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Abstract. The article deals with the problem of the dispersion of ordinal vari-
ables. At first, it specifies the very concept of dispersion for this type of scale.
Then some of the most known measures that fit to the concept of ordinal vari-
ation are recalled. They are constructed with two different types of statistical
models: using loss functions and using distance functions. Finally, a new ap-
proach, which is the use of an axiomatic method for the construction of a dis-
persion measure, is proposed. Some relations and comparisons between different
measures and between different approaches are shown.
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Introduction

Identifying the basic parameters describing the distribution of an ordi-
nal variable is not as trivial as in the case of other types of scales. Particu-
larly problematic is the issue of dispersion, because there is no universally
accepted and applied parameter of dispersion for ordinal variables. It is both
needed to specify the concept of dispersion in the case of ordinal variables
and to define a measure that has adequate properties. There have already
been some attempts to introduce measures of dispersion for ordinal vari-
ables. I will skip ad hoc propositions and at first I will refer to those that
are based on some statistical models. I will show some relations between
them and compare their behavior in practice. Then I turn to a new ap-
proach, which is the use of an axiomatic method for the construction of
a dispersion measure. In the end, it will be apparent that this new approach
is also connected to earlier designs.
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1. Concepts of dispersion

Dispersion may be understood so differently that you can actually define
it as a group of distributions’ characteristics. What members of this group
have in common is that they always refer to the extent to which cases are
clustered in a “typical” value and its surroundings.

1.1. Variation and diversity
The above observation that dispersion is a group of characteristics and

not just one property, results from the fact that a concentration in the
typical value can be understood differently. If we only consider just how
frequencies (and thus all the cases) are distributed among the categories,
we would then mean the concept of diversity. The more the distribution
is concentrated on one category, the lower the diversity. And the more even
the distribution is between categories – the greater the diversity.
Diversity merely assumes a distinctiveness between the different cat-

egories, and so it requires only a nominal level of measurement. In turn,
the variation is the type of dispersion that takes into account the size of the
differences between the different categories (variable values). This involves
the assumption that these differences are meaningful. With this approach,
one is able to consider not only the concentration exactly in a certain cat-
egory but also around a certain value. Concentration becomes gradable –
any value may be closer to, or further away from, a typical value. Variation
is low in a population, where most cases have an assigned value close to
the center. As the assigned values move away from the center, the variation
rises.

1.2. The concept of “ordinal variation”
The above two concepts: of diversity and variation – are not adequate

to describe the distribution of an ordinal variable. The second of them vi-
olates the assumptions of measurement – the difference between the values
of an ordinal variable is not interpretable. The first one is allowed from the
measurement point of view, but does not take into account any information
about order.
Using a diversity parameter to describe an ordinal variable could bring

counterintuitive results. In particular, the value of these parameters would
be the same for all the distributions which have the same set of frequencies.
Meanwhile, the order in which the frequencies are assigned to categories
should be taken into account. There still is a center of distribution of an
ordinal variable, and for many reasons the median may be considered this
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natural center. The first intuition is thus that the greater the share of the
median category the lower the dispersion of an ordinal variable. This type
of dispersion will be called the “ordinal variation”. Robert Leik1 called
the opposite of this variation the “consensus” and hence, the parameters
of consensus differ from the parameters of ordinal variation only in their
direction, which is opposite.
It is also not difficult to identify the natural extremes of this ordinal

variation; that is, when it is the lowest, and when it is the highest. Mini-
mal variation naturally occurs when, as in the case of all other concepts of
dispersion, all the cases belong to one category. For such distribution, the
corresponding parameter of ordinal variation should therefore take the zero
value.
The other extreme, the maximum ordinal variation, is somewhat more

difficult to identify. A simplifying assumption is needed; that is, the assump-
tion that there exist minimum and maximum values (categories) that are
impassable extremes. Then the maximum variation corresponds to the most
“polarized” distribution – one in which half of the population is concentrated
in the lowest category, and the other half in the top category. Several au-
thors2 discussing ordinal variation have agreed on this. Such a distribution
will be consequently called a “two-point extreme distribution”. Without the
above assumption about extreme categories there is no maximum ordinal
variation. This is actually just like with conventional variation – its indices
do not have maximal values.
These insights lead to a fairly unequivocal concept of diversity and

to consistent expectations from possible parameters associated with it. We
should expect that this diversity will be the greater, the more the distribu-
tion will deviate from that which is concentrated in one (median) category
towards the extreme two-point distribution. The task now is therefore to
find a parameter that represents the described property.

2. Descriptive parameters for ordinal variables

It is not uncommon that different statistical measures for ordinal vari-
ables are proposed as ad hoc ideas. In other words, these measures are
not derived from a theoretical model nor axiomatically, but are rational-
ized with a superficial compound with certain intuitions only. Rather than
looking for any formula that seems to give results consistent with certain
intuitions, it is more desirable to derive a parameter from independent the-
oretical criteria. In other words, only a theoretical model of the statistical
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description should generate the parameters and methods. In this section
two types of criteria will be considered: loss functions and distance function.
Both lead us to derivation of some dispersion measures. The next section
will present a different approach to the parameter derivation – it will show
the consequences of the adoption of certain axioms that can be postulated
for a measure of ordinal variation.

