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Abstract. The aim of this paper is an attempt to give an answer to the question
what does it mean that a computational system is intelligent. We base on some
theses that though debatable are commonly accepted. Intelligence is conceived
as the ability of tractable solving of some problems that in general are not
solvable by deterministic Turing Machine.
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1. Introduction

The idea of artificial intelligence (AI) has a long history. Already in
Greek myths we meet the golden robots of Hephaestus. Pygmalion fell in love
with Galatea, a statue he had carved and which was animated by Aphrodite.
Since the Middle Ages we have known Paracelsus’ homonoculus and Golem,
the creation of rabbin Jehudy Löw ben Bekalela. In the 19th century Mary
Shelley created the fictional Frankenstein monster. Due to Karel Čapek,
a Czech writer, the name “robot” is commonly used in everyday as well as
scientific languages. Robots are equipped with intelligence, with AI.
The contemporary idea of AI came into being as digital Information

and Communication Technology (ICT) developed. There were various af-
flatus, also with emotional background as was the case with Alan Turing.
From letters to the mother of his dead friend Morcom, we know that at least
for three years after his death Turing was overwhelmed by the problem of
the interweaving of body and mind. He asked whether death releases the
mind from the body. He looked for an answer in contemporaneous physics.
He studied “The Nature of the Physical World” (1948) by Arthur Stanley
Eddington, where on the base of quantum mechanics the traditional meta-
physical problems of mind and matter were discussed. He speculated that
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quantum mechanics underpinned free will (Hodges, 1983, p. 63). The argu-
ment for the possibility of AI developed by Turing in Computing Machinery
and Intelligence (1950) is one of the most cited in modern philosophical
literature.
Turing imagined a machine that could mimic human reasoning. He

stated the question “Can machines think?” (1950, p. 433). The question has
obsessed computer and cognitive sciences. It grows more important every
day as computers grow more powerful all the time. The possibility of a think-
ing computer, a computer apart from software, a machine with human-like
(or super-human) intelligence is frightening, or at least thought-provoking.
The risks are as enormous as the potential benefits.
In 1948 Norbert Winer published Cybernetics, or Control and Commu-

nication in the Animal and the Machine, a classic work that started con-
temporary cybernetics. Relations between information science and cyber-
netics, especially in Poland, were both disciplines tied as well theoretically
as personally: Henryk Greniewski, the first leader of the Grupa Aparatów
Matematycznych, the team that started Polish ICT, was one of the prime
movers and co-founder of the Polish Association for Cybernetics (Polskie
Towarzystwo Cybernetyczne).
The idea of creating an information system that could think inspires

the study of brain and mind. One of the first and most known steps in this
direction were the works of McCulloch and Pitts, in particular their A log-
ical calculus of the ideas immanent in nervous activity (1943). For Turing,
the human brain had ever been both inspiration and challenge to his work
on computing machines. The association of the idea of universal compu-
tation and the idea of the brain as a computer resulted in the inception
of AI as a distinct scientific discipline. AI was founded as an academic
discipline in 1956 at a Dartmouth conference organized by Marvin Min-
sky, John McCarthy and two senior scientists: Claude Shannon and Nathan
Rochester of IBM.
Sciences that investigate diverse aspects of acquisition and processing,

and storage and transmission of data by the brain and mind, have been
integrated under the common name “cognitive science”. As birds inspired
the idea of moving humans in the air, human cognitive acts as well give the
base of the vision of artificial cognitive systems.
The question whether computers could be as intelligent as humans, or

even more, is interesting for practical reasons, too. From day to day new
achievements of ICT excite us and make our everyday life easier.
20 years ago Deep Blue won over Garry Kasparov, the Chess world

master. In March 2016 AlphaGo won over Lee Sedol, the Go world vice-
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championship.1 There is a great difference between Chess and Go: at the
opening move in Chess there are 20 possible moves; in Go the first player
has 361 possible moves. This wide latitude of choice continues throughout
the game (Bozulich, 2015). In the case of Go the number of possible steps is
higher than the number of atoms in the universe. AlphaGo to win has been
trained for two years.2 Chess is considered to be more of a tactical game
than a strategic one. Go is generally considered to be a game in which both
strategy and tactics are equally represented. In June 2016 ALPHA, devel-
oped by Nick Ernst, in a simulated air fight beat Gene Lee, an experienced
Air Force pilot.3 In USA legislation is being prepared to allow autonomous
cars to use public roads.4

IBM’s Watson helps in health care. 90% of nurses accept its advice.
Klaus-Peter Adlassnig, editor of Artificial Intelligence in Medicine suspects
that Watson’s medical knowledge is not deep and sweeping.5 An information
system trained in recognizing breast cancer by researchers from Beth Israel
Medical Center and Harvard Medical School operated with 92% accuracy.
In the case of diagnoses made by human pathologists it is 96%. In the case
of diagnoses supported by the system it is 99.5%.6

Not only benefits but also threats posed by the development of AI are
acknowledged. By 2040–50 computers as intelligent as man are forecast.
A superintelligent computer should be constructed 30 years later. We have
been warned by several high-profile voices that we should be more concerned
about possible dangerous outcomes of supersmart AI. According to Hawk-
ing:7

Success in creating AI would be the biggest event in human history. Unfortu-
nately, it might also be the last, unless we learn how to avoid the risks. In the
near term, world militaries are considering autonomous-weapon systems that
can choose and eliminate targets.

In an interview for BBC he continues:8

humans, limited by slow biological evolution, couldn’t compete and would be
superseded by A.I.

A similar opinion is shared by Steve Wozniak, one of the first creators of ICT.
Elon Musk, the founder of Tesla, Paypal, and SpaceX, decided to par-

ticipate in the project DeepMind in order to:9

just keep an eye on what’s going on with artificial intelligence.

In January 2015 Bill Gates wrote:10

I am in the camp that is concerned about super intelligence. First the machines
will do a lot of jobs for us and not be super intelligent. That should be positive
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if we manage it well. A few decades after that though the intelligence is strong
enough to be a concern. I agree with Elon Musk and some others on this and
don’t understand why some people are not concerned.

Nick Bostrom, Swedish philosopher and the director of the Future of
Humanity Institute, Oxford University, sees an analogy between automo-
biles and computers (2014):

Horses were initially complemented by carriages and ploughs, which greatly
increased the horse’s productivity. Later, horses were substituted for by auto-
mobiles and tractors. [...]

