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Abstract. Cognitive science is an interdisciplinary conglomerate of various re-
search fields and disciplines, which increases the risk of fragmentation of cog-
nitive theories. However, while most previous work has focused on theoretical
integration, some kinds of integration may turn out to be monstrous, or result
in superficially lumped and unrelated bodies of knowledge. In this paper, I dis-
tinguish theoretical integration from theoretical unification, and propose some
analyses of theoretical unification dimensions. Moreover, two research strategies
that are supposed to lead to unification are analyzed in terms of the mechanistic
account of explanation. Finally, I argue that theoretical unification is not an ab-
solute requirement from the mechanistic perspective, and that strategies aiming
at unification may be premature in fields where there are multiple conflicting
explanatory models.

Keywords: cognitive science, unification, integration, simplicity, invariance, mon-
strosity.

1. Whence unification?

The need for unified models, theories or conceptual frameworks in cog-
nitive science may seem self-explanatory from today’s point of view. How-
ever, this need was not at all obvious earlier in cognitive psychology. In 1973,
Allen Newell, commenting on papers submitted to a conference on visual
processing, argued that cognitive psychology can no longer remain frag-
mented (Newell 1973). The state of affairs was, according to him, quite
detrimental to the prospects of developing a general account of cognition.
Psychology dealt with individual phenomena — such as the continuous ro-
tation effect; chess position perception; linear search on displays; the serial
position effect in free recall; perceptual illusions; ambiguous figures; or the
visual icon — that were studied in separate tasks given to experimental sub-
jects. To conceptualize them theoretically, psychologists referred to binary
oppositions, such as nature versus nurture; serial versus parallel processing;
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analog versus digital; conscious versus unconscious; stages versus continu-
ous development; motor versus pure perception in perceptual learning; and
so forth. But progress could not be expected:

Suppose that in the next thirty years we continued as we are now going. An-
other hundred phenomena, give or take a few dozen, will have been discovered
and explored. Another forty oppositions will have been posited and their res-
olution initiated. Will psychology then have come of age? Will it provide the
kind of encompassing of its subject matter — the behavior of man — that we
all posit as a characteristic of a mature science? And if so, how will the trans-
formation be accomplished by this succession of phenomena and oppositions?
(Newell 1973, pp. 287-288)

The oppositions were too crude to serve as pointers to a general theory,
and phenomena were too detailed to furnish researchers with a framework
that could be confirmed empirically. The oppositions were becoming less
and less clear, and no unity in explanations was to be found.

Instead, Newell proposed that one should focus on what he called a uni-
fied theory of cognition. His proposal, as is well known, was to study inte-
grated cognitive architectures designed to perform all the individual tasks
studied by cognitive psychologists (Newell 1990). Unified cognitive archi-
tectures would alleviate the worries voiced so prominently by Newell: Sim-
ply because there would be a single, highly structured entity capable of
information-processing in all these tasks, there would be a unified account
of the reason that various tasks are actually performed.

His proposal is interesting because it does not follow the traditional
recipe for unification as defended by philosophers of science, i.e., it does not
advocate theory reduction, at least not in its classical version. In essence, the
classical account of theory reduction follows the logic of the received view of
explanation as defended by Hempel and Oppenheim (1948): to explain is to
present a sound deductive argument. In the case of explanation and predic-
tion, the premises describe laws of science and antecedent conditions, while
the conclusion states the description of the phenomenon to be explained.

Similarly, in the case of theory reduction, the premises contain the laws
of the new theory, T7 and bridge laws that connect the terms of theory 15
with terms of theory 77, while the conclusion describes T5. While this for-
mulation is not without flaws (for refined formulations, see Hooker 1981a;
Hooker 1981b; Hooker 1981c; Churchland 1985; Schaffner 1993; Bickle 1998),
it is certainly quite elegant, not least because of its relative simplicity. The
important feature of this logical account of reduction is supposed to make
unification and integration of theories inextricable. I will argue below that
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integration and unification of scientific representations should be distin-
guished, and that some kinds of integration may lead to disunion. That
may be disadvantageous, so there are reasons to defend the classical ac-
count despite its problems.

This classical account remains largely impractical for one very simple
reason: non-fundamental sciences usually do not contain any laws in the
classical Hempelian sense, i.e., universally quantified, true statements of
unlimited scope without designations of any particular objects. Most biolog-
ical regularities, even if analyzed as law-like ceteris paribus statements, are
results of quite particular historical and evolutionary circumstances. They
are essentially of limited scope and usually limited (even if implicitly) to
the results of evolutionary processes. Moreover, psychology does not seem
to feature even limited regularities (Cummins 2000); it normally describes
individual events, phenomena, and their mechanisms.