2.1. Loss function for the ordinal scale

2.1.1. Optimal description model
Many of the widely used descriptive parameters (both location and dis-

persion parameters) can be interpreted in terms of the optimal description.
However, this has not been satisfactorily shown for methods designed specif-
ically for ordinal variables. The reason for this is the lack of a universally
accepted loss function for the ordinal scale.
The optimal description model can be viewed as a decision theory

model. The problem of an optimal description of the distribution of one
variable can be represented as follows: we are looking for such a value xa,
which in some sense can be considered “typical” for the whole population,
because we want to describe it by a single value. It should vary as little as
possible – according to some criteria – from the values assigned to all cases.
This criterion is a loss function defined on a pair of values: the predicted
value and the actual value, formally:

l(xa,X(ωi))

Since we can compute the value of this function for any case in the
population, the loss function itself is also a variable defined in the same
population. And it has its own distribution. The ultimate criterion that
decides what should be the value xa is a parameter (usually the arithmetic
mean) of the distribution of a loss function. The Xa value will therefore
be referred to as the optimal description (or prediction) for the variable
distribution relative to the loss function adopted. It will also determine
a location parameter, the “typical” value in the sense given by a specific loss
function. In turn, the mean loss function indicates how much all assigned
values differ (in the sense defined by a loss function) from the value that is
considered typical. It is thus a measure of dispersion.
Three classic loss functions: binary, modular, and squared, lead accord-

ingly to the pair of location parameter-dispersion parameter: modal-modal
error, median-average deviation from the median, and arithmetic mean-
variance. Of these three loss functions the only one applicable for an ordinal
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scale is the binary function. It is still inadequate, however, because it ignores
the information about the order of categories. Therefore there is a need for
another loss function that suits the nature of ordinal variables.

2.1.2. Number of categories as a loss function
In the context of a set of ratings Grzegorz Lissowski3 proposed the

adoption of a number of categories between the predicted category and the
prediction as a loss function:

l(xj , xa) = |j − a|.

Mean loss function is minimized when the median category is used as
a description. This mean loss function when an optimal description is used
can be considered as a measure of ordinal variation Z(X):

Z(X) =
m

2
−

m
∑

i=1

|F (xi)− 0,5|,

where F (xi) = P (X ≤ xi), and m stands for number of categories.

Some specific properties of this measure will be analyzed later. One can
easily note, however, that it meets the basic expectations of a measure of
ordinal variation: it takes the value “0” for the distribution concentrated in
one category and the maximum value for the extreme two-point distribution.
The measure Z(X) turns out to be closely linked to the measure “D”

introduced by Robert Leik4 without such justification with the model of
optimal description:

D =

2
m
∑

i=1

di

m− 1
,

where di = min{F (xi), 1 − F (xi)}; m – number of categories.

To demonstrate this relationship it should be first noted that the
value di can also be presented in the following form:

di = min{F (xi), 1 − F (xi)} = 0,5− |F (xi)− 0,5|.

Therefore, the sum of values di, which is present in the numerator of
measure D, equals:

m
∑

i=1

di =
m
∑

i=1

(0,5 − |F (xi)− 0,5|) =
m
∑

i=1

0,5 −
m
∑

i=1

|F (xi)− 0,5|

=
m

2
−

m
∑

i=1

|F (xi)− 0,5|,

49



Adam Kęska

which equals the measure Z(X). Further conversion of this sum was ex-
plained by Robert Leik with the necessity of standardization to the inter-
val [0, 1] in order to enable comparability for different numbers of cate-
gories. The maximum value of the sum (and, consequently, also of mea-
sure Z(X)) is dependent on m and equals (m − 1)/2. Dividing the sum
by this value gives the final form of the measure D. It is identical to the
measure WZ(X), introduced by Grzegorz Lissowski as a relative measure
of ratings variation.
However, one can argue that the loss function “number of categories” vi-

olates strict ordinal assumptions. Since we do not know the distance between
categories, we have no reason to conclude, for example, that the 3 categories
above is a greater error than 1 category below. Also, even if errors are in
the same direction, we only know that with more categories there is greater
error, but we do not know how many times greater.
One can also show the link between the adoption of such a loss func-

tion and the descriptive statistical method reserved for stronger levels of
measurement. Note that for each ordinal variable, there is a monotonic
transformation of its values, that all the distances between successive cat-
egories equal 1. After such a transformation this loss function is equiv-
alent to the modular function. The mean loss function (and thus the
value of the proposed measure of dispersion) is then equal to the aver-
age deviation from the median. From this it follows that the adoption of
this loss function is equivalent to the adoption of an assumption about
equal distances (all equal 1) between categories and using the modular loss
function.