When horses became obsolete as a source of labor, many were sold off to
meatpackers to be processed into dog food, bone meal, leather, and glue. These
animals had no alternative employment through which to earn their keep.
In the United States, there were about 26 million horses in 1915. By the
early 1950s, 2 million remained.

The fundamental question arises: is it possible to build an informational
system that would be at least as intelligent as a human mind? We will anal-
yse an argument for the thesis that the positive answer to the question can be
seen as equivalent to the positive answer to the question, whether NP = P .
We believe that the intelligence of any physically realizable computa-

tional system cannot be higher than the intelligence inherent to the human
brain. We argue that any physically accomplished computational system
as well as the brain is able efficiently to solve merely problems that could
be computed by deterministic Turing Machine (TM). Human minds are
able efficiently to solve some problems that in general are not solvable
by deterministic TM. Thus if NP 6= P , no physically realizable compu-
tational system as good as a brain is able to be as intelligent as a hu-
man mind. In polynomial time, deterministic TM computes any solution
of NP problems, but deterministic TM is not able to solve some problems
that in general are not solvable by deterministic TM, if NP 6= P . Hence
deterministic TM only mimics intelligence, if it computes solutions of such
problems.

2. Is the brain able efficiently to compute NP problems?

A comparison of computers and human brains shows the tremendous
technological distance we have to overcome to build computers that would be
almost as technologically advanced as human brains are. Many generations
of engineers will have opportunities to invent, innovate, and improve ICT
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to build computers that would be technologically more similar to human
brains and their computational resources. We ask about the computational
abilities of brains or in general of nature.
The question how nature computes was stated by Turing in the paper

The Chemical Basis of Morphogenesis (1952). In many ways this is one of
his most original and maybe visionary forays into the world of computation.

2.1. The Church-Turing Thesis
In 1936, Alan Turing (Turing, 1936–37) invented a theoretical com-

putational model, the Turing Machine TM). It is a theoretical abstract
object that provides a precise characterization of algorithmic solvability
(Gandy, 1982):

Both Church and Turing had in mind calculation by an abstract human being
using some mechanical aids (such as paper and pencil). The word ‘abstract’
indicates that the argument makes no appeal to the existence of practical
limits on time and space.

Computation, however complex, can be decomposed into simple atomic
steps. It is proved that any other known models of computation, e.g. lambda
calculus and partial-recursive functions, are equivalent to TM. The Church-
Turing thesis (CT) claims that the class of well-defined computations is
exhausted by those of TM. CT states that any other thinkable models of
computational processes will be equivalent to TM. Until now there has not
been found any such process that computes in an intuitive sense, and that
is not equivalent to TM. The assertion of validity of CT is based on the
lack of counterexamples. There are distinguished various TM: determinis-
tic, probabilistic, nondeterministic, quantum etc. These “machines” are the-
oretical abstractions that do not, and can not, exist in the physical world.
An all-purpose computer that could execute any algorithm is subject only
to limitations of space and time. Nevertheless the fact remains that every-
one who taps at a keyboard, opening a computer program, is working on
an incarnation of a TM.
The concept of computability which CT seeks to analyze is an idealized

one which is divorced in certain respects from our everyday computational
practices: CT will classify a problem as effectively computable even if it is
computable by a TM with resources that are astronomically large.
CT is also sometimes understood as making a prediction about which

functions are physically (and biologically) computable — i.e. are such that
their values can be determined by measuring the states of physical systems
which we might hope to use as practical computing devices.
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The physical CT, an analogical thesis to the abstract CT, states that
any physical process whatsoever can be modelled by one of TMs (to an ar-
bitrary degree of precision), provided only that the system to be modelled
is governed by the laws of physics. The physical CT is not obviously ev-
ident but there are good reasons to accept it. To falsify the physical CT
it is enough to point out a natural process that computes and cannot be
modeled by TM. If the physical CT is false, it follows that there exists
a physical process that effectively computes functions that aren’t Turing
computable.
Everything that humans are able to know is information. Any physical

process can be represented as information processing. The idea that every-
thing that is, is information, was conceived by Leibniz for whom the world
is built by 1 (God) or 0 (nothing). He said:

Cum Deus calculat et cogitationem excercet, fit mundus — when God thinks
things through and calculates, the world is made.

Chaitin (2010, chapter 3, pp. 39–43) for both questions:
– Is the world built out of information?
– Is everything software?
answers “yes”.
Notwithstanding any behaviour of a physical (and biological) process

is a computational process, it can be questioned that the process can be
modelled by TM. It is an empirical question whether the physical CT is true.
Proponents of hypercomputation argue that there are physical processes
— and so, potentially, machine-operations — whose behaviour conforms
to functions not computable by Turing machine (Copeland, 2015). Others
maintain that any physically computable function is computable by TM
(Piccinini, 2007). According to Davis (M. Davis, 2006, p. 4)

So, on what basis can someone claim that some device is indeed a “hypercom-
puter”? It can only be on the basis of physical theory. Such a theory would have
to be certified as being absolutely correct, unlike any existing theory, which
physicists recognize to be only an approximation to reality. Furthermore, the
theory would have to predict the value of some dimensionless uncomputable
real number to infinite precision. Finally, the specifications of the machine
would have to guarantee that it exactly follows the demands of this supposed
theory. Needless to say, nothing like this is even remotely on the horizon.