It is the lack of laws in psychology and other cognitive science dis-
ciplines that justifies the adoption of an alternative account of explana-
tion. In this paper, I will embrace the mechanistic account of explanation
(Craver 2007; Bechtel 2008; Mitkowski 2013). According to this account, to
explain a phenomenon is to describe the underlying mechanism responsible
for it. Mechanisms are organized systems, composed of entities and activ-
ities (also called interactions, operations, or simply processes by various
authors). Their overall causal structure gives rise to one or more phenom-
ena to be explained. In some important respects, mechanistic explanation
assumes principles of functional analysis as advocated by proponents of
functionalism (Cummins 1984; Fodor 1968), but requires the components
and activities to be causally relevant for the phenomenon as well (Piccinini
& Craver 2011).

The new mechanistic approach to explanation is sometimes presented
as non-reductive, but this characterization is confusing and misleading as
it does not — in contrast to functionalism — advocate for autonomy of spe-
cial sciences at all (Hensel 2013; Boone & Piccinini 2015). On the other
hand, and in an important sense, mechanistic constitutive explanations are
reductive: they explain how some phenomena occur in terms of component
entities and activities of mechanisms, which are located at lower levels of or-
ganization (in a mechanistic understanding of the term: see (Craver 2007))
rather than in mechanisms themselves. Constitutive explanations are said to
provide deeper understanding of phenomena (Thagard 2007) because they
expose the causal structure that stands behind the phenomena to be ex-
plained. This mechanistic kind of reduction is not classical, but it justi-
fies certain explanatory identities. Hence, some mechanists have explicitly
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avowed identity theory as an important research heuristic (Bechtel & Mec-
Cauley 1999). Quite obviously, the mechanistic reduction is not eliminative;
rather, it substantiates the claim that the higher levels of mechanistic orga-
nization exist as compositions of lower levels of entities and activities.

2. Integration versus unification

The terms integration and unification are sometimes used interchange-
ably and without further explication. In this paper, I will distinguish them
in the following way: Explanatory unification is the process of developing
general, simple, elegant, and beautiful explanations, while explanatory inte-
gration is the process of combining multiple explanations in a coherent man-
ner. Similarly, one can also define methodological unification as the process
of developing general-purpose, simple research methods; and methodological
integration as the process of combining multiple methods in research.

Classical reduction was supposed to deliver theories that were both ex-
planatorily integrated and unified. Things are not so simple, though. Reduc-
tion need not lead to a deep unification if the reducing theory, T} is nothing
but a language able to express another theory T5 without positing any sub-
stantial connections between its claims and the claims of T; (cf. Bechtel,
1986, p. 41). In general, most methods of integration and unification do not
guarantee that both occur at the same time. However, many defenders of
mechanistic explanation conflate the issues of integration and unification.
For example, Piccinini and Craver write: “we sketch a framework for build-
ing a unified science of cognition. This unification is achieved by showing
how functional analyses of cognitive capacities can be and in some cases
have been integrated with the multilevel mechanistic explanations of neu-
ral systems” (Piccinini & Craver, 2011, p. 284). In this paper, I argue for
distinguishing both issues more carefully.

In general, defenders of mechanistic explanation are particularly sensi-
tive to issues of integration (Bechtel 1986; Craver & Darden, 2013) and to
inter-field research (Darden & Maull, 1977), which relates at least two fields
of study. By a “field of study”, Darden and Maull understand “an area of
science consisting of the following elements: a central problem, a domain
consisting of items taken to be facts related to that problem, general ex-
planatory factors and goals providing expectations as to how the problem is
to be solved, techniques and methods, and, sometimes, but not always, con-
cepts, laws and theories which are related to the problem and which attempt
to realize the explanatory goals.”! (Darden & Maull, 1977, p. 44) Two fields
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of study may appeal to the same or overlapping spatiotemporal locations,
entities, or activities, and one of them may provide a better understanding
of the spatiotemporal relationships, causal relationships, physical nature,
structure, or function thereof. In the case of cognition, it is quite clear that
cognitive processes may be explained in various ways by various disciplines.