2.2. Functions of distance between distributions
To compare the distributions of two variables or the same variable in

two different populations we often use location, dispersion or other param-
eters describing certain distribution characteristics. Comparison of two dis-
tributions can also be performed by calculating a certain distance between
them. This way you can answer the question: to what extent are these dis-
tributions similar? Using the same procedure, you can also determine the
distance of a given distribution from some comparison distribution. If we as-
sume a distribution corresponds to a certain trait, the distance from this
distribution may be treated as a parameter of the said characteristic. If we
have a natural comparison distribution corresponding to the maximum or
minimum dispersion, the distance to it will attest to the dispersion of the
given distribution.
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2.2.1. Distances between cumulative distribution functions
A function of distance as a base to build a measure of dispersion was

used openly and directly by Julian Blair and Michael Lacy in the article
“Statistics of Ordinal Variation”. They assume that the ordinal variable has
a fixed, specified number of categories. They note then, that the distribution
of such a variable is equivalent to the vector of cumulative frequencies F (xi).
With the assumption of a fixed number of categories it is established that
the number of the coordinates of such a vector is constant. All possible
distributions can thus be represented as points in a space of as many di-
mensions as the number of categories. Therefore some distance function can
be used to calculate the distance between any two distributions.
The two authors suggest the distance from the extreme two-point dis-

tribution as a measure of dispersion. They agree with the proposition that
such a distribution represents the greatest dispersion. They also recognize
that the distribution concentrated in one category is naturally the least dis-
persed. However, calculating distances from the least dispersed distribution
would be problematic as there are as many of them as the number of possible
categories. Therefore it would not be clear, from which one we should calcu-
late the distance. Thus, the ordinal variation in this approach is defined as
the distance of the given vector F (xi) from the vector 〈0.5, 0.5, . . . , 0.5, 1〉.
In this theoretical framework, there are many possible criteria leading to

different results. Similarly to the optimal description model, where different
loss functions can be selected – here different distance functions may be
selected. The authors mainly propose the use of the Euclidean distance.
Then the distance of a given vector F (xi) from the vector 〈0.5, 0.5, . . . , 1〉
is (due to the fact that the last coordinate is always 1 it may be omitted):

d2 =
m−1
∑

i=1

(F (xi)− 0,5)2

However, this (and any other thus constructed) is a parameter which is
directed in an opposite way to what we expect from a parameter of ordi-
nal variation. Using the terminology of Robert Leik, it is a parameter of
consensus. Its value is zero for extreme two-point distribution (representing
the greatest dispersion and the lowest consensus). A simple correction by
subtracting the d2 from its maximum possible value results in a parameter
with a correct polarity, the parameter of ordinal variation:

(m− 1)/4 − d2

This measure also has an interpretation in terms of m − 1 dummy
variables representing the ordinal variable X. Let’s take a series of m − 1
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binary variables Xi such that Xi = 1 if and only if X ≤ xi. Thus,
each of these variables has the following distribution P (Xi = 1) = F (xi);
P (X = 0) = 1 − F (xi). The variance of each individual dummy variable is
D2(X) = F (x)(1 − F (xi)). As shown by Blair and Lacy5, the sum of the
variances turns out to be equal to the above ordinal variation measure:

BL =
m
∑

i=1

F (xi)(1− F (xi)) = (m− 1)/4 − d2.

It turns out this measure proves to be closely related to a measure
introduced by Berry and Mielke6:

IOV = T/Tmax,

where T =
∑

i<j N(x = xi)N(X = xj)(j − i), 1 ≤ i < j ≤ m and Tmax is
the maximum value of T achievable for a given number of N .

The IOV measure differs from measure BL only with normalization –
it is a relative measure, taking values from the range [0, 1]. Otherwise, it
has the same properties as the parameter Blair and Lacy obtained by using
the Euclidean distance from extreme two-point distribution.
Also interesting is the application of the city block distance function

instead of the Euclidean distance. Then the distance of a given distribution
from extreme two-point distribution is as follows:

m−1
∑

i=1

|F (xi)− 0,5|.

Since we know that the maximum distance in this case is (m − 1)/2,
analogous polarity correction can be used. Subtraction from the maximum
value results in the following parameter of ordinal variation:

(m− 1)/2 −
m−1
∑

i=1

|F (xi)− 0,5|.

Notice that F (xm) = 1, therefore |F (xm) − 0,5| = 0,5. So the above
formula can be transformed to:

(m− 1)/2 −
m
∑

i=1

|F (xi)− 0,5| − 0,5,

which in turn reduces to:
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m/2−
m
∑

i=1

|F (xi)− 0,5|,

which is identical to the previously defined measure Z(X). As it turns out,
this parameter is rationalized not only with the model of optimal descrip-
tion, but also as a closeness to extreme two-point distribution.

2.3. Comparison of measures of ordinal variation
The performance in practice of all the mentioned measures is illustrated

by the following table. The table shows their values in some particularly
interesting cases. All of them equal zero for distribution concentrated in
one category and their maximal values for extreme two-point distribution.
Measures D and IOV are, accordingly, normalizations of Z and BL so they
take values from the interval [0, 1].