Davis rejects also the possibility of “computation beyond the Turing limit”
by the nervous system and brain (M. Davis, 2004, pp. 6–10). The efforts
of researchers (Siegelmann, 1995, 1999; Copeland, 1998, 1999) hoping to
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construct a physical or biological “hypercomputational” device are by him
(M. Davis, 2004, p. 1) compared to amateurs aiming to devise a construction
for dividing a given angle into three equal parts using only straight-edge and
compass or to the search for a perpetual motion machine (Park, 2000).
Davis (2004, p. 14) admits that quantum algorithms can provide ex-

ponential speed-up. However, they can only compute computable functions.
Brains are biological objects, thus the physical CT is applicable to it. Hence,
according to the physical CT, any brain computational process can be mod-
eled as TM. It is the basic thesis of computational theory of the brain.
Theoretical CT supports physical CT and vice versa. If TM is a model

of any computational process, then it is also a model of any physical com-
putational process. If any physical computational process can be modelled
by TM, then it is an argument for theoretical CT.
We are very far from understanding the workings of our mind, but

there is every reason to believe that one of the things our mind does is to
execute algorithms. Lucas (1961) on the basis of Gödel’s Incompleteness
Theorem and Penrose (1989, 1995, 1994, 1996, 2000) referring to quantum
mechanics argues that the mind is not restricted by CT. He holds that no
truly intelligent behaviour will ever be simulated by a computer since the
function of brain cannot be simulated by a computer program because of
its quantum mechanical physical basis.
Turing has formulated an argument from human ‘mistakes’ to explain

why Gödel’s theorem did not show the existence of an uncomputable human
intuition. If it is accepted, as was already claimed by Turing (1950), that
a discrete state machine is the appropriate level of description for mental
states, i.e. that the mind is a TM, then CT is applicable to the human mind,
and thus the psychological CT is acknowledged: any computable function by
the human mind is computable by TM. The psychological CT is supported
by the idea of reasoning as computation: cogitatio est computatio as the
motto of Hobbes was cited by Leibniz in Dissertatio de arte combinatoria.
Nevertheless there are good reasons for the conviction that it is certainly
possible that psychology will find the need to employ models of human
cognition that transcend TM.
Let us add that in his last published paper (Turing, 1992b, 1954) Tur-

ing, referring to the pure mathematics of computability maintained, unlike
in (1950), that Gödel’s theorem showed that ’common sense’ was needed
in interpreting axioms, and the intuitive ’common sense’ was not asserted
to be something a machine could show as well as a human being.
If we suppose that mind is merely a function of brain, the psycholog-

ical CT is equivalent to the physical CT. If mind has at least one ability
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that is not completely dependent on the brain, the psychological CT is not
dependent on physical CT.
To summarize these considerations on TM let us cite Martin Davis

(2004, p. 15):

The great success of modern computers as all-purpose-algorithm-executing
engines embodying Turing’s universal computer in physical form, makes it
extremely plausible that the abstract theory of computability gives the correct
answer to the question “What is a computation?” and, by itself, makes the
existence of any more general form of computation extremely doubtful.

2.2. Computational complexity
According to Chaitin (2010, p. 10) complexity theory is one of three,

besides computability and information, theories, hot new topics in 20th cen-
tury mathematics.
Computation by TM is a sequence of moves defined by a transition re-

lation. In the case of deterministic TM the relation is a function, i.e. it is
one-valued relation: for a given input there is one output. In the case of
indeterministic TM there are possible more outputs; the transition relation
is not a function. The deterministic TM computes sequentially. The inde-
terministic TM is a theoretical construction. It says little about the physical
procedure of computation. Nevertheless the concept of indeterministic TM
is an important idea in the theory of computational complexity. Indeter-
ministic TM defines the computational tree.
The theory of computational complexity investigates the resources

needed to accomplish computation (Dean, 2016). The origins of the the-
ory lie in the work of Gödel, Church, Turing, Kleene, and Post undertaken
in an attempt to answer Hilbert’s Entscheidungsproblem (Trzęsicki, 2006).
Central to the theory is the notion of a decision problem. Its primary goals
are to classify and compare the practical difficulty of solving problems about
finite combinatorial objects. This theory provides tools of classification of
problems and methods of measurement of computational resources. It ex-
plains why some problems are intractable and provides measures of anticipa-
tion of difficulties of their solution. Complexity theory attempts to provide
a formal criterion for what it means for a problem to be feasibly computed.
The classification is quantitative and aimed at investigation of required,
i.e. the lower limit, and sufficient, i.e. the upper limit, resources to accom-
plish computation. A problem is considered to be complex in proportion to
the difficulty of carrying out the most efficient algorithm by which it may
be decided. Decision problems are commonly categorized into complexity
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classes based on the fastest known machine algorithms. Decision problems
may change class if a faster algorithm is discovered.
The most important and usually applied measures of computational

complexity are time (temporal-complexity), which is needed to accomplish
computation, i.e. the number of basic steps required by a machine to halt
and return an output; and space, the amount of memory used in computa-
tion (memory-complexity). The basic definitions of time (one time unit is
assigned to every transition) and space (the number of cells in the memory
which have been affected by the computation) complexity were formulated
by Hartmanis and Stearns (1965), (Hartmanis, 1981). One of the aims of
computational complexity is to distinguish problems that are feasibly com-
putable.
The efficiency of a machine is measured in terms of its time-complexity.

Other measures of computational complexity are also applied, e.g. the num-
ber of processors. Time-complexity refers to the increasing number of ma-
chine basic steps needed by an algorithm relative to the size of the problem,
where a basic step takes a fixed amount of time to perform. The focus on
time of computation is natural and justified: any other parameters influence
the time of computation; e.g. the larger the space, the amount of memory,
the more time is needed (Garey & Johnson, 1979). The amount of time
taken and the number of elementary operations performed by an algorithm
differ by at most a constant factor.

P (deterministic Polynomial time) is the class of decision problems that
are algorithmically solved in polynomial time. An algorithm is polynomial
time iff its running time is upper bounded by the value of the polynomial
expression in the size of the size of the input: O(nk), where n is the length
of input data and k is a constant that depends on the problem, but not the
particular instance of the problem. Big-O is an expression of how the exe-
cution time of a program scales with the input data. The concept of big-O
can be used for more than runtime, e.g. it is used to describe how much
memory an algorithm uses.
Any problem of P and only a problem of this class is solvable by a con-

ventional MT, i.e. a deterministic MT, in a number of steps which is pro-
portional to a polynomial function of the size of its input.

