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MASSIVE SIMULATION OF COMPLEX BEHAVIOUR

Abstract. The promise of Newtonian science to create a universal precise ex-
planation of all phenomena seems to be out-dated. “Cutting through complex-
ity” may kill potential solutions. The complexity of real phenomena should be
accepted and at best tamed by appropriate techniques. Complexity, a recent
megatrend in the sciences, may effectuate another scientific revolution.
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1. Beware of oversimplified models

In many fields of research in the natural or social sciences, there are
no linear causal mechanisms that lead indubitably to the desired result. In
the quest for a formal elegancy, reductive models tend to be simpler than is
reasonable. They turn out to be not just inadequate, but oftentimes delusive.
Let us illustrate this wide-spread phenomenon by an example from finance.
Finance is part of economics, i.e. a social science, but it makes extensive use
of quantitative methods typical for the (natural) sciences. Its cross nature
makes it an approriate example for the general trend.
At the beginning of our century, there was a general blindness of main-

stream economics to the very possibility of systematic failures in a market
economy. It is perhaps no over-claim to say that economists thought that
they had resolved their internal disputes. After 2008, of course, the quarrels
about theoretical issues are back and they are more vivid than ever. Impor-
tant questions concern the role of mathematical methods in economic theory
building. Ambitious economic models are elegant, convenient, and lucrative:
they require mathematical skills on a physicist level, and economists with
such skills are usually much better paid than physicists. What is more, such
models look very reputable: if quantitative methods are used, then nobody
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dares to doubt economics is a real science. And of course, mathematics
is the backbone of any decent research in economics. There is no doubt
about that.
Nevertheless, there is a methodological worry concerning the use of

mathematical methods in economics. It is expressed by the so-called
hovercraft-effect, which consists in using high-powered mathematics to hover
over the surface of an economic problem without touching it. Abstraction
and Idealization beam your models up to an ideal world, leaving economic
reality far down. Such econometric models work best under standard con-
ditions, i.e. conditions which are very much idealized and thus far away
from the rough reality of a financial crisis. Compare this to a navigator
who feels fine in sunny weather, but is unable to navigate in times of storm
and high swell. “Not a good navigator” you would say. And similarly with
quantitative models designed for good-weather conditions only: If they stop
functioning at high swell, i.e. at high market volatility, then they are of lit-
tle use.
John Coates provides an interesting case: In 2008, the FED met with

very limited success in arresting the downward momentum of a collapsing
market. Theoretically, it was clear what to do: in the event of a market
crash “central banks need only lower interest rates to stimulate the buying
of risky assets, which now offer relatively more attractive returns compared
to the low interest rates on Treasury bonds”. This didn’t work. What had
happened?

The chronically high levels of cortisol among the banking community have
powerful cognitive effects. Steroids at levels commonly seen among highly
stressed individuals may make traders irrationally risk-averse and even price
insensitive. Compared to the Gothic fears now vexing traders to nightmare,
lowering interest rates by 1 or 2 percent has a trivial impact. Central bankers
and policy-makers, when considering their response to a financial crisis, have
to understand that during a severe bear market the banking and investment
community may rapidly develop into a clinical population. [3]

Coates, a cognitive scientist and former investment banker, explains how
enduring stress, i.e. a high level of cortisol, interferes with the normally
high testosterone levels in investment bankers and makes them sick. They
develop a condition called learned helplessness which makes them gun-shy:
oddly unable to initiate a trade. The cure would be reduction of any of the
two hormone levels, either by long holidays or, perhaps, by chemical cas-
tration. Alternatively, one might replace the workmanship altogether. Be
that analysis of Coates’ valid or not – it looks interesting. And of course,
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no macroeconomic model takes into account hormone levels in individual
bankers. These models work well without that, almost anytime. But: excep-
tions do matter!
Econometric methods are applied mathematics. All applied mathemat-