Cognitive science is composed of multiple fields with stronger and
weaker connections among them. The stronger the connections between
fields A and B, the bigger the chance that models will integrate insights
from A and B. In previous studies of mechanistic integration, at least three
modes of integration of mechanisms, and therefore also fields, were identi-
fied: Simple integration, when the models of mechanisms can be considered
as pieces of a puzzle that fit together; inter-level relationship, when another
level of organization is added to make explanation more complete; and inter-
temporal integration (Craver & Darden, 2013, Chapter 10). In the case of
simple integration, two fields may simply study cognition in a similar way
but with a slightly varying emphasis on each mechanism. Notice that in this
case, both models are at the same level of organization, so simple integra-
tion is not inter-level. The inter-level integration usually involves deepening
an existing explanation of a phenomenon by providing an underlying mech-
anism of the phenomenon, as in the case of providing the non-classical,
mechanistic reduction introduced in this section. These three patterns of
integration can be easily observed in cognitive science. However, their list is
neither a systematic taxonomy of all possible ways that mechanisms can be
integrated, nor does it provide a deep understanding of integration as such.
The observed patterns of integration correspond to the spatial and tem-
poral adjacency (simple integration) and spatial or temporal containment
(inter-level and inter-temporal integration).

Craver proposes to understand integration in terms of constraints on the
space of possible mechanisms. A constraint is “a finding that either shapes
the boundaries of the space of plausible mechanisms or changes the probabil-
ity distribution over that space” (Craver, 2007, p. 247). However, there are
two reasons to modify his account: First, some theoretical or methodolog-
ical principles may drive the search for plausible mechanisms in the space,
and principles can only metaphorically be understood as findings. Second,
genuinely satisfying explanations of mechanisms may involve idealization.
Idealized mechanisms may be physically or even logically impossible, as they
are often introduced as intentional simplifications or distortions, hence they
cannot be found in the space of plausible mechanisms. For this reason, I will
account for the search for adequate mechanistic explanations in the space
of plausible representations of mechanisms.

17



Marcin Mitkowski

The notion of constraint is therefore understood in terms of a represen-
tation that shapes the boundaries of the space of plausible representations
of mechanisms or the probability distribution over that space. To make it
more precise, one may also integrate this account of mechanistic constraints
with another recent general account of inter-theoretic and inter-model rela-
tionships. According to Danks, “one theory S constrains another theory 7T'if
the extent to which S has some theoretical virtue V (e.g., truth, predictive
accuracy, explanatory power) matters for the extent to which T has V.”
(Danks, 2014, p. 31) This means that if S constrains T because of a certain
theoretical virtue, then if we care about this virtue in 7, we should care
about it in S. Differing virtues give rise to differing kinds of constraints.

The weakest kind of constraint is a truth-constraint: two bodies of knowl-
edge satisfy a truth-constraint in case they can be both true at the same
time. However, truth-constraining is a weak relation of logical coherence.
Note that attaining coherence — by satisfying constraints — between various
representations (and models of various kinds) was studied by Thagard in his
account of integration, too (Thagard 2000). Integrating possibly incoherent
scientific representations is therefore a kind of coherence problem, which is
defined in the following way:

Let E be a finite set of elements {e;} and C be a set of constraints on F
understood as a set {(e;, e;)} of pairs of elements of E. C divides into C+,
the positive constraints on E, and C'—, the negative constraints on E. With
each constraint is associated a number w, which is the weight (strength) of the
constraint. The problem is to partition F into two sets, A and R, in a way that
maximizes compliance with the following two coherence conditions:

— If (e;,e;) is in C+, then e; is in A if and only if e; is in A.

— If (e;,e;) is in C—, then e; is in A if and only if e; is in R.
Let W be the weight of the partition, that is, the sum of the weights of the
satisfied constraints. The coherence problem is then to partition F into A and
R in a way that maximizes W. Because a coheres with b is a symmetric relation,
the order of the elements in the constraints does not matter (Thagard, 2000,

p. 18).

He notices, however, that coherence problems are, in general, NP-
complete, or practically intractable (Thagard, 2000, p. 28). In other words,
an algorithm based on simple exhaustive search will not be tractable for
coherence problems, unless the case is trivially simple (i.e., contains a small
number of elements). Instead, he offers several heuristic search strategies
that approximate a satisfactory solution. However, because models in cogni-
tive science, even if stated in a machine-readable form, are rarely integrated
automatically (especially if they are supposed to conform to semantic con-
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straints that refer to the spatial and temporal properties of entities and
activities in mechanisms), integrating them remains more art than science.
The constraint-satisfaction account of integration for mechanistic models
does not serve merely a practical purpose. The constraint satisfaction ac-
count can describe all previously found kinds of integration, and more, so
it is a slightly more general proposal for a unifying account of mechanistic
integration.