NP (Non-deterministic Polynomial time) is the class of decision prob-
lems solvable in polynomial time by a theoretical non-deterministic Turing
machine. It consists of those problems which can be correctly decided by
some computation of a non-deterministic TM in a number of steps which
is a polynomial function of the size of its input. Equivalently it means that
the instances of the decision problems where the answer is “yes” are veri-

111



Kazimierz Trzęsicki

fiable by deterministic TM in polynomial time. The algorithm consists of
two phases which consist of:
1. a guess about the solution, which is generated in a non-deterministic
way,

2. a deterministic algorithm that verifies or falsifies the guess as a valid
solution to the problem.
P can be characterized as a class of problems, membership in which can

be decided efficiently, whereas NP can be characterized as the class of prob-
lems for which membership can be verified efficiently once an appropriate
certificate is provided. P describes the class of feasibly decidable problems.
NP are easy to check but impossibly hard to computationally solve.
Any solution to a problem of P also in polynomial time verifies the

correctness of the solution, thus any problem of P is also a problem of NP .
In other words, any problem solvable in polynomial time by determin-
istic TM is also solvable by non-deterministic TM in polynomial time.
The complexity class P is contained in NP . The most important open
question in complexity theory, the P versus NP (P = NP ), asks whether
NP is contained in P . It is widely believed that this is not the case
(Mole, 2016, p. 20), (Feinstein, 2003). In a 2002 poll of 100 researchers,
61 believed the answer is “no”, 9 believed the answer is “yes”, 22 were un-
sure, and 8 believed the question may be independent of the currently ac-
cepted axioms, and so impossible to prove or disprove.11 It is one of the seven
Millenium Problems.12 The Clay Mathematics Institute declares a prize of
million dollars for solution to it.
For the first time the problem today known as NP =?P was remarked

by Kurt Gödel in a letter to John von Neumann (Hartmanis, 1989). The
letter is translated and published by Sipser (1992). The rigorous formulation
of NP versus P was done by Stephen Cook in the paper The complexity
of theorem proving procedures (1971). Cook proved that the SAT problem
is NP -hard. The SAT problem eventually assumed the role of paradigmatic
“hard” problem.
Let us make a distinction between an instance of NP problem and

NP problem or a problem that in general isNP (Thagard, 2000). To explain
the difference let us take into account SAT. SAT is NP -complete. The
problem that a given formula, an instance of SAT, is satisfiable, is a problem
which in general is NP -complete.

NP -complete problems are the hardest NP problems. The solution
to at least one NP -complete problem in polynomial time is sufficient to
deal with any other NP problem in polynomial time. To find at least one
instance of an NP -complete problem is enough to prove that NP 6= P .
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Since the P versus NP problem is unresolved, no algorithm for an NP -
complete problem is currently known to run in polynomial time and no
instance of a NP -complete problem is currently known that could not be
solved in polynomial time. NP -complete problem is such that there is no
polynomial time algorithm for its solving for the worst case.

NP -intermediate problems are those that are between P problems and
NP -complete problems, i.e. they are neither in the class P norNP-complete.
NP -hard problems are those at least as hard as NP problems, i.e., all
NP problems can be reduced (in polynomial time) to them. NP -hard prob-
lems need not be in NP , i.e., they need not have solutions verifiable in poly-
nomial time.
Humans are able efficiently to solve some problems that in general be-

long to NP \ P , i.e. they are NP -intermediate or NP -complete. Humans
are able efficiently to perform computations that are not modelled by deter-
ministic TM, if NP 6= P . For example, mathematicians are able efficiently
to formulate and prove theorems, though it is a task that in general belongs
to NP \ P , or — in other words — is modelled by indeterministic TM but
not by deterministic TM, if we suppose that NP 6= P . Hackers efficiently
crack passwords though these are problems that in general are not solvable
by deterministic TM, though they need superpolynomial time. Generally,
in the case of NP -complete problems, humans are able to solve:
1. special cases
2. small problem sizes,
or they can give:
3. approximate solutions
4. probabilistic solutions.

2.3. The Cobham-Edmonds Thesis
The attempt to develop a general theory of feasible computability was

accompanied by a systematic exploration of the relationships between differ-
ent models of computation. These investigations resulted in distinguishing
between the class of feasibly solvable problems, i.e. those which are solvable
in practice by an efficient algorithm, and the class of intractable problems,
i.e. those which are regarded as intrinsically difficult to solve.
The Cobham-Edmonds thesis (Cobham, 1965; Edmonds, 1965b, 1965a)

(CET) states — let us omit the technical formulation and details — that
a problem can be efficiently computed iff it can be computed in polynomial
time (Mole, 2016, p. 23). According to the thesis only algorithms that can be
performed in polynomial time — those which lie in the complexity class P —
are efficient (fast, tractable, feasible, easy, practical), while algorithms that
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are not in P — that require superpolynomial time — are inefficient (slow,
intractable, unfeasible, hard, impractical). Exponential time-complexity has
been taken as the touchstone of intractability. CET relies on the informal
notion of a reasonable model of computation.
CET has some limitations in application to determination of efficiency

of computation, because the thesis abstracts away some important variables
that influence the time of computation. It ignores:
– constant factors and lower-order terms,
– the size of the exponent,
– the typical size of the input.
CET is more debatable than CT. The incomputability of a problem

can be proved purely theoretically as is the case with the Halting Prob-
lem (Turing, 1937). The grid colouring-task is an example of problems that
could not be solved, since the universe does not provide sufficient time or
space in which to get the thing done. In a twenty by twenty grid there
are four hundred squares. There are 2400 possibility of colourings of the-
ses squares either white or black. Even if colouring of one square will last
the shortest possible time, i.e. Planck’s time, tP ,13 the number of these
units from the beginning of the universe (about 4, 34 × 1026) is a tiny
fraction of number of tP needed to reach the output (Mole, 2016, p. 15).
The completion of this task in general requires an exponentially large
number of operations which goes beyond the bounds of the resources
of the universe.
On the one hand, according to CET, for example, a computer program

requiring n100 steps would be tractable, though even for n = 10 the time
needed to execute this algorithm is greater than the age of the universe
(Cook, 2006). On the other hand, an algorithm requiring 20.00001n steps
could be executed for e.g. n = 106, though as belonging to exponential time
problems, is intractable (Rotman, 2003). From a mathematical angle it is
clear that for enough big input, any polynomial time algorithm will beat
any exponential time algorithm. CET is considered to be a good rule of
thumb for real-life problems. A proof that P 6= NP would provide additional
evidence that CET gives a correct analysis of the pre-theoretical notion of
feasibility.
As a consequence of acknowledging the physical CT, we have to ac-

