-taking are equally effective: R̄1 = R̄n−1. The R∗

(maximally effective) rule is the rule R8 = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.
The model shows an interesting quality linked to the cognitive dimension
of the decision-making process. Each item can be described as a vector
ω = [A1A2A3A4] of the values (codes) of variants of attributes. The rule
of maximum hedging R1 requires that the decision-maker has information
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about the state of each attribute – s/he accepts only items ω1 = [0000].
In order to reject an item it is enough that one of its attributes not be 0,
but it also means that s/he must consider the full range of qualities exhib-
ited by items. The rule of maximum risk-seeking Rn−1 is also cognitively
demanding – the mushroom hunter rejects items ωn = [1111]. In this case
also the whole range of values of attributes must be noted. The rule R∗ is
maximally efficient, but it is also one which requires minimal cognitive infor-
mation. This is because the rule R8 equals the directive of: note attribute A1

and if A1 = 0, accept the item, if A1 = 1, reject (ignore) it. For rule R8,
the range of acceptance is designated by a blueprint: ω = [0∗∗∗∗]. The only
significant information is that which regards the state of attribute A1.

2. Decision strategies and the dynamics of learning (adaptation)

Decision rules are pure strategies in the “game with nature”. Let us
say that si stands for the probability that the mushroom hunter chooses
the rule Ri. Strategy σh will stand for probability distribution on the set of
all decision rules R. Learning consists in changing one’s strategy, therefore,
in changing the value of si (the probability of choosing rule Ri). A simple
model showing a change in strategy makes the direction and scale of the
change si conditional on the effectiveness of decision rules. It requires that
the values of decision rules are not negative. This is ensured by the normal-
ization R̂i = R̄i − R̄ as concerns the rule Rn = R̄ (an average effectiveness
of the ecosystem). An average value of normalized efficiency is:

R̂ =
n
∑

i=1

R̂isi

The rule governing this change (in discrete time) can take a simple form
of proportional reinforcement:

st+1
i =

R̂i

R̂
sti

If we mark changes st+1
i − sti = ∆i, the learning process is normalized

∑

∆i = 0, and if ∆i < 0, the rule Ri is chosen more and more infrequently,
∆i > 0, is chosen more often. Evolution halts in a stationary state (state of
balance) when ∆i = 0; that is, when the condition ∆i = 0 ⇐⇒ R̂i = R̂
is fulfilled. The learning (adaptation) process ends with the selection of
decision rule R∗, which is the one best adapted to the ecosystem.
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Ecological adaptations
The ecosystem model E = {Ω, P (Ω), Q(Ω), R(Ω), B,C} presented here

contains complete information about perceptual space, the frequency with
which items appear in a given the ecosystem, the distribution of risk, effec-
tiveness of decision rules, and the value of payoffs B and costs C. We can
analyze the dynamics of a particular model by changing the value of the
parameters which specify it.

Table 4

Standard model and P ∗(Ω) and Q∗(Ω)

A B

Table 4(A) shows a situation where the strategies of maximum hedg-
ing and maximum risk-seeking are equally effective: R̄1 = R̄n−1. Deci-
sion rule R8 is revealed to be the rational strategy R∗ (maximizing pay-
offs in the game). An increasing distance between the potential payoff B
and the potential loss C does not influence the choice of decision strategy.
An increasing distance (between payoffs and losses) causes departure from
strategy R∗ to result in higher losses in adaptive efficiency. One may think
that when the “desire” for B and the “fear” of C grow, the decision-maker
will show more sensitivity. When B and C are small (low payoffs and small
losses), the difference between R∗ and R7 or R9 is negligible!
Table 4(B) shows quite another situation: B = 1, but the cost C (the

cost of mushroom poisoning) increases. It is the decision rule R5 (a narrower
rule, demanding, therefore, more information about other attributes!) that
constitutes strategy R∗ for C = 2; for C = 4, the rule R3 (cognitive require-
ments increase!) is the strategy R∗. The range of acceptable mushrooms
falls: from 50% to 31% and to 19%. With increasing costs C a risk be-
comes a gamble, and preference is given to decision rules providing a higher
level of hedging against the rapidly declining efficacy of rules more general
than R∗. A distinct asymmetry appears: while movement from the rule of
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maximum hedging R1 towards R∗ moderately improves the effectiveness of
decision rules, stepping outside the range of R∗ causes a sharp decline in
effectiveness.

Table 5

Model of type I ecosystem – a friendly ecosystem, Q∗(Ω)