Example 1

Distribution distribution 1 distribution 2 distribution 3 distribution 4 distribution 5

Type of extreme two- uniform binomial with binomial one-point
distribution point p = 0,5 p = 0,8

P (X = 0) 0.5 0.25 0.125 0.008 0

P (X = 1) 0 0.25 0.375 0.096 1

P (X = 2) 0 0.25 0.375 0.384 0

P (X = 3) 0.5 0.25 0.125 0.512 0

Z 1.5 1 0.75 0.6 0

D 1 2/3 0.5 0.4 0

BL 0.75 0.625 0.4688 0.351 0

IOV 1 5/6 0.625 0.468 0

3. Axiomatic determination of a class of measures

In the case of nominal variables – where dispersion can be interpreted
only as diversity – thanks to the formulation of some natural demands we get
a measure of diversity with good properties. That is the entropy7. This result
is so valuable that it inspires to analogous search for a parameter of ordinal
variation. The following section will be an attempt to formalize natural
requirements from a measure of ordinal variation. Then it will be found
that a set of postulates generates not one measure, but a certain class of
parameters.
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3.1. Formulation of the problem
In order to be able to formulate mutually non-exclusive postulates it is

necessary to adopt certain assumptions, which are to some extent arbitrary,
and may not be natural in every situation. First of all, it is inevitable to limit
the perspective to the case of a fixed number of categories of the variable.
Variables with a different number of categories are not directly comparable
when it comes to ordinal variation. A fixed number of categories also involves
the possibility of empty categories (with zero frequency). Even if no case
belongs to some category, this category is not excluded and the number of
categories remains the same.
Another difficulty arises from the fact that it will be needed to pick

one location parameter as a natural center of distribution. However, there
seems to be an agreement that the median is a good and natural location
parameter for all ordinal variables. The set of axioms will therefore assume
the naturalness of the median.
The assumption of a fixed m number of categories leads to the conclu-

sion that the cumulated distribution vector (fixed length m) contains all rel-
evant information. Thus in general the problem is to find such measure ZP ,
which is the function of the cumulative distribution vector. Such defined ZP
is automatically independent of the strictly increasing monotonic transfor-
mations of the variable, since such a transformation does not change the dis-
tribution vector. This automatically ensures the applicability of the measure
for ordinal variables and makes additional postulates involving the scale of
measurement unnecessary.
When we take into account all the natural intuitions concerning ordinal

variation we can formulate the following desirable properties of a measure:

• Independence of the values’ direction:

The ordinal variables contain information on the order of objects, while the
direction in which the values increase is essentially arbitrary. For example
– the same information would hold on a school grade scale of 1 to 6, where
1 would be the worst grade and a reversed scale: from 6 to 1, where the worst
grade would be 6. The measure of ordinal variation should be resistant to
this arbitrariness. This property therefore implies a stronger requirement
for a parameter than just independence from the increasing transformation
– it should be independent of any strictly monotonic transformation.

• The minimum value (zero) should be taken for the one-point distribu-
tion:

Concentration of distribution in a single category in a natural way corre-
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sponds to the total absence of dispersion. The measure should then indicate
the lack of dispersion by taking the zero value.

• The maximum value for the extreme two-point distribution:

Another natural end of the continuum is the extreme dispersion at the
extreme two-point distribution, so that for this distribution the measure
should take its maximum value.

• ZP function should be continuous:

Small changes in the distribution of the variable (and thus – in distribution
vector) should not lead to abrupt changes in the value of measure.

• Transfer of cases to the more extreme category should result in an in-
creased value of measure of ordinal variation:

If you move a certain number of objects from one category into the next,
which is closer to the extreme category, we arrive at a more dispersed dis-
tribution as it will be closer to the extreme two-point distribution. Such
a transfer in the bottom half of the distribution (the half of population with
the lowest values of the variable) is in the direction of the lowest category.
Whereas in the top half it is in the direction of the highest category. Ad-
ditionally, the transfer cannot cross the border between the lower and the
upper half, so it does not change the median.

• Reduction in the value of measure ZP after such a transfer should be the
greater the larger the transfer (the greater the number of transferred
cases).

3.2. Formalization of postulates
Let us introduce the following denotations:

Fx = 〈F (x1), F (x2), . . . , F (xm)〉 – vector of values of the cumulative distri-
bution function for all the m variable categories;

F – set of all possible vectors Fx

Therefore, the target measure ZP is formally a function: ZP : F → R,
so it assigns real numbers to cumulative distribution vectors.
Previously formulated postulates can be formalized as follows:

A1. Independence of the values’ direction.

ZP (〈F (x1), F (x2), . . . , F (xm)〉)
= ZP (〈1− F (xm−1), 1− F (xm−2), . . . , 1− F (x1), 1〉)
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Note: The argument of ZP on the right side of the equation is a cumula-
tive distribution vector we get from the “mirror image” of the distribution
introduced on the left side of the equation.