It is notable, however, that the results of integration need not be simple,
beautiful, or general. These properties are notoriously difficult to pin down
precisely, but the idea here is very simple: Even if multiple constraints are
in operation, the resulting scientific representation may be highly redun-
dant, violate parsimony considerations, and so forth. Even if mechanistic
constraints are preserved, the resultant representation may be quite discon-
nected; for example, one can integrate the account of the cognitive map in
the hippocampus (Derdikman & Moser, 2010) with, say, Baddeley’s account
of working memory (Baddeley & Hitch, 1974). Both models refer to working
memory but as Baddeley (2000) notes, they use the notion to mean different
things; hence, even if rats have both kinds of memory, no explanatory unity
is observed here. So the next question to consider is: What is explanatory
unity?

3. Dimensions of unification

Intuitively, unified explanations are simple, general, and beautiful. The
appeal to aesthetic criteria may seem to invoke non-analyzable, elusive prop-
erties, and perhaps this is the reason why unification has rarely been ana-
lyzed by the defenders of mechanistic explanation. There are, however, at
least three properties ascribed to unified explanations:

1. invariance or unbounded scope;

2. simplicity or lack of redundancy;

3. elegance or beauty.
Let us consider these properties in turn. The unbounded scope of explana-
tion is sometimes held to be its necessary feature. For example, Hempel and
Oppenheim required laws of nature to be of unbounded scope simply because
law-based explanations are supposed to have unlimited scope. Similarly, in
this tradition, Philip Kitcher has defended his account of explanatory unifi-
cation by appealing to the large scope of unified explanations (Kitcher 1989).
The opponents of this account point out that explanatory power does not
depend on the number of phenomena to be explained. For example, a theory
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that explains the Big Bang does not seem to be less explanatorily powerful
than a model that explains two car accidents in Warsaw, even if, nomi-
nally, the first one, has smaller scope. Yet the Big Bang is of much greater
scientific significance. Admittedly, however, even if defenders of causal ex-
planation do not require such explanations to be necessarily of unlimited
scope, they would agree that good explanatory models should have (practi-
cally) maximal possible scope. At the same time, mechanists require these
models to be causal: “unification is genuinely explanatory when it refers to
higher-level structure of common mechanisms” (Glennan, 2002, p. S352).

What about simplicity? The classical principle of ontological parsimony
is that entities should not be multiplied beyond necessity, which is simply
Occam’s Razor. In contemporary terms, ontological parsimony involves the
number of ontological commitments of a theory (Quine 1948). However, one
might want to go beyond mere ontological parsimony to assess the simplicity
of theories. There are multiple ways to analyze this notion. For example,
one account is due to Popper who claimed that the simpler theory is the
one that is more falsifiable (Popper 1959). This simple account is however
open to many objections, which show that it is counterintuitive. As Nelson
Goodman (1961) noted, the hypothesis “All maple trees are deciduous”, is
intuitively simpler than the hypothesis, “All maple trees whatsoever, and all
sassafras trees in Eagleville, are deciduous”, but the latter is more falsifiable.

Still, there were some efforts to define the measures of simplicity more
formally, and they were usually not prone to simple counterexamples. It’s
arguable that simplicity may be analyzed in statistical terms (for example,
Akaike information criterion (see Forster & Sober, 1994)). Such criteria can
be quite easily applied to analyze computational models in cognitive science
(Busemeyer & Diederich, 2010). Another way to analyze formal models is
to appeal to algorithmic information theory, which defines Kolmogorov-
Solomonoff complexity (Chaitin 1987; Li & Vitanyi, 1993). In the latter case,
the redundancy of scientific representation may be approximated simply
in terms of the compressed model’s size, and the model is compressed by
some general-purpose algorithm of lossless compression (such as PPM, or
prediction by partial matching, or ZIP; for such empirical investigation, see
(Zenil 2010)).

While it may be argued that various measures of parsimony or simplicity
yield different notions, all of them show that simplicity is not just a result of
intuitive judgment, and further work is required to see how it is connected
to unification.

Elegance or beauty may seem the most difficult to analyze. After all,
notions such as beauty are primarily aesthetic, and it may be controversial
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to judge which theory is beautiful and which not. However, the problem
has been recently approached from another angle by loannis Votsis (2015)
who proposed to start from the opposite end: from monstrosity. He analyzes
the notion of monstrosity in terms of the lack of shared relevant deductive
consequences. Intuitively, a theory is monstrous only if it contains “isolated
islands” that are confirmationally disconnected, i.e., what these “islands”
imply is completely disjoint. To spell this notion out more precisely, Vot-
sis refers to the notion of relevant deductive inference defined by Schurz:
“a valid deduction is relevant iff no subformula of the conclusion is replace-
able on some of its occurrences by any other formula salva validitate of the
deduction” (Schurz, 1991, p. 391). The shorthand notation for “y is a rele-
vant deductive consequence of 7 is ‘x F,. y’. Using this notion, Votsis defines
confirmational disconnectedness thus:

Any two content parts of a non-self-contradictory proposition I' expressed as
propositions A, B are confirmationally disconnected if, and only if, for all pairs
of internally non-superfluous propositions «, 8 where A F,. « and B +, §:
(i) there is no true or partly true proposition v such that o b, v and 8+, v
and (ii) where 0 < P(a), P(8) < 1, P(a/8) = P(«) and (iii) there is no atomic
proposition § such that a A Sk, §, a b, § and g+, ¢ (Votsis, 2015, p. 102)

While this formulation may, again, be impractical for (partially) infor-
mal theories in cognitive science, as well as for non-verbal computational
models, which are not stated as interpreted logical calculi at all, it offers
a valuable explication of the notion of monstrosity. One may think of more
practical ways of assessing monstrosity, for example in terms of the sta-
tistical independence of two parts, A and B, of a scientific representation:
P(AN B) = P(A)P(B), which sometimes may be estimated in terms of
the mutual information of simulation models (for performance criteria of
simulation models, see Hora & Campos, 2015). However, a review of possi-
ble methods for assessing confirmational disconnectedness statistically goes
beyond the scope of this paper.

Let me wrap up this section. Unified scientific representations may be
analyzed in terms of (a) their unbounded scope; (b) simplicity; (c) lack of
monstrosity. These features are maximized by a simple statement of one
universal law that is true of everything and whose formulation has no com-
ponent parts. Indeed, this may be the intuition behind the search for a grand
theory of everything: it would be maximally unified if its statement were ex-
tremely simple and universal. However, these features have all been defined
as measures on some scale, which means that scientific representations may
be assessed as more or less unified. It is important to see that these features
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are not wholly interdependent: a representation may be true of just one
thing and remain maximally simple and non-monstrous. Similarly, a non-
monstrous representation that contains several parts may not be maximally
simple (as redundancy does not increase monstrosity). But maximally sim-
ple representation (say, expressed as a single propositional variable p) may
not be monstrous, so these dimensions of unification are not totally inde-
pendent either. This raises the open question of whether there are more
dimensions in the unification of scientific representations.

4. Two popular strategies

The practice of unifying models or theories in cognitive science does
not simply boil down to an application of unification criteria or even bench-
marks. This is because representations to be unified are not yet even stated
(completely). Instead, researchers adopt unification strategies, two of which
have been identified by David Danks (2014). These can be analyzed in line
with the mechanistic account of explanation, as will be shown below. This
analysis will show that from the mechanistic perspective, these are actually
three individual unification strategies.

The first strategy appeals to schemes of structures: “some common tem-
plate that is shared by all the individual cognitive models, rather than
through shared cognitive elements (representations, processes, or both)
across those models” (Danks, 2014, p. 176). Quite clearly, Newell’s use
of cognitive architectures to unify theories of cognition fits into this cat-
egory. Cognitive architectures are systems that can perform multiple cogni-
tive tasks using the same structure, which makes the explanation invariant
in this respect: the internal structure stays constant regardless of the exter-
nal environment, and makes the explanation more unified, or parsimonious.
Cognitive architectures have remained immensely influential, so multiple
schemes of structures are used to unify theories of cognition (for a recent
review, see Byrne 2012). This includes both traditional architectures such as
SOAR (Laird, Newell & Rosenbloom, 1987), which has its roots in Newell’s
research, ACT-R (Anderson 2007), which remains influential in psychology,
and architectures that strive for neuro-scientific plausibility such as Leabra
(O’Reilly & Munakata, 2000) and SPAUN (Eliasmith et al., 2012). Another
example of this kind is research on cognitive robotic architectures as unify-
ing cognition (Morse et al., 2011). Thus, to study developmental processes,
one may use one of the robotic platforms of so-called epigenetic robotics,
such as i-Cub (Metta et al., 2010).
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The second strategy is an appeal to elementary processes. Researchers
strive to show how “coherent cognition arises from shared processes, where
those processes are typically small building blocks that combine to yield
complex cognition” (Danks, 2014, p. 177). Note that this is not the kind of
piecemeal approach criticized by Newell: the elementary building blocks and
their interactions are supposed to be at play in multiple individual tasks.
This approach has its roots deeply in the Cartesian proposal to understand
the work of the nervous system in terms of the reflex arc: the stimulus pulls
tiny wires of the nervous system, which in turn open little valves in the brain,
releasing animal spirits to hollow the nerve tubes that lead to appropriate
muscles. The nervous system is simply a collection of reflex arcs under this
approach. A similar approach can also be found in computational modeling
of the nervous system: already in the first model (McCulloch & Pitts, 1943),
it was proposed that coherent cognition is the product of the complex inter-
action of neurons understood as logical gates or computational devices that
embody logical operators such as conjunction (AND gate) and disjunction
(OR gate).