cept that laws of complexity theory, as pure theoretical laws, are applica-
ble to information processing in nature, in particular in the brain. Phys-
ical computational processes require resources that are required by TM.
In other words, the principles of the assessment resources needed by TM
are applicable to assess resources needed by a natural process. The phys-
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ical CT says nothing about tractability. The physical CET, as a conse-
quence of physical CT and (theoretical) CET, maintains: a natural compu-
tational process is tractable only if it can be accomplished in polynomial
time. In particular, brain computational processes are tractable only if they
could be accomplished in polynomial time. According to the physical CET
any tractable cognition problem is solvable in polynomial time. Any cog-
nitive problem that requires superpolynomial time is not efficiently solv-
able by brain; it is practically unsolvable, intractable for the brain (Mole,
2016, p. 25).
Are there any physical computational processes at all that need super-

polynomial time? If the universe is never-beginning, all the natural pro-
cesses have had enough time to be accomplished. Any problem, regardless
of time-complexity, would be already solved by natural processes. The idea
of a never-beginning universe is not confirmed by contemporary cosmology.
The beginning of the universe is estimated at approximately 13.8 billion
years ago. Thus at least processes that require more than 13.8 billion years
are not yet accomplished.
Cognitive ability can be described as the skills of information processing

in order to reason, decide, intend, react etc. According to psychological CT
any mind process could be modeled by TM. The human mind is a finite
system with limited computational resources. The cognitive abilities of the
human mind are limited to processes that can be practically executed. Some
cognitivists maintain that the only tractable processes are these that could
be accomplished in polynomial time. The thesis — i.e. psychological CET
— is subject of many interesting discussions (van Rooij, 2008). Such a thesis
is a consequence of psychological CT and (theoretical) CET.
If we suppose that mind is merely a function of brain, the psycho-

logical CET is equivalent to the physical CET. If mind has at least one
computational ability that is not completely dependent on the brain, the
psychological CET is not dependent on physical CET.
According to psychological CET, for a cognitive agent, tractable pro-

cesses are solely those solvable in polynomial time. The class P approximates
the class of feasible mind problems.

2.4. The Invariance Thesis
We suppose that any computational process such as theoretical (Church-

Turing thesis) or physical (physical Church-Turing Thesis) and psycholog-
ical (psychological Church-Turing Thesis) is modelled by TM. From CET
(Cobham-Edmonds Thesis) as applied to theoretical devices, and the phys-
ical CT (Church-Turing thesis) it follows that any physical computational
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process is tractable only if it can be executed in polynomial time (physical
Cobham-Edmonds Thesis). The same is true in the case of the psychological
computation process (psychological Cobham-Edmonds Thesis).
We are interested in comparing the complexity of algorithms imple-

mented in different effective models of computation. We ask if the com-
putational complexity of a problem can change if the computing device
is changed. The time of execution of an algorithm depends on the calcu-
lating device. Some devices are able to solve a problem in shorter time
than other devices. Can devices differ in complexity of the same prob-
lem; in particular are there any devices that in polynomial time solve NP

problems that are not P? The thesis of invariance (TI) maintains that
(van Emde, 1988, p. 5) (van Emde, 1990, p. 2):

There exists a standard class of machine models, which includes among others
all variants of Turing Machines [and] all variants of RAM’s. ... Machine models
in this class simulate each other with Polynomially bounded overhead in time,
and constant factor overhead in space.

‘Reasonable’ models of computation can simulate each other within a poly-
nomially bounded overhead in time and a constant-factor overhead in
space. A ‘Reasonable’ machine is a machine that could be constructed
(van Emde, 1990, p. 2).
IT states that all standard models of computing devices are equivalent

in the sense that the fundamental complexity classes do not depend on the
precise model chosen for their definition. Changing of a (theoretical) com-
putational device can, beside the constant space coefficient, polynomially
change the time of execution but the possibility of changing the time com-
plexity of a problem is excluded (Slot & van Emde, 1984). In particular,
if a problem is executed in superpolynomial time on one device, it is also,
maybe in a shorter or longer time, executed in superpolynomial time on
any other computational device. For example, some computation by inde-
terministic TM can be modelled as probabilistic computation, but it does
not mean that probabilistic TM has the same ability as indeterministic TM.
It is proved that NP -complete problems are not computable in polynomial
time, if NP 6= P (Implagliazzo & Wigderson, 1997).

P is the smallest time-complexity class on a deterministic TM which is
robust in terms of machine model changes. Any deterministic TM will have
a complexity class corresponding to the problems which can be solved in
polynomial time on that machine.
The TI, as pertaining to physical computational devices, is a conse-

quence of physical CT and (theoretical) TI. Thus we claim that the time
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of execution of an algorithm on one device, regardless of whether a the-
oretical or physical one, can, besides the constant space coefficient, differ
merely polynomially from the time of execution of the algorithm on another
device, regardless of whether theoretical or physical. In particular it means
that any NP problem that is not P is NP that is not P independently of
the used TM or physical computational device.
From TI it follows that any physical process that is modelled by deter-

ministic TM is not able to solve any NP -intermediate orNP -complete prob-
lem in polynomial time, if NP 6= P . From this it does not follow that some
natural processes do not exist that are modelled by indeterministic TM.
Of course, the psychological IT follows from the psychological CT and

(theoretical) TI: the time of execution of an algorithm by any psychologi-
cal computational process can, besides the constant space coefficient, differ
merely polynomially in time of execution of this algorithm on any other com-
putational device. From TI it follows that any psychological process that is
modelled by deterministic TM is not able to solve any NP -intermediate
or NP -complete problem in polynomial time, if NP 6= P . A computation
by mind as modelled by deterministic TM can only be executed polynomi-
ally faster or slower than is the case of another TM.
TI and CET are not dependent on one another. The CET does not

exclude that there are machines which in polynomial time solve problems
that for other machines are superpolynomial time problems. TI says nothing
about the tractability of computation. TI, similarly as CT and CET, is only
a practically confirmed thesis, for which no counter-example has been found.

2.5. NP Hardness Assumption
Let us ask if there are any tractable natural processes that could not

be modelled by deterministic TM. Any natural computational process is
tractable, as stated by CET, only if it is accomplished in polynomial time.
According to IT this is only possible for problems of the class P . Let us
remember that all the theses taken into consideration are not proven but
they are merely practically confirmed, and such that for which no counter-
example is found. Thus the possibility that some natural process computes
in polynomial time some problems that are NP -complete for (theoreti-
cal) TM should not be excluded. We ask if some NP -hard problems can
be solved in polynomial time using the resources of the physical universe,
i.e. we ask (Aaronson, 2005, p. 1):

can NP -complete problems be solved in polynomial time using the resources
of the physical universe?