Table 5. presents an ecosystem model which is a modification of the
standard model, where it is assumed that the distribution P (Ω) = 2−k is
uniform (the function Q∗(Ω) is preserved). This is a model of the “friendly
ecosystem”, where items characterized as low-risk appear more frequently.
In brief, a “blind” mushroom hunter’s chance of happening upon a less
harmful mushroom is higher. As shown, the shift from the rule of maximum
hedging to a rule that is more risky significantly increases effectiveness,
and expanding the rule beyond its optimal range (R∗ = R8) does not pose
a threat of increased loss in effectiveness. The difference between effective-
ness R∗ = R8 and the rule of complete ignorance Rn is small, and one can
expect that when cost perception (the cost of acquiring information about
the state of attributes – for example when looking for mushrooms at dusk!)
in this ecosystem is high, a rational decision-maker will gather anything
s/he sees. Let us notice that, due to a different type of distribution P (Ω),
the rule R8 will include a range of specimens which exceeds 50%.
Table 6. presents the model of an unfriendly ecosystem, where high-risk

items (prospects) appear more often. Here, also, the rule R8 is the best R∗.
However, shifting from the rule of maximum hedging does not signifi-
cantly increase effectiveness, and stepping outside the generality range of
the rule R∗ can result in significant losses in effectiveness. One can suspect
that a decision-maker would have to have deep trust in the working order of
his/her perceptual mechanism to form his/her decisions based on observing
the state of attribute A1 (which is required by the decision rule R8).
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Table 6

Model of type II ecosystem – an unfriendly ecosystem, Q∗(Ω)

Table 7

Model of type III ecosystem, Q∗(Ω)

Table 8

Model of type IV ecosystem, Q∗(Ω)
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In the case of a type III ecosystem both the items which are dangerous
and those which are absolutely safe appear rarely. One can see that the
efficacy R∗ = R8 clearly dominates the efficacy of other decision rules.
A departure from R∗ results in a significant decrease in efficacy.
Type IV ecosystem is dominated by either beneficial or harmful

prospects. Here, also, ruleR8 is the best oneR∗. It is not, however, a strongly
dominant rule as concerns its effectiveness: broader and narrower rules are
equally effective, with more distinct differences appearing at extreme values
of generality of decision rules.
Not only function P (Ω), but also function Q(Ω) can undergo changes.

Table 9

Models of ecosystems with a variable function Q(Ω) and function P ∗(Ω)

Ecology I II III IV

C/B = 1 1 1 1 1

[a]R1 0.0625 0.0625 0.0625 0.0625

R∗ 0.1162 0.4413 0.3443 0.1814

[r]Rn−1 –0.2436 0.3291 0.0625 0.0625

Rn –0.3061 0.2666 0 0

ExtR∗ 0.25 0.69 0.50 0.50

R∗/R1 1.9 7.1 5.5 2.9

R∗ R4 R11 R8 R8

Table 9. presents ecosystems which differ by function Q(Ω) – they do
not differ in the C/B ratio, the value of maximum hedging strategy is iden-
tical for all types. In type I ecosystem all items carry more risk. In effect,
a narrowing down R∗ = R4 has taken place, and the ecosystem comprises
fewer specimens ExtR∗ = 0.25. The dominance of effectiveness R∗ over
the rule of maximum hedging equals 1.9. When a general decrease in risk
levels takes place (type II ecosystem), the maximum rule R∗ = R11 becomes
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generalized, and includes more specimens ExtR∗ = 0.69. The dominance of
efficiency R∗ over the efficiency of the rule of maximum hedging has also
risen – 7.1. In type III (IV) ecosystems a symmetrical rise (fall) in risk diver-
sity qi, can be observed, whose sole effect is the dominance of efficiency R∗

with a larger variability of risk (in this case, deviating from R∗ is more
costly).

Conclusion

The model of ecosystem presented here allows a conclusion that none of
the strategies highlighted (hedging – R1 and risk-seeking – Rn−1) must be
incompatible with the assumption of adaptive rationality. Our mushroom-
hunter may face negative (being poisoned) and non-negative (not being poi-
soned) events. While picking mushrooms, s/he actions a certain function of
his/her objective – s/he aims to eat his/her full (gain payoffs B) and avoids
poisoning (cost C). Risk-seeking strategy works to achieve the objective of
eating one’s fill while accepting a certain risk of poisoning; hedging strategy
works to achieve the same objective while observing higher safety stan-
dards (is risk-averse). The ecological model shows that the strategy which
maximizes “payoffs” R∗ can be located between those extreme behavior
rules. The model shows that if the ecosystem is characterized by appropri-
ate functions P (Ω) and Q(Ω) and values B (value of success) and C (cost
of failure), the choice of either one of these extreme strategies is perfectly
comprehensible as a rational choice, that is, as a choice which maximizes
the average payoff in the “game with nature”. If “poisoning” is a danger and
a loss C, and eating “a tasty mushroom” is a positive event and a reward B,
the choice of hedging or risk-seeking strategy does not in any way contra-
dict the rational model which assumes a maximization of expected value
(utility). Aiming to eat one’s fill (a positive state) and aiming to avoid poi-
soning (a negative state) are intertwined, and without knowing the values
of an environment’s parameters we cannot declare which action (strategy)
is a rational adaptation to it.

N O T E S
1 Obviously, it is not a model of “mushroom hunting”, but intuitions connected to pick-

ing mushrooms allow one to notice the sense of parameters of the model: as is commonly
known, mushrooms have low nutritional value (B) and can be detrimental to health (poi-
sonous) incurring a cost (loss C). In its most general sense, mushroom hunting is a risky
game with nature.
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2 This is of course an idealized assumption: we assume that the mushroom hunter
picks “a lot of” mushrooms, that they are randomly and independently distributed (not
clumped), and the mushroom hunter picks mushrooms all alone as s/he meanders at
random through the ecosystem etc.
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