The contemporary connectionist modeling research program adopts the
same strategy: the nervous system is composed of a number of similar com-
putational units, which are more or less biologically plausible. Note that
this approach can mesh easily with unified theories of cognition as long as
the pattern of connections between these units is not simply fitted to ob-
served data but results from theoretical considerations. Such is the case with
SPAUN, which is essentially a connectionist neural network composed of
spiking neurons. However, their connections are not trained using machine-
learning algorithms; instead, they are set up according to hypotheses about
the function of certain brain areas (Eliasmith 2013). The same applies to
a contemporary proposal for a unified theory of cognition in terms of pre-
dictive coding (Clark, 2016, 2013): there is a certain high-level functional
pattern of the whole cognitive system, which is said to implement strategies
that approximate Bayesian reasoning in perception and action, and the func-
tion is implemented by a hierarchy of similar units that perform predictive
coding and send error information to other levels of the hierarchy.

In other words, both strategies can be complementary, and do not ex-
clude one another. It’s worthwhile analyzing them also in mechanistic terms.
The first strategy is straightforward: there is a mechanism schema, or an in-
complete representation of entities and activities interacting together, which
contains gaps to be filled (Craver 2007). Because these gaps are sometimes
filled just to fit the observational data, critics argue that cognitive archi-
tectures have limited explanatory power (Roberts & Pashler, 2000). From

23



Marcin Mitkowski

the mechanistic point of view this criticism is justified to some extent: the
explanatory power is not just a matter of the fit between the mechanistic
model and the data, but of the adequacy of relevant causal hypotheses.
Hence, the model’s accuracy requires not just the fit between the perfor-
mance of psychological subjects but also the performing of bottom-up and
top-down interventions in the mechanism (Craver 2002).

The second strategy turns out to have two different versions: one may
posit the same mechanism for various phenomena, or multiple similar mech-
anisms for similar phenomena.

The first case is easily illustrated with mirror neurons. In the 1990s,
neuroscientists in Parma localized discharges of a group of neurons in both
area F5 of the premotor cortex and in parietal area PF of macaque brains
(di Pellegrino et al., 1992). Such discharges were reported both when the
macaque performed an action and when it observed another individual per-
forming a similar action. A similar fronto-parietial network, including the
posterior inferior frontal gyrus, the adjacent ventral premotor cortex, and
the inferior parietal lobule, was also observed in human brains (Rizzolatti
& Craighero, 2004), where the structural activations were observed in sub-
jects observing and imitating actions. This neural system responsible for
action observation/execution matching was called the mirror neuron sys-
tem (MNS). The MNS was hypothesized to be involved in quite diverse
cognitive functions, including empathy (Gallese 2003), action understand-
ing (Kohler et al., 2002), intention understanding, linguistic communication
(Arbib 2005; Arbib 2012), and even sexual preferences (Ponseti et al., 2006;
Mouras et al., 2008). However, as it turns out, some such hypotheses are
based on spurious correlations, and top-down interventions are ignored in
this research. For example, as Hickok (2014) argues, if the MNS is respon-
sible for action understanding, a lesion of the MINS should lead to a deficit
in action understanding. But it does not, and experiments demonstrating
such are simply ignored.

Even more problematic is that the overall structure of the mechanism
remains largely sketchy. A mechanism sketch is a representation of a mech-
anism that lacks its crucial entities and activities; it does not even contain
placeholder terms (Craver 2007). Explanations that appeal to a mechanism
sketch are not (entirely) successful. The problem is that it also remains un-
clear how the MNS is supposed, for example, to influence sexual orientation
exactly. Mere selective discharge of this area is not sufficient to establish its
causal relevance. Extrapolation of the MNS to explain ever new domains
of cognition often remains speculative, as long as there are no indepen-
dent causal interventions that could deliver new empirical evidence. This,
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of course, is not to say that a single elementary mechanism may not be in-
volved in multiple phenomena. But for all phenomena, the causal relevance
should be established independently.

The second case, of positing multiple similar mechanisms for similar
phenomena, may be illustrated with neurons posited as individual com-
ponents of the nervous system by Santiago Ramon y Cajal (Ramén y Ca-
jal 1990). Quite clearly, there are many kinds of neurons but their operations
are in some important respects similar (with some notable exceptions such
as “silent neurons”).