ics has a tendency to degenerate. Or, to put it gently, quantitative models
have a tendency to gain formal elegance over time. This phenomenon can
be met in all disciplines of science. At the outset of my own encounter with
mathematical logic there was the intention to solve a practical problem: to
improve man-machine-communication. To that aim, we searched for logic
calculi ready to deal with natural language. After some years’ effort, we
arrived at interesting models. Next we worked hard to make them more
elegant, to prove consistent, study alternative versions, classify them, or in-
vestigate their mutual interrelations. The intended application faded away.
By raising the level of abstraction you get formal models not blemished by
all sorts of “real-life” scratches and buckling. That way, however, you arrive
at models which are undercomplex (or: oversimplified) for the analysis of the
case considered. If you idealize away practical applicability from your quan-
titative models, then you cannot apply them. No longer do you sincerely
intend to apply your findings to investigate the initial specific problem.
So what you are doing is no longer applied mathematics – it is just plain
mathematics. But it is certainly no pioneering research in mathematics ei-
ther: a purely quantitative paper from e.g. business studies would hardly be
accepted for publication even in a mediocre journal of pure mathematics.
Hence, using quantitative models in economics without a reasonable appli-
cation is not only pointless from an economic point of view – it misses the
standards of scientific research.

2. Complexity’s prehistory

Essential elements of the above criticism were raised as early as
the 1920s. Take, for example, John Maynard Keynes’ views on model build-
ing. In his marvellous book The Claims of Common Sense John Coates
extends a panorama of that period in Cambridge. For Keynes, who is badly
underestimated as a philosopher of science, Cambridge was the best place to
be those days. Besides a group of brilliant young researchers – constituting
the Cambridge Circus – there were around some of the greatest philosoph-
ical minds of the period: George Edward Moore, Piero Sraffa (a member
of the Circus himself), Frank Plumpton Ramsey, and Ludwig Wittgenstein.
They all strongly influenced Keynes’ ideas on vaguesness.
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Much economic theorizing to-day suffers, I think, because it attempts to apply
highly precise and mathematical methods to material which is itself much too
vague to support such treatment. ([9], p. 379)

and he continues elsewhere

our precision will be a mock precision if we try to use such partly vague and
non-quantitative concepts as the basis of a quantitative analysis. ([10], p. 40)

Keynes did not think this kind of vagueness was problematic. What he
had in mind was merely that much of practical experience cannot be re-
duced to mathematical and logical formalism. Doesn’t that remind of Henry
Poincare’s famous statement?

If we knew exactly the laws of nature and the situation in the universe at the
initial moment, we could predict exactly the situation of that same universe
at a succeeding moment. But even if it were the case that the natural laws
had no longer any secret for us, we could still only know the initial situation
approximately. If that enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should say that the phe-
nomenon has been predicted, that it is governed by laws. But it is not always
so; it may happen that small differences in the initial conditions produce very
great ones in the final phenomenon. A small error in the former will produce
an enormous error in the latter. Prediction becomes impossible... ([15], p. 87)

And there is little hope for future improvement. Richard Feynman, the
eminent physicist, declared for his own discipline:

Yes! Physics has given up. We do not know how to predict what would happen
in a given circumstance, and we believe now that it is impossible, that the
only thing that can be predicted is the probability of different events. It must
be recognized that this is a retrenchment in our earlier ideal of understanding
nature. It may be a backward step, but no one has seen a way to avoid it. [...]
So at the present time we must limit ourselves to computing probabilities.
We say “at the present time”, but we suspect very strongly that it is something
that will be with us forever – that it is impossible to beat that puzzle – that
this is the way nature really is. ([4], p. 9)

If that is the situation in physics, why should it be any better in the social
sciences? Some laws of nature hold for a large variety of systems (i.e. these
systems are composed of elements which underlay very different dynamic
laws). Modern mathematics is extremely successful in describing real-world
situations and processes by quantitative models. But as it comes to the so-
lution of the respective equations, things look dismal: Precise solutions are
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available for very special cases only (or, for very simple systems). So our
ability to cope with complicated equations is poor. But modern mathe-
matics does not leave us helpless and blind. Instead, there is an amazing
phenomenon: there is order emerging out of chaos. As soon as the number of
components is sufficiently large, the summary properties which characterize
the system as a whole become in some way predictable. Oftentimes, these
predictions are even very easy. There are no hidden commonalities in these
systems or magical mutual influences. Just their structural frame is similar:
taking together all the weak influences of very many independent factors.
The macroscopic behaviour of a big complex system may be almost com-
pletely independent of its microscopic structure. That is the very essence
of universality.
The remedy is to integrate various perspectives on a phenomenon into

one complementary image. Yet such a situation may result in formal incon-
sistencies during model building. It seems that Keynes had anticipated such
an intricacy as well. There was no inconsistency-tolerant calculus available
yet, but Keynes’ way of reasoning was open for dialectical treatment of
complementary components of models. (compare [20], p. 89 ff.) Today the
situation is even better: There are ample systems of paraconsistent logic
available.
Since all the required elements for complex model structures seem