A2. Minimal value for one-point distribution.

∀Fx ∈ F : ∀i : F (xi) = 0 ∨ F (xi) = 1 → ZP (Fx) = 0

Note: the implication predecessor describes the one-point distribution –
for such distribution the cumulative frequencies are always “0” or “1”
(the “1” values start from the category to which all cases belong, any pre-
vious vector values are ”0 ”).

A3. Maximal value for extreme two-point distribution.

∀Fx ∈ F : ZP (Fx) ≤ ZP (〈0.5, 0.5, . . . , 0.5, 1〉)

Note: the vector 〈0.5, 0.5, . . . , 0.5, 1〉 represents extreme two-point distribu-
tion. Probability at the first category equals 0.5; all middle categories are
empty, therefore the cumulative distribution does not change until the last
category, which also has the probability of 0.5.

A4. Transfer towards extreme category.

ZP (〈F (x1), . . . , F (xj)+ε, F (xj+1), . . . , F (xm−1), 1〉)−ZP (Fx)=t(ε, F (xj)),

where ε ∈ [0, F (xj+1)−F (xj)], t is a continuous function increasing with ε,
t(0, F (xj)) = 0, F (xj) + ε ≤ 0.5.

Note: The axiom describes a transfer of some cases from a category closer
to the center (xj+1) to her nearest category (xj), which is closer to the
extreme category. Because of the property F (xj) + ε ≤ 0.5 the described
transfer can only occur in the lower half of distribution (behaviour of the
measure after a transfer in the upper half will be determined with the ad-
dition of axiom A1, which will be explained later). Such a transfer is valued
positively; that is, the value of ZP after the transfer should rise. The rise
can depend on, besides the size of the transfer, the cumulative distribu-
tion F (xj), so on the “place” in distribution where the transfer occurs. The
continuity of function t ensures, that small changes in distribution will not
result in sudden rises in ZP .
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3.3. Observations on relations between axioms
With the above formalizations of postulates, it is possible to make a few

observations that allow for the simplification of the set of axioms and assist
in obtaining the final form of the measure of ordinal variation.

Observation 1. For formal simplicity, Axiom A4 involves only transfers
in the lower part of distribution. The axiom A1 complements the A4 as for
transfers in the upper half of the distribution. If the parameter is to have the
same value for reversed distributions (one distribution being a mirror reflec-
tion of the other), the change in its value must be carried out similarly also
in the case of transfers in the upper half of the distribution. According to A1
we have: ZP (Fx) = ZP (〈1−F (xm−1), 1−F (xm−2), . . . , 1−F (x1), 1〉). With
inserting the vector 〈1 − F (xm−1), 1 − F (xm−2), . . . , 1 − F (x1), 1〉 in place
of Fx in A4 we arrive at:

ZP (〈1− F (xm−1), 1− F (xm−2), . . . , 1− F (xj+1), 1 − (F (xj) + ε), . . . ,

1− F (x1), 1〉) − ZP (〈1− F (xm−1), 1− F (xm−2), . . . , 1− F (x1), 1〉)

= t(ε, 1 − F (xj)),

where ε ∈ [0, F (xj+1) − F (xj)], t is a continuous non-negative function
increasing with ε, t(0, 1− F (xj)) = 0, 1− (F (xj) + ε) ≤ 0.5.
Therefore it is apparent, that after reversing the situation given in ax-

iom A5 the transfer towards the extreme category is a transfer to the higher
category. This is so due to the fact that cumulative frequency 1−F (xj) from
before the transfer turns into 1− (F (xj)+ε) = 1−F (xj)−ε, so it is smaller
by ε. In both cases (transfers in the top or bottom half of distribution) the
transfer cannot cross the middle of distribution. That is, it is not allowed
to transfer a case from the top half to bottom half or the other way around.
In the case of the upper half, it is assured by the condition F (xj)− ε ≥ 0.5.
In order to analogically value similar transfers in the upper half of the

distribution the following condition must be fulfilled:

t(ε, F (xj)) = t(ε, 1 − F (xj))

Since the function t has the same value for the argument of F (xj) and
for 1 − F (xj), i.e., therefore its value depends only on the module of the
difference: |F (xj)−0.5|. The value of transfer must therefore be equal to the
value of a function v(ε, |F (xj) − 0.5|), which is a non-negative continuous
function increasing with ε, wherein v(0, |F (xj)− 0.5|) = 0.

Observation 2. The minimum value for the one-point distribution is a con-
sequence of the transfer postulate (A4, supplemented by A1). Take any
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distribution, which is not one-point. Using reverse transfers rather than
transfers towards the extremes can lead to one-point distribution, always
reducing (in accordance with A4 supplemented with A1) with each transfer
the value of ZP . However, any transfer made when the starting point is
a one-point distribution can only increase this value. Of course the A4 pos-
tulate does not imply that the minimum is zero (as proclaimed by A2) – this
value is just a matter of normalization.