Therefore, the application of unification strategies for elementary struc-
tures is based on extrapolation, or transposition of the same model of mech-
anism to ever new explananda. As one reduces the number of individual
explanations, the redundancy is limited, and simplicity increases, which in
turn is one of the major features of unification. The same reason makes the
first strategy, of hypothesizing the same overall mechanism structure for var-
ious phenomena, unificatory. At the same time, with multiple explanatory
hypotheses bound to the same mechanism, one keeps monstrosity at bay.
Instead of yet another mechanism for every explanandum, one may appeal
to the same one or at least to the same type of mechanism. The same goes
for scope: we explain multiple phenomena with the (type of) mechanism
M, so the explanatory scope of M increases with each phenomenon.

It remains to be discussed whether unification is a norm of mechanistic
explanation, or just a non-mandatory practice. I will argue for the latter
claim.

5. Unification versus mechanistic norms of explanation
in cognitive science

Proponents of the new mechanistic philosophy have not underlined the
value of unification as much as they have embraced integration. The im-
portance of explanatory unification has been emphasized by proponents of
frameworks that were supposed to be an alternative to causal explanation;
this is how Philip Kitcher has framed his proposal, by opposing Wesley
Salmon’s account of causal explanation (Salmon 1998). For example, he
claimed that:

The heart of the unification approach is that we cannot make sense of the
notion of a basic mechanism apart from a systemization of the world in which
as many consequences as possible are traced to the action of as small a number
of basic mechanisms as possible (Kitcher, 1989, p. 497).
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But how would one justify this claim? After all, it is quite plausible that
there may be a large number of basic mechanisms out there. Stuart Glennan
(2002, p. S352) offers the following reply to Kitcher’s argument: Even if our
heuristics of search and discovery of mechanisms are biased towards the
discovery of a small number thereof, these heuristics may fail, and we can
easily make sense of the (possible) world in which a plethora of various
basic mechanisms is at work. Similarly, the simplicity and scope of our
theories is a convenient assumption that may be easily dismissed as soon as
we discover, for example, that biological mechanisms are not optimally but
only sufficiently simple to remain reliable: there is a clear trade-off between
simplicity of design and redundancy.

This means that the striving for explanatory unification, in contrast
to integration, is not be an absolute norm for defenders of the mechanis-
tic account of explanation. Instead, unification should be considered to be
an epistemological virtue of scientific representations rather than of mecha-
nisms described by these representations. But it is not mandatory for expla-
nations to be genuine or satisfying. To show this more clearly, let me discuss
three approaches to unification: simplicity, invariance and unbounded scope,
and non-monstrosity.

Obviously, simpler and non-redundant representations are preferred, as
long as they remain tractable or useful for our representational purposes.
This point has avoided the attention of proponents of parsimony and sim-
plicity in the past: maximally non-redundant representations may be diffi-
cult to decipher. Let’s take a simple example, one of the simplest axiomati-
zations of the propositional calculus, offered by Jan Lukasiewicz in his nota-
tion: EEpgEErqEpr. The notation is obscure even to those trained in Reverse
Polish Notation. Similarly, a plain text compressed by a general-purpose
algorithm is no longer human-readable. Removing redundancy comes at
a cost: first, it may make the representation more susceptible to error (as
redundancy helps error detection); second, it requires more computational
effort to handle non-redundant representation. For this reason, models of
mechanisms should be as simple and parsimonious only as far as it aids
their uses.

Models of mechanisms that describe more invariant causal structures
are also useful to the point where they still remain tractable or readable
on pain of Bonini’s paradox: the model may be as difficult to understand
as the phenomenon under modeling, and for complex artificial networks
simulating the brain, the paradox looms large (Dawson, 1998, p. 17). How-
ever, it does not seem to be a norm of mechanistic explanation that they
have unbounded scope. Some biological regularities may occur only in cer-
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tain spatiotemporal locations, and causal explanations seem mostly local.
This does not make them any less explanatorily powerful. Similarly, an
explanation that addresses a single phenomenon is not necessarily worse
than one that explains two phenomena. What is more important is how
significant these phenomena are. Their significance may be assessed, for
example, in terms of consequences for other scientific representations of
the world. To use Quine’s metaphor of the web of belief to describe the
scientific representations as connected together, the representations at the
periphery are probably less significant, while the ones closer to the center
are more germane to others. This metaphorical picture should be sufficient
for our purposes here; it is obvious that models of mechanisms that are
more significant should be valued over ones at the periphery unless there
is some reason to believe that there may be a large uncharted territory
ahead, and that a given model is just the beginning of a successful re-
search paradigm.