to be existent in Keynes’ workshop, why didn’t he speak about complex-
ity bluntly? Maybe the answer is very easy: he didn’t see it. One facet of
complex systems behaviour is the fractal structure of the systems attrac-
tor. It was the very shape of the notorious owl-mask then that brought
the strangely unstable nature of Lorenz’ toy weather system to broader at-
tention. By visualization of the attractor people immediately understood
the essence of the phenomenon. What is more, by visualizing the strange
attractor the essence of deterministic chaos was displayed. Fractals have
been around since the early 20th century. The French mathematician Gas-
ton Maurice Julia tried to draw them by hand in the 1920’s. Such an effort,
however, is futile. Every single calculation of a function value in the complex
numbers leads to another dot on the function’s graph. That works fine for
linear functions, parabolic curves, or other regular-shaped graphs. Oscilla-
tion is much harder. Truly non-linear behaviour is nearly hopeless. Instead
of a curve-like graphical representation you end up with an irregular cloud
of dots here and there. As before, each dot stands for one value of the func-
tion. The dots may crowd together in some areas, may leave other areas
empty, and scatter randomly in between. No reasonable structure emerges.
It needs high-speed computers and graphic plotters to make a Julia set,
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a Mandelbrot’s structure or other fractals appear out of such a cloud. Only
millions of dots reveal the graphical beauty of these icons of (some sort of)
complexity. One century ago, these pictures did not exist, since there were
no technical means available to make them visible.
All you may get by handwork in complexity-visualization is cloudy sets

of dots – that is, fuzziness. Complexity in the 1920’s was visualized as fuzzi-
ness, not as fractals. Limited technological means let us see fuzzy images.
So fuzziness, or vagueness, was the coeval appearance of complexity. But
a cloud of dots was not appropriate to trigger the sudden insight which was
imposed on the viewer when looking at a sharply drawn owl-mask. We did
not see it and thus we did not understand its nature. What was visible in
the 1920’s was merely vagueness.

3. Computer based simulation

Things rapidly changed in WWII and immediately after by the joint
appearance of a new scientific method and a new research technology. The
new method, simulation based on Monte Carlo modelling, and the new
technology, non-human (i.e. electronic) computers, developed step by step,
stimulating each other mutually.
In the development of simulation as a new method, leading researchers

were John von Neumann and Stanisław Ulam, working in the Manhat-
tan Project on the construction of thermonuclear and enhanced-fission
weaponry. The Monte Carlo method, so named by Nicolas Metropolis, is
mathematical experimenting, based on (very many) random numbers. Its
aim is the construction of a simulation, i.e. of the model’s dynamics. The
random element in Monte Carlo simulation brings that method, according to
some philosophers, closer to stochastic physical reality than the usual deter-
ministic differential and integral equations. Computer simulation is therefore
a simulacrum for reality, corresponding to nature as no “platonic” infinites-
imal modeling ever could. Peter Galison introduced the name “stochasti-
cism” for such a position. Gilbert W. King extends a very fundamental
thought concerning the essence of mathematical modeling:

There is no fundamental reason to pass through the abstraction of the differen-
tial equation. Any model of an engineering or physical process involves certain
assumptions and idealizations which are more or less openly implied in setting
up the mathematical equations. By making other simplifications, sometimes
less stringent, the situation to be studied can be put directly to the computing
machines, and a more realistic model [my emphasis – M.U.] is obtained than is
permissible in the medium of differential or integral equations. ([12], p. 2475)
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Working on the simulation of fission processes in a thermonuclear reaction,
von Neumann and Ulam drove their computer equipment at capacity limit.
They constantly had to invoke assumptions, idealizations, and simplifica-
tions. Here is what Ulam confessed to von Neumann:

Everett [Ulam’s collaborator – M.U.] managed to formalize everything so com-
pletely that it can be worked on by a computer. [...] It still has to be based
on guess and I begin to feel like the man I know in Poland who posed as
a chess champion to earn money – gave simultaneous exhibitions in a small
town playing 20 opponents – was losing all 20 games and had to escape through
the window. ([18])

As mentioned above, very many random numbers are required to run
a Monte Carlo simulation. No sufficient multitude was available. von Neu-
mann and Ulam robustly decided to produce them straightforwardly by
computer simulation and next appropriately expanded the meaning of the
term “random number”. They displayed a similar kind of nonchalance in
day-to-day issues – e.g. deriding Einstein for his concerns about the hy-
drogen bomb. Obviously, social relations at the Princeton Institute for Ad-
vanced Study happened to be distinctly frosty. This did not foster transdis-
ciplinary research. Cybernetics, cognitive science, and artificial intelligence
originated somewhere else.
For instance, at the Aberdeen Proving Ground. It was there where War-

ren Weaver, Claude Elwood Shannon and Norbert Wiener worked on the
design of anti-aircraft gun laying systems. Weaver introduced the concept
“organized complexity” into mathematic and system theoretic vocabulary
in 1948.