Observation 3. The maximum value for the extreme two-point distribu-
tion (A3) results from the A4. Take any distribution other than extreme
two-point distribution. Then always at least one cumulative frequency is
different from 0.5. A transfer towards the extreme categories can there-
fore always be found, which according to A4 (supplemented with A1)
will increase the value of the parameter ZP . If after such a transfer,
distribution is still not extreme two-point, then there is a possibility of
a subsequent transfer. By a number of such transfers you can achieve
the extreme two-point distribution, increasing the value of the measure
in every step. Only for extreme two-point distribution are all cumula-
tive frequencies (except for the last category, which is always equal to 1)
equal to 0.5. It is then impossible to make a further transfer as specified
in the A4. Thus, the ZP reaches the maximum value at the extreme two-
point distribution.
For instance, take frequency distribution 〈0.1, 0.2, 0.3, 0.4〉, for which

the vector of cumulated frequencies is Fx = 〈0.1, 0.3, 0.6, 1〉. In this it could
be a series of the following transfers:
1) Since 0.6−0.1 ≥ 0.5, it is possible to transfer 0.1 from the third category
to the last category. We arrive at frequencies 〈0.1, 0.2, 0.2, 0.5〉 and cu-
mulated frequencies 〈0.1, 0.3, 0.5, 1〉. Cumulated frequency in the third
category became 0.5, so further transfer (such that the value of ZP is
increased as stated in A4) from this category to the higher one is not
possible.

2) Since 0.3 + 0.2 ≤ 0.5, the transfer of 0.2 from the third to the second
category is possible. We get frequency distribution 〈0.1, 0.4, 0, 0.5〉 and
cumulated frequencies 〈0.1, 0.5, 0.5, 1〉. Now only a transfer from the
second to the first category remains feasible.

3) The transfer of 0.4 from the second to the first category results in fre-
quency distribution 〈0.5, 0, 0, 0.5〉 and cumulated frequencies 〈0.5, 0.5,
0.5, 1〉, that represent the extreme two-point distribution. No further
transfers that would increase ZP are possible.
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Observation 4. The extreme two-point distribution is the only distribution
that can be achieved through a series of transfers (that would increase or-
dinal variation according to A4) from any other distribution. For any other
distribution, it is mutually exclusive that you could achieve it through trans-
fers from one-point distribution in the first category and from one-point
distribution in the last category. In one case of these starting points there
would always be the necessity to take more than half of the population
from the extreme category. Such a transfer is median-changing and is not
a transfer described in A4 (it violates the requirement F (xj)+ε ≤ 0.5). You
can achieve the extreme two-point distribution even through transfers from
one-point distributions from both extreme categories. This would require
transferring half the population at a time.

These observations reduce the set of significant axioms. The axiom of
maximum A3 is not needed, whereas the role of A2 is just normalization,
as it sets the minimal value of ZP to 0.

3.4. The Result
The set of axioms determines a class of measures of ordinal variation.

Theorem
In order to fulfill properties A1–A4 the function ZP must form:

(m− 1)w(0.5) −

(

m−1
∑

i=1

w(|F (xi)− 0.5|)

)

,

where w(·) is a continuous non-negative increasing function and w(0) = 0.

Proof
Observation 1 entails that if we can transform vector FX1 into vec-

tor FX2 with a transfer towards an extreme category, then ZP (FX1) −
ZP (FX2) = v(ε, |F (x)j) − 0.5|), where xj is the category, for which the
cumulative frequency does change.
Let us introduce another observation that is crucial for the proof.

Observation 5. Note, that if we consider a transfer such as in A4, there is
only one change after it in the cumulative frequencies vector and that change
equals the quantity of the transfer. Therefore, the transferred quantity ε
(that allows us to transform vector FX1 into FX2) is:

ε = F 1(xj)− F 2(xj), when F 1(xj) ≤ 0.5

ε = F 2(xj)− F 1(xj), when F 2(xj) ≥ 0.5,
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so in general:

ε = |F 1(xj)− F 2(xj)|

If there will be consequential transfers of the same type between
other categories, then certain coordinates of vectors will change accord-
ingly by transfer quantities. So the coordinates of the vector of differences
〈|F 1(xi)− F 2(xi)|〉 (where i = 1, 2, . . . ,m) will equal quantities of the per-
formed transfers. Any given vector of differences may be interpreted as a re-
sult of a series of transfers of quantities, which equal the vector coordinates.
In accordance with A4, a single transfer should result in a change in ZP

by value v(ε, |F (xj)− 0.5|). Every consequent transfer causes another anal-
ogous change in ZP . So if we can transform vector FX2 into vector FX1

through a series of transfers towards an extreme category then:

ZP (FX1)− ZP (FX2) =
m−1
∑

i=1

v(|F 1(xi)− F 2(xi))|, |F
2(xi)− 0.5|).