117



Kazimierz Trzęsicki

The most known proposals of natural processes that supposedly execute
in polynomial time exponentially many steps are soap bubbles, protein fold-
ing, quantum computing, quantum advice, quantum adiabatic algorithms,
quantum-mechanical nonlinearities, hidden variables, relativistic time di-
lation, analog computing, Malament-Hogarth spacetimes, quantum grav-
ity, closed timelike curves, and “anthropic computing” (Aaronson, 2005).
To better understand what we speak about let us mention some of these
processes.
The time of execution of a calculation depends on the interval of time

that is needed for one step. If any step could be executed in an arbitrarily
small interval, any process despite time-complexity could be tractable, i.e. it
could be accomplished in polynomial time. This idea has to be rejected
because in quantum mechanics the smallest interval of time is determined
by Planck’s constant. Thus for any sufficiently big number any exponential
algorithm could not be accomplished in polynomial time since it could not
be possible to shorten the interval of execution beyond 5.39×10−43 seconds.
In relativity theory the measure of time is dependent on the speed of

the agent, thus the agent could expect a result of computation in reasonable
time: it is enough to move him with a velocity near to the speed of light.
But the acceleration of the agent is possible only if there is enough energy.
Since for some calculation it could be greater than the amount of energy in
the universe, the idea has to be rejected, too.
If the universe would be infinite, the number of parallel computation

processes could not be limited, and thus any computation regardless of
time-complexity could be executed in polynomial time. But contemporary
physics claims that the universe is finite in size (though limitless). Some
maintain that arbitrarily many parallel processes are allowed in quantum
mechanics. But at least till now it is rather a phantasy. The number of
parallel computations in the human brain is tremendous but limited (Litt,
Eliasmith, Kroon, Wienstein, & Thagard, 2006). Abilities of our brains are
not decided by their sizes. It is known that:14

the distance from “village idiot” to “Einstein” is tiny, in the space of brain
designs.

An international research group at Peking University is “working to-
gether to understand the unified theory of cognition and to provide a com-
ing generation of a reasoning machine, beyond the current model of the
von Neumann machine.”15. The Klar (Knowledge Learning And Reason-
ing), an algorithm elaborated by the group, in its opinion, is able to perform
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the NP task efficiently.16 In this case it is enough to repeat Davis’s remark
on hypercomputation.
In conclusion we may accept that the hardness of NP -complete prob-

lems is a basic fact about the physical world. A physical process in ei-
ther an atomic universe or a quantum mechanical universe that could cross
the border of IT is questionable in contemporary science (M. Davis, 2001,
pp. 677–679). There is no natural computational process that can accom-
plish exponentially many operations in polynomial time. Alternative models
of computation are dreamt about in Science Fiction (van Emde, 1990, p. 1).
The answer to the question if NP -complete problems can be solved effi-
ciently in the physical universe, is “no”. The NP Hardness Assumption
says — loosely speaking — that NP -hard problems are intractable in the
physical world (Aaronson, 2005, p. 17)
TI could cover psychological computational processes. It would do so if

any mind computational process was a brain computational process. If there
are some mind computational processes that are not completely exhausted
by brain processes, it would not be the case. There are some arguments
in favour of the thesis that mind is able efficiently to solve some problems
that are not computed by deterministic TM, e.g. the Lucas argument based
on Gödel’s theorem and many others. Of course, the arguments are not
indisputable (Krajewski 2003).

3. Computability and intelligence

Although P 6= NP is widely believed to be true, let us ask about the
consequences of NP = P .
Humans can — as finite beings — know only that which is com-

putable in polynomial time. Thus humans can know what is solvable by
non-deterministic TM only if it is computable by mind in polynomial time.
Physical computers — this is a consequence of theNP -hardness Assumption
— can efficiently solve only P problems. Hence, if NP = P , all knowledge
that could be achieved by human beings would be achievable by the human
brain, and by computers.
The great consequence of NP = P was already suggested by Gödel who

in a letter to von Neuman17 wrote:

If there actually were a machine with [running time] ∼ Kn (or even only
with ∼ Kn2) [for some constant K independent of n], this would have conse-
quences of the greatest magnitude. That is to say, it would clearly indicate that,
despite the unsolvability of the Entscheidungsproblem, the mental effort of the
mathematician in the case of yes-or-no question could be completely [added in
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a footnote: apart from the postulation of axioms] replaced by machines. One
would indeed have to simply select an n so large that, if the machine yield no
result, there would than also be no reason to think further about the problem.
(Sipser, 1992, p. 612) (Aaronson, 2006, p. 3)

A world in which there would be no fundamental gap between solving
a problem and recognizing the solution once it is found, would be a pro-
foundly different place than we usually assume it to be.
According to Cook (2006, p. 94):

Although a practical algorithm for solving an NP -complete problem (show-
ing P = NP ) would have devastating consequences for cryptography, it would
also have stunning practical consequences of a more positive nature, and not
just because of the efficient solutions to the many NP -hard problems impor-
tant to industry. For example, it would transform mathematics by allowing
a computer to find a formal proof of any theorem that has a proof of reason-
able length, since formal proofs can easily be recognized in polynomial time.
Such theorems may well include all of the CMI [Clay Mathematics Institute]
prize problems. Although the formal proofs may not be initially intelligible
to humans, the problem of finding intelligible proofs would be reduced to that
of finding a recognition algorithm for intelligible proofs. Similar remarks apply
to diverse creative human endeavors, such as designing airplane wings, creat-
ing physical theories, or even composing music. The question in each case is to
what extent an efficient algorithm for recognizing a good result can be found.
This is a fundamental problem in artificial intelligence, and one whose solution
itself would be aided by the NP -solver by allowing easy testing of recognition
theories.