They will make it possible to deal with problems which previously were too
complicated, and, more importantly, they will justify and inspire the develop-
ment of new methods of analysis applicable to these new problems of organized
complexity ([19], p. 541).

Weaver explains the difference between organized and disorganized com-
plexity by the notorious billards. For three or four balls, says Weaver, one
may calculate their position on the table.1 For more balls, say ten, this seems
to him no longer possible – the problem becomes unmanageable. For many
more balls, e.g. one million, on a large billiard table the question has an an-
swer again, by methods from statistical mechanics (provided all required
assumptions hold, in particular all balls behave truly disorganized). Still,
there was left a region in between.
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The really important characteristic of the problems of the middle region, which
science has as yet little explored or conquered, lies in the fact that these prob-
lems, as contrasted with the disorganized situations with which statistics can
cope, show the essential feature of organization. In fact, one can refer to this
group of problems as those of organized complexity. ([19], p. 539)

The rise and prevalence of complexity thought in social science is inti-
mately intertwined with the further development of computing technology.
In 1962 Herbert Simon characterized social systems as complex systems:
composed of many components, which interact in a non-simple way: “given
the properties of the parts and the laws of their interaction, it is not a trivial
matter to infer the properties of the whole” ([16], p. 468). In 1971, Brunner
and Brewer applied this concept to investigations of the political system.
With an eye on the rapidly growing information processing power available,
they hoped for the possibility to directly investigate and analyse complex
social systems without the usual detours through specialized case studies,
aggregations, or statistical methods. “Social systems” according to Brewer
([1], p. 75) “exhibit properties of organized complexity. Their structure con-
tains overlapping interaction among elements, positive and negative feed-
back control loops, and nonlinear relationships, and they are of high tempo-
ral order. These characteristics largely account for the observable diversity
of social behaviour.”
This turned out to be very much so in the case of psychological, biologi-

cal, medical, thermodynamic etc. systems as well. Complexity is no discrim-
inator between social and physical systems. So the gap between these two
camps was diminished. But, of course, the gap remains. Under laboratory
conditions, one may control simple connections between elements. Not so in
economics. By idealization we will not arrive at testable connections. Such
a procedure rather yields inadequate models that are structurally discon-
nected from reality. Such models are called “simplistic”, another synonym
for “undercomplex”. Making things simple is a major goal of scientific re-
search. But one has to be careful here. “Make all your theories as simple as
possible, but not simpler.”2

So rather than the old slogan “Keep It Simple, Stupid”, we should
see to it to keep our models Descriptive: from Kiss to Kids – that’s
progress! But, beware: categories of conformity to the world and of simplic-
ity are no invariants: compact differential equations once were the essence
of simplicity, whereas numerical approximation looked complex. Now the
machine-readable has become simple and differential equations complex
(comp. [6], p. 129).
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Undercomplex models must fail. Simplistic perception of processes can
result in preposterous decisions. Insofar, McKinsey & Company’s aged slo-
gan “cutting through complexity” was not very sensible (nor is the recent
motto: “dismantling complexity”). Cutting through complexity may result
in cutting right into sensible parts of the institutional process. As an actual
example of undercomplex, and thus failed, decision making one may take the
reaction of German federal officials in the face of refugees deluging Germany
last summer. BAMF, the responsible federal institution for migration and
refugees was hardly able to cope with overflowing applications from Syria.
In that dramatic situation Mr. Frank-Jürgen Weise, head of BAMF, was
under hard pressure to speed up the administrative process. In a knee-jerk
attempt at “cutting through complexity”, he approached the responsible
Ministry for permission to skip all singular verifications of Syrian applica-
tions and instead to approve them by default. This should result in a huge
gain in processing speed. “We will wave through all applications from Syria!”
No wonder, this news spread out immediately through all the refugee camps
in Turkey and elsewhere and set tens of thousands of people on their march
to Germany. This was the “avalanche launched unawares by a careless skier”
mentioned in a vitriolic remark by Germany’s finance minister. Chancellor
Merkel’s subsequent kind invitation extended to all refugees was without
deeper effect on what happened next.
Another instructive example is the Human Brain Project, one of two