Similarly, non-monstrosity is to be preferred but only when there is
reason to believe that maximizing confirmational connectedness preserves
truth. Why? Because structures may exist that are composed of relatively
independent subsystems, and a model that would describe these subsystems
as totally interdependent would be at best an idealization, and at worst,
wishful thinking.

Therefore, as my discussion indicates, no feature of unification men-
tioned above is an absolute ideal for the mechanistic account of explana-
tion. One could reply that this is because explanatory models are in some
way special, i.e., they need not be unified to be satisfying, whereas there
are some models, in particular physical ones, that stand in need of genuine
unification. This is the kind of argument that was put forward by propo-
nents of robotic architectures of cognition (Morse et al., 2011): To make
a cognitive robot work, one needs a unified and complete model of its cog-
nitive capacities. But this argument is not valid. While one needs to build
a physically complete robot, it does not mean that all its features need
to be completely modeled in a theoretically unified fashion in order for it
to work. Quite the contrary, some details of the physical implementation
may remain unknown before one starts to actually build physical mod-
els; quick and dirty tricks may be enough to make them work. Moreover,
the existence of hybrid robotic models that link together quite diverse ap-
proaches to cognitive and motor capacities in the same physical entity shows
that unification is not strictly required to make such robots. All that is re-
ally required is not unification but simplicity; invariance or non-monstrosity
are not at all necessary. This seems to suggest that even for models that
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are not just explanatory, but for example, exploratory, unification is not
an absolute norm.

To repeat, constraints that force unification on models are just heuristic
biases that may help to develop beautiful models. However, confusing these
heuristics with infallible rules may lead to detrimental consequences. Indeed,
in the past, the principle of parsimony was abused. Even if it says that en-
tia non sunt multiplicanda praeter necessitatem, or that entities should not
be multiplied beyond necessity, the last two words — beyond necessity —
seem to have been ignored by zealots of parsimony. Therefore, behavior-
ists would deny the existence of entities that were inconsistent with their
theories rather than ones that were redundant, to mention only cognitive
maps, still being debated in the 1990s (Benhamou 1996), even if the oppo-
site hypothesis was experimentally idle for further research on rat spatial
navigation (Bechtel 2016). The same applies to consciousness that had to
be investigated in the U.S. under the term attention to eschew the behav-
iorist dogma.

Simplifying the view of the world beyond necessity leads to dogmatism.
One should not deny our ignorance of the world and its complex phenom-
ena. Complex phenomena are difficult to explain, and conflicting models
thereof may be useful in several ways. First, multiple contradictory and ide-
alized models may be built to derive inferences about robust regularities
in operations within a given system (Weisberg 2006). This is how current
climate models operate, and we may envisage that brain simulations could
be built in a similar fashion. Second, contradictions between models is fuel
for progress in developing further models. No model ever explains in a the-
oretical void; models explain in a distributed fashion (Hochstein 2015). But
distributed explanations should not be contradictory, so one needs to build
coherent representations, and in doing so, monstrous explanations should
be avoided if possible.

“Strive for unified explanations!” is therefore just a useful heuristic
but not an absolute norm. It might indeed turn out that cognitive sys-
tems are collections of semi-independent cognitive modules, as defenders of
evolutionary psychology and massive modularity have claimed (Cosmides
& Tooby, 1987; but see Richardson 2007 for a mechanistic criticism). But
before assuming a priori that cognitive systems are unified or not, we should
first try to see how experimental evidence may affect the issue, and this
opens really difficult questions (Van Orden & Kloos, 2003). In general, com-
plex models cannot be easily falsified or fitted to data, and their usefulness
may be assessed only in terms of Lakatosian progressive or regressive re-
search programs (Cooper 2007). As things stand right now, both approaches

28



Unification Strategies in Cognitive Science

seem to be similarly fruitful. A mechanist should therefore applaud and let
a thousand flowers bloom. Picking the flowers comes later.

NOTES

* The work on this paper was funded by a National Science Centre (Poland) research
grant under the decision DEC-2014/14/E/HS1/00803. The author wishes to thank Daniel
Kostic, Michal Klincewicz, Hubert Kowalewski, Ricardo Sanz and the audience during
the 11t" Congress of the Polish Society for Cognitive Science for comments on a previous
version of this paper.

1 Bechtel (1986: 11-13) notes that central problems may be solved over time, which does
not mean that the field or discipline is going to disappear; the fields should therefore be
defined by a certain tradition of problems rather than a single central problem.
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