We have argued that physical (and biological) systems are able effi-
ciently to solve only P problems or, in other words, only physical systems
that can be modeled as deterministic TM compute efficiently. We do not
exclude that there are NP -intermediate, NP -complete, or NP -hard nat-
ural processes. We have excluded only that these processes are tractable,
i.e. according to CET, that they are computational processes that can be
accomplished in polynomial time.
Are there any reasons to maintain that a physical device is not able to

solve efficiently a problem that in general is not P , provided that NP 6= P?
If the answer is “yes”, there is an important difference between the compu-
tational abilities of physical processes and mind processes. The difference
can be taken as a characteristic of intelligence. To the question “what does it
mean to be intelligent?” we can answer: a system is intelligent if the system
is able efficiently to solve problems that in general are not P .
Intelligence conceived in such a way could be measured by the amount

of solved problems that in general are not P .
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No physical (or biological) device is able in polynomial time to solve
(general) problems that are not P . Does it follow that there are no instances
of such problems that are efficiently solvable by such a device? Let us try
to answer the question.
Any solution of an NP problem is verifiable in polynomial time. Hence,

any solution of such a problem can be verified by deterministic TM. Cor-
rectness of a mathematical proof can be verified. For example, such is the
aim of MIZAR, http://mizar.org/, a project conceived by Andrzej Trybulec,
University of Białystok. Any problem that is NP in general, if solved by
human, can also be solved by a computer with the appropriate software.
It means that the intelligence of computers can grow as the intelligence of
the human grows (McCarthy & Hayes, 1969, p. 4):

A machine is intelligent if it solves certain classes of problems requiring intel-
ligence in humans, or survives in an intellectually demanding environment.

There is a whole range of intractable foundational questions across a wide
range of research areas in science and the humanities. The limits of hu-
man knowledge could be reached if all the NP problems would be solved.
If NP 6= P , the limits of knowledge can never be reached. If so, our intelli-
gence will grow and we will be able to build ever more intelligent computers
but never will computers be more intelligent than humans. The improvement
of AI is the direction in the development of computing devices. Thus AI, the
part of computer science concerned with designing computer systems that
exhibit the characteristics we associate with intelligence in human behavior
(Barr & Feigenbaum, 1981–84), will remain a subject of deeper and ever
more advanced technological research.
Turing’s very first written mention of ‘intelligent’ machinery is in

Proposal for Development in the Mathematics Division of an Automatic
Computing Engine (?). In his famous Computing Machinery and Intelli-
gence (1950), Turing astutely narrowed down what one can sensibly say
about human intelligence, and discussed in some detail his observer-based
test for a thinking machine. About the prospect of a thinking machine he
wrote (1950, p. 442):

I believe that at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of machines
thinking without expecting to be contradicted. I believe further that no useful
purpose is served by concealing these beliefs. The popular view that scientists
proceed inexorably from established fact to established fact, never being in-
fluenced by any unproved conjecture, is quite mistaken. Provided it is made
clear which are proved facts and which are conjecture, no harm can result.
Conjectures are of great importance since they suggest useful lines of research.
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Now we do not ask if machine can think, but we ask about what the machine
can think and if there are some limits of thinking by the machine.
The result of our considerations can be put simply: human intelligence

will be always a step ahead of machine intelligence. Machine intelligence de-
pends on human decisions and the abilities to construct machines and write
software, even if such machines are able to imitate such human abilities as:
learning, teaching, training, searching (Turing, 1950). Machine intelligence
is a result of endowment of machines with intelligent software by a human.
Though, for example, in the case of genetic algorithms, the final designer
is no longer a human but a computer, it is the human designer who has to
design the fitness function. We are the only educator of computers. Such
an opinion agrees with Post’s conviction expressed in a discussion of the
thesis that man is not a machine as a consequence of the incompleteness
properties of formal systems (Post, 1965, p. 423):

All we can say is that man cannot construct a machine which can do all the
thinking he can.

Turing says the same; for him computers (1950, p. 438):

can in fact mimic the actions of a human computer very closely.

Turing was well aware of the paradox of expecting intelligence from a ma-
chine capable only of obeying orders. But he believed that, with sufficient
complexity, machines need not appear ‘mechanical’ as in common parlance
(Turing, 1948, 1969, p. 10):

if we are trying to produce an intelligent machine, and are following the human
model as closely as we can

a good approach would be to allow the machine to learn just like humans.
Today the leading approach to AI is machine learning. Deep learning is
an extremely effective technique for training computers to recognize pat-
terns in images or audio, enabling machines to perform with human-like
competence useful tasks such as recognizing faces or objects in images.
Can computers thus built following the human model as closely as we

can, be more intelligent than humans? Are we racing towards the Sin-
gularity — a point at which AI outstrips our own and machines go on
to improve themselves? If intelligence is conceived as the ability to solve
in polynomial time instances of problems that in general are not P , the
ultimate answer to these questions depends on solving the problem of
whether NP = P .
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4. Conclusion

In the summary of Intelligent Machinery (1948, 1969, p. 20) we read:

The analogy with the human brain is used as a guiding principle. It is pointed
out that the potentialities of the human intelligence can only be realised if
suitable education is provided.

In the conclusion of our consideration let us ask, what/who has educated
humans to be intelligent?
From our point of view, if intelligence is conceived as the ability to solve

efficiently problems that in general are not P , the source of intelligence could
be in participation with an intelligent being in processes which can not be
modelled by deterministic TM. All living beings are subject to evolution.
Evolution seems to be a process that is not in P . Evolution as a physical
computational process is not tractable. Thus evolution will never achieve
its ultimate goal; it will never end. It will last as long as life will. Key
to Chaitin’s notion of evolution is something he calls creativity. One theorem
of his (2010, p. 11) metabiology is that evolution will continue indefinitely,
that biological creativity is endless, unceasing. Due to biological creativity,
evolution causes “Darwinian” fitness to increase faster than any computable
function.
Calculations done by the process of evolution are more or less advanced.

It depends on time. According to Moravec’s paradox (1988, pp. 15–16):

Encoded in the large, highly evolved sensory and motor portions of the human
brain is a billion years of experience about the nature of the world and how
to survive in it. The deliberate process we call reasoning is, I believe, the
thinnest veneer of human thought, effective only because it is supported by this
much older and much more powerful, though usually unconscious, sensorimotor
knowledge. We are all prodigious olympians in perceptual and motor areas, so
good that we make the difficult look easy. Abstract thought, though, is a new
trick, perhaps less than 100 thousand years old. We have not yet mastered it.
It is not all that intrinsically difficult; it just seems so when we do it.