flagship projects of European Science. Henry Markram & Team promised
to build an electronic brain within a decade, equipped with all the magic
features of a human brain. This megaproject decomposes right now because
of being badly undercomplex. For those who remember the decade before
last, Hugo de Garis’ Robokonekomight have been the writing on the wall.
There seems to have been a general tendency during the last 70 years: for
those who are close to the respective supercomputers of the period, these
machines emanate a kind of magical force. (I do not speak about the op-
erating staff, only about philosophically minded heads of the large research
teams commanding the use of those computers.) They make people believe
that only computation capacity and storage volume – and perhaps more of
the same – will let us solve any problem on earth, be it central planning of
the Chilean Economy by means of Cybersync or US-Air-Defense in No-
rad. Cutting edge IT, if readily to hand, turns people into Leibnizians.
By the way, the Swiss seem particularly disposed to such a delusion of fea-
sibility. It is not only Henry Markram – Swiss academic hospitality also
extends to cybernetically minded economists, quite a few of them work-
ing at ETH.
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4. Making use of simulation

There are a number of regulative ideas in the sciences: simplicity, uni-
versality, homogeneity, consistency. They all date back to the Renaissance
origin of modern science. I argue for a wider appreciation of the merits of
pluralism and complexity.
The promise of Newtonian science, to come up with a unique and precise

explanation of the phenomena, seems to be out-dated. Truths about nature
and society are rarely simple, universal, and without exception. We cannot
hope to always find regularities and causal mechanisms that lead to precise
predictions. The world is too complex to describe in a simple way. We need to
accept and study in the sciences such phenomena as emergence, contingency,
dynamic robustness, and deep uncertainty.3

Science, SandraMitchell claims ([14]), has traditionally sought to reduce
the blooming, buzzing confusion to simple, universal, timeless foundational
laws to explain what there is and how it behaves. The essence of the scien-
tific method was a nearly algorithmic procedure for revealing the simplicity
underlying the complexity of our daily experience. Reductive explanations,
however, founded on simple universal laws, on linear causal models, and
predict-and-act strategies do not lead to adequate representation of the
specific kind of knowledge provided by many contemporary sciences.
Because of an irreducible multitude of partial causes including unknown

components and their effects, and because of the essential uncertainty of
open system dynamics, there results a profound uncertainty of knowledge
about complex systems’ future development. This poses substantial prob-
lems to any reasonably precise probability assignment to a future state of
the system. If this is right – and I think it is – there are far-going method-
ological consequences to be drawn. Instead of predict-and-act strategies we
need methods of robust planning and continuously adaptive management
for deciding in the face of deep uncertainty. However, we do not live in Her-
aclitus’ ever-changing and unknowable world of eternal flux. It is a dappled
world, a world that needs pragmatic decisions and enduring willingness to
monitor and variegate one’s decisions. These changes are already under way.
They are oftentimes inspired by thoughts on military leadership.
How far will these changes go? In order to make it a bit clearer, perhaps,

I will compare the emerging picture with what happened during the Renais-
sance4. Six hundred years ago times were hard for science: it was undergoing
a life-threatening crisis. The crisis was caused mainly by the unwillingness
of the scholastic scientists to engage in empirical science and application, to
contribute to technological innovations which were badly needed to make
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Joe Blogg’s everyday life easier. There were truly extraordinary findings
in medieval logic and ontology – but no conscious and deliberate applica-
tion of those breakthroughs which would make Joe Blogg’s everyday life
easier. There were truly extraordinary findings in medieval logic and on-
tology, but there was at the same time an almost complete breakdown of
communication between science and society. While scholastic scientists were
actually pondering the psycho-physical problem, people in the towns were
disgruntled by what they saw as fatuous debates in the ivory tower about
angels dancing on a tip of a needle. Science had to regain social acceptance
by moving towards applied science. Such a redirection needed more than
just another scientific method. Induction came along with a new criterion
for scientific evidence. The rules of the game changed to a wide extent.
Galileo pushing metal balls off the Pisa tower, though historically wrong,
presents a superb icon for the ongoing process of change. His fellow scientists
were upset. They refused to even take note of Galileo’s experiments. They
might have protested: “That is not how we do science! Every student knows
the proper method – read the pertinent fragments of the great forerun-
ners, debate the issue among your learned colleagues, and find the received
knowledge confirmed, or, in the unlikely case they had erred, correct the
error in an addendum. Throwing objects to see them falling down is not
what a scientist should engage in.” Factually, a new mode of thought was
needed to bring about Renaissance science. The new science made a pact
with society5:

We, the scientists, will work hard to uncover the most fundamental structures
of the world. We will describe them in mathematical language in a Golden Book
of nature. Everyman receives a precise and perspicuous picture of reality that
lays the foundation for technological progress. We will be sponsored for that.