From A4 complemented with A1 and from Observation 3 we have
that for all FX (for all distributions): ZP (FX) ≤ ZP (〈0.5, 0.5, . . . , 0.5, 1〉),
whereas vector FX can be achieved from vector 〈0.5, 0.5, . . . , 1〉 through
transfers directed from extreme categories. In addition, vector 〈0.5,0.5, . . . ,1〉
is the only one that can be transformed into any other vector through a se-
ries of such consequent transfers (not crossing the border between the top
and bottom half of the population). Therefore only a comparison of coor-
dinates of a given vector Fx and vector 〈0.5, 0.5, . . . , 0.5, 1〉 guarantees that
differences in coordinates are interpretable as quantities of individual trans-
fers. In accordance with Observation 5, consequent modules of differences
between coordinates of a given vector and vector 〈0.5, 0.5, . . . , 0.5, 1〉 corre-
spond to a series of transfers that lead to extreme two-point distribution.
These modules equal |F (xi) − 0.5|, except for the last category, where the
cumulated frequency is always 1, so there is no difference between coordi-
nates.
For instance, take the distribution already mentioned in Observation 3:

〈0.1, 0.2, 0.3, 0.4〉. For this distribution the vector Fx is 〈0.1, 0.3, 0.6, 1〉.
The differences between its coordinates and those of extreme two-point dis-
tribution are: |0.1− 0.5| = 0.4, |0.3− 0.5| = 0.2, |0.6− 0.5| = 0.1, 1− 1 = 0
and correspond with transfers that lead to extreme two-point distribution,
as described previously in Observation 3.
Therefore, in accordance with Observation 5, the vector of differences

〈|F (xi)− 0.5|〉 is a vector of transfers that are needed to transform FX into
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vector 〈0.5, 0.5, . . . , 1〉. The difference between the value of the measure ZP
for extreme two-point distribution and for a given distribution is:

ZP (〈0.5, 0.5, . . . , 0.5, 1〉) − ZP (FX) =
m−1
∑

i=1

v(|F (xi)− 0.5|, |F (xi)− 0.5|)

It is apparent, that in this case the function v is a function of two
identical arguments. Therefore it has to be equivalent to some one-argument
function w(|F (xi)−0.5|), which is continuous, non-negative, and increasing.
So the above difference can also be presented as:

ZP (〈0.5, 0.5, . . . , 1〉) − ZP (FX) =
m−1
∑

i=1

w(|F (xi)− 0.5|) (*)

If the given distribution is one-point, then the vector FX is 〈0, 0, . . . , 0, 1,
. . . , 1, 1〉. Since all cumulative frequencies are 0 or 1, in this case the sum
takes its maximum value (function w is increasing), which is:

m−1
∑

i=1

w(0.5) = (m− 1)w(0.5)

In accordance with A3, the value of the measure for one-point distribu-
tion has to be 0. Therefore equation (*) in the case of one-point distribution
takes the form:

ZP (〈0.5, 0.5, . . . , 0.5, 1〉) = (m− 1)w(0.5),

which determines the maximum value of ZP , which has to be its value for
extreme two-point distribution.
Back again to equation (*), if we leave sole ZP (FX) on the left side, we

arrive at:

ZP (FX) = ZP (〈0.5, 0.5, . . . , 0.5, 1〉) −
m−1
∑

i=1

w(|F (xi)− 0.5|).

If we now insert the known value of ZP for extreme two-point distri-
bution, we finally get:

ZP (FX) = (m− 1)w(0.5) −
m−1
∑

i=1

w(|F (xi)− 0.5|).

The proof has to be now supplemented with showing that the measure
of this form always fulfills the conditions A1–A4.
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Axiom A3 is always fulfilled for this form of function ZP , because the
sum has its minimal value for extreme two-point distribution. This value is
zero, since all differences |F (xi)− 0.5| are zero and w(0) and w cannot take
negative values.
Axiom A1 is fulfilled, because the set of differences |F (xi)−0.5| (where

i = 1, 2, . . . ,m) is the same for reversed distributions. For any given vec-
tor Fx this set of differences is: |F (x1)− 0.5|, |F (x2)− 0.5|, . . . , |F (xm−1)−
0.5|. Then for F ′

x, which is a “mirror reflection” of Fx it is: |1−F (xm−1)−
0.5|, |1 − F (xm−2) − 0.5|, . . . , |1 − F (x1) − 0.5|. That can be rewritten as:
|0.5 − F (xm−1)|, |0.5 − F (xm−2)|, . . . , |0.5 − F (x1)|, so it is the same set
as that corresponding to Fx (except for the reversed order). The value of
measure ZP depends only on this set of differences (not their order) and
function w(·).
For the one-point distribution all of the differences F (xi)− 0.5 are 0.5.

Since cumulated frequency is always in [0, 1], the value “0.5” is the largest
possible argument of function w(·). Therefore the sum is at a maximum for
one-point distribution. That also means the value of measure ZP is minimal.
That means the axiom A2 is fulfilled.
In the case of A4 we have to consider two cases of a transfer towards

the extreme category: the one in the lower half of the population which is
towards the bottom category and the one in the top half which is towards
the highest category.