It can be said that humans to adapt to survive do not wait for genetic
evolution but instead replace it by intelligence.
Evolution begets intelligence. Any living being is thus intelligent in

a degree proper to its own specie. (We assume that animal intelligence is
human-like to the extent that the animal itself seems human-like.) Intel-
ligence allows organisms to adapt to their environment continually during
life and allows organisms to survive. It allows humans to defy generational
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selection and develop intelligences external to our own, making use of com-
putational techniques. The development of AI is similar to biological evo-
lution. Computers can be trained. Turing even remarked on an analogy of
training with evolution (Turing, 1969). The human mind is largely a bundle
of hacks and heuristics, cobbled together over a billion years of evolution
(Baum, 2006) and living in intelligent society. Currently popular approaches
to teach computers include biologically inspired algorithms such as swarm
intelligence and artificial immune systems, which can be seen as a part of
evolutionary computation, image processing, data mining, and natural lan-
guage processing.
Humans beings are the most intelligent due to the creation of and par-

ticipation in another process that is not modelled by deterministic TM,
namely society (Marciszewski, 2003, 2004). Social life, relations, and the
cooperation of people and communities are not tractable processes. Com-
munication and cooperation stimulate the speed of processes of ever grow-
ing intelligence at an enormous rate. In contrast to the slow rate at which
advantageous evolutionary adaptations spread, ever-increasing advances in
information technologies like the invention of language, Gutenberg’s print-
ing press, and contemporary ICT, have resulted in an ever-increasing speed
of successful adaptations to reality and harnessed the environment to our
advantage. It is the principal reason why information sharing is beneficial
for humans. Some people believe that the internet will develop an entirely
new form of intelligence (Gelertner, 2016).
The development of ICT seems the most important for the growth of

the intelligence of the human race. The growth of the volume of the human
brain is limited by biology. Life, in general, evolves to become more com-
plex. Human brains are too small, as computational devices, to compute the
process at the human stage of evolution. The development of ICT can be
seen as something enhancing the volume of the brain. Human intelligence
begets artificial intelligence. Due to cooperation and support by ‘thinking’
machines we are able to solve some problems with the ever-increasing com-
putational complexity that the future brings.
The difference between human intelligence and machine intelligence

is seen as the difference between reasoning and thinking. From the point
of view of computational complexity there is a difference between solving
P problems and solving problems that in general are not P . Humans are
able to think. Machines are only able to reason. Reasoning is modelled
by deterministic TM. Thinking comprises reasoning, as all P problems are
NP problems, but is creative and imaginative. Thinking is the youngest hu-
man ability from an evolutionary point of view (Moravec’s paradox). It can
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not be modelled by deterministic TM. AI need not replicate human cogni-
tion directly, but a better understanding of human commonsense might be
a good place to start (E. Davis & Marcus, 2015). For McCarthy (1980) not
only:

humans use . . . ‘non-monotonic’ reasoning, [but also] it is required for intelli-
gent behavior.

The same is true about using non-exact and non-complete knowledge. Much
of what we call “insight” or “intelligence” simply means finding succinct
representations for our sense data. Free-associations are an important part
of human thought. No computer will be able to think like a man unless
it can free-associate. No computer will be creative unless it can simulate
all the nuances of human emotion. The question of aesthetics, of intuition,
of instinct, of judgement is highly subjective. But — as Chaitin maintains
(Chaitin, 2010, p. 15):

There is nothing more important than experiencing beauty; it’s a glimpse of
transcendence, a glimpse of the divine, something that fewer and fewer people
believe in nowadays. But without that we are mere machines.

Uncovering the relationship between thinking and learning seems cen-
tral to understanding the nature of intelligence. To make computers more
intelligent they must use:
– fuzzy logic — to enable understanding of natural language
– artificial neural networks — to permit the system to learn experiential
data like the biological one
– evolutionary computing — which is based on the process of natural
selection
– learning theory
– probabilistic methods — which help dealing with uncertainty impreci-
sion.
Even if one day all these problems will be solved and artificial thought

will be achieved, an artificially intelligent computer will experience nothing
and be aware of nothing. It will say “that makes me happy,” but it won’t
feel happy. Still: it will act as if it did. It will act like an intelligent human
being. And then what?
Would it ever be possible for computers to do the same as humans do?

Yes, if they achieve a life instinct and evolve to achieve the ability to cre-
ate a society of cooperating individuals. In Chaitin’s (Chaitin, 2010, p. 9)
opinion DNA is a universal programming language which is rich enough
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to express any algorithm. The fact that DNA is such a powerful program-
ming language is a more fundamental characteristic of life than mere self-
reproduction, which anyway is never exact for if it were, there would be no
evolution. DNA is our software; it’s the programming language for life.
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Hartmanis, J. (1989). Gödel, von Neumann, and the P =?NP problem. Bulletin of
the European Association for Theoretical Computer Science, 38, 101–107. Re-
trieved from https://ecommons.cornell.edu/handle/1813/6910 (viewed Octo-
ber 31, 2016).

Hartmanis, J., & Stearns, R. (1965). On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117(5), 285–
306.

Hodges, A. (1983). Alan Turing: the Enigma. London: Burnett (Polish translation
(Hodges, 2002)).

128



Can AI be Intelligent?

Hodges, A. (2002). Enigma. Życie i śmierć Alana Turinga. Warszawa: Wydawni-
ctwo Prószyński i S-ka (translation of (Hodges, 1983) by W. Bartol).

Impagliazzo, R. & Wigderson, A. (1997). P = BPP if E requires exponential cir-
cuits: derandomizing the XOR lemma. In Stoc ’97 proceedings of the twenty-
ninth annual acm symposium on theory of computing (pp. 220–229). New
York: ACM. doi: 10.1145/258533.258590

Krajewski, S. (2003). Twierdzenie Gödla i jego interpretacje filozoficzne. Od me-
chanicyzmu do postmodernizmu. Warszawa: Instytut Filozofii i Socjologii
PAN.

Litt, A., Eliasmith, C., Kroon, F. W., Weinstein, S. & Thagard, P. (2006). Is the
brain a quantum computer? Cognitive Science, 30, 593–603.

Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 36, 112–127.
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