Call it the Renaissance promise: “At the bottom of nature is a mathematical
formula. Scientists will dig it out for you.” – Nowadays it looks as if we would
not be able to deliver.
Galileo’s trouble with the new method reminds me of a meeting of the

Polish Mathematical Society in Toruń back in 1976, when Roman Duda in-
formed us about the computer-based solution of the Four-Colour-Problem
by Appel and Haken. The proof was ugly, indeed: 1936 cases to be checked.
No human mathematician would be able to find all those cases, let alone
check the computer’s solution step by step. We were listening to breath-
taking news: one of the eternal mathematical problems was finally solved.
But the atmosphere in the lecture theatre was not friendly, not at all. My
distinguished teachers were bouncing up and down (in those days I was
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still an undergraduate, a rather perplexed one, watching that scene): “That
is not mathematics! It is no solution at all!” A new method always has
hard times before being accepted. You all know Max Planck’s bitter re-
mark: “A new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventually
die, and a new generation grows up that is familiar with it.” In the case of
computer-based maths it was not nearly that bad. It took far less than one
generation for simulation to gain acceptance. When I came back to Torun
University twenty years later to start – together with Jerzy Perzanowski
– cognitive science at UMK, computational mathematics was already an
established discipline. Mathematicians might not have liked what von Neu-
mann, Ulam, Teller, and other bomb builders did at Princeton IAS. But
they could hardly deny that these chuff guys were tremendously successful
with what they did – computer-based simulation really worked for the Allied
victory.
What about the outcome of these developments for science? We are ex-

periencing another expansion of the field of scientific activity: future science
will approach a realm of chaos and apparent randomness which was not
plumbable hitherto. And again, it will apply a newly-created method: mas-
sive simulation (see, e.g. [13]), based on state-of-the-art information process-
ing technology.6 What was induction and the swerve towards the empirical
world in Renaissance times, today is simulation and the focus on the domain
of complex systems, formerly known as the swampland of fortitude. This is
the new area conquered by science – the mezzo level characterized by deep,
causal uncertainty. Universality, power laws, stylized facts built trust in the
feasibility of this attempt at conquest. Valuable achievements of traditional
science will be preserved. In particular, the central role of quantitative meth-
ods outlasts, but it will be flanked by massive simulation. Mathematics has
been given powerful new language: algorithms and big data structures, and
a new kind of mathematical reality is evolving.
“The complex systems revolution”, says Cliff Hooker, “is currently ex-

ploding through science, transforming its concepts, principles, methods, and
conclusions. It is also transforming its disciplinary structure, both creating
new, distinctive ‘complexity’ disciplines, such as climate science, systems
and synthetic biology, and self-assembling/repairing and social robotics,
and transforming older disciplinary relations, e.g. between developmental
biology, psychology, and sociology. This revolution is creating a plethora of
new problems and challenges for the foundations and philosophy of science.
These have a special intellectual appeal, because the foundations of the sci-
ence of complex systems is itself still being invented. This dual revolution
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in science and philosophy is the most important large scale development in
scientific cognition for a century. It invites the urgent attention of scien-
tists and philosophers alike.” ([8], p. 902) This means good times for young
researchers.

N O T E S

1 Two bodies are safe. And a short time frame, i.e. few collisions: Already after 8 colli-
sions the gravitational force exerted by the billard player must be taken into consideration.
2 That witticism, usually ascribed to Albert Einstein (with little reason, however; com-

pare [17]), has more than just a grain of truth.
3 Comp. [5], p. 95ff.
4 The rest of this paragraph is an extraction from [17].
5 This is metaphorical, do not search the archives!
6 Actually, there are many candidate names around. Beside massive simulation we find

computer based simulation, scientific computing, calculation as theory, reverse engeneer-
ing of nature by numbers, and perhaps more.
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