• Transfers in the lower half of the population:

Distributions that are one transfer apart will differ in just one coordinate of
cumulated frequencies vector. After the transfer one value becomes F (xj)+ε
instead of F (xj). The sums before and after the transfer will differ in just
one value: after the transfer it is w(|F (xj) + ε− 0.5| instead of w(|F (xj)−
0.5|). Therefore the difference between the value of ZP before and after the
transfer will equal w(|F (xj)−0.5|)−w(|F (xj)+ε−0.5|). As F (xj)+ε ≤ 0.5

the above difference is a non-negative function increasing with ε. That means
A4 is fulfilled.

• Transfers in the upper half:

Distributions that are one transfer apart will also differ in just one coordi-
nate of cumulated frequencies vector. After the transfer one value becomes
F (xj)− ε instead of F (xj). The sums before and after the transfer will dif-
fer in just one value: after the transfer it is w(|F (xj) − ε − 0.5| instead of
w(|F (xj) − 0.5|). Therefore the difference between the value of ZP before
and after the transfer will equal w(|F (xj)− 0.5|)−w(|F (xj)− ε− 0.5|). As
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this time we have F (xj)−ε ≥ 0.5, the above difference is also a non-negative
function increasing with ε. That means A4 is fulfilled also for the upper half
of the population.

There are an infinite number of possible ZP functions that fulfill all
the conditions. They differ in function w(·), so in an evaluation of transfers.
Depending on whether this function rises faster or slower with increasing
arguments, the transfers close to the extremes or to the center of distribution
will be valued differently. Note that the value of measure depends on the
module of difference: |F (xj) − 0.5|. The cumulative frequency at the very
center of an ordered population would be 0.5, and towards the extremes
the difference from 0.5 becomes bigger, so the module can be interpreted
as a “distance” to the center. If the w(·) function is convex it will overrate
transfers near the extremes and underrate that close to the center. If it is
concave – then just the contrary. This “distance” will not matter, if w(·)
is linear.

3.5. Further normalization
On all of the ordinal variation measures you can put one further con-

straint. So far their values only have the lower limit (zero). However, de-
pending on the given number of categories, their maximum values will dif-
fer. To introduce some degree of comparability for different populations and
variables it is required to normalize the measure to a constant range of
possible values. For interpretational simplicity usually the normalization is
a linear transformation of values so that they have a range [0, 1]. After such
a transformation, every value can be interpreted as a percent of the max-
imum possible ordinal variation. Measures “D” and “IOV”, introduced in
the previous section, are normalized this way.

3.6. Examples of measures complying with the axioms
The measure Z(X) = m/2−

∑m
i=1 |F (xi)−0.5|, mentioned earlier, does

comply with the axioms. It was introduced as a mean loss function, but
notice it can be rewritten in the following form:

(m− 1)/2 −
m
∑

i=1

|F (xi)− 0.5|,

so it is clear it matches the general formula, determined by the axioms.
The function w(·) is the identity function in this case. Transfers are thus
valued proportionally to the quantity of transfer. It also means that Leik’s
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measure D and Lissowski’s WZ (which are in fact the same) also comply
with all the postulates. They are both Z’s normalization into range [0, 1].
Another example would also be Blair and Lacy’s measure d2, but only

after a correction of values’ direction, that is:

BL = (m− 1)/4 − d2,
so

BL = (m− 1)/4 −
m−1
∑

i=1

(F (xi)− 0.5)2.

This version of their measure has a minimum for one-point distribution
and a maximum for extreme two-point distribution. It is apparent that
the w(·) function is here the squared function. After a transfer below the
median and towards the center there is one change in the sum. There is
a value (F (xi)−ε−0.5)2 instead of (F (xi)−0.5)2, which makes a difference
of ε2 − 2ε(F (xi) − 0.5). The above function is (as it should be) increasing
with ε and also decreasing with F (xi). It means that the transfers are valued
higher the closer they are to the lowest category. It would be similar in the
case of transfers in the upper half. The transfers that are farther away
from the center are more important. The same can be said about Berry
and Mielke’s IOV , which is actually a normalization of BL.
On the other hand, a measure based on distances, one that does not

take into account the number of categories, cannot comply with the axiom
of transfer. Empty categories cannot be ignored. For example, the following
two distributions: 〈1

2
, 1
2
, 0, 0〉 and 〈1

2
, 0, 0, 1

2
〉 cannot be treated as equivalent,

even though the structure of relations between cases could be the same. You
would need transfers that change the value of variation measure to trans-
form one of these distributions into another. The value of ordinal variation
measure is different for these two distributions and it makes sense only with
the assumption that the categories are fixed.
In the previous section I recalled some of the previously known measures

of ordinal variation. As it turned out, these measures belong to the class
of measures determined axiomatically. It means that the axiomatic method
gives the existing measures an additional substantiation. But this method
also shows that those measures are just examples and there are more sensible
parameters to be considered.
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