DE GRUYTER
B SE STUDIES IN LOGIC, GRAMMAR

AND RHETORIC 47 (60) 2016
DOI: 10.1515/slgr-2016-0046

Selection of Phase Space Reconstruction Parameters
for EMG Signals of the Uterus

Ewelina Brzozowska', Marta Borowska'

1 Department of Materials and Biomedical Engineering, Bialystok University of Technol-
ogy, Poland

Abstract. Biological time series have a finite number of samples with noise
included in them. Because of this fact, it is not possible to reconstruct phase
space in an ideal manner. One kind of biomedical signals are electrohisterograph-
ical (EHG) datasets, which represent uterine muscle contractile activity. In the
process of phase space reconstruction, the most important thing is suitable
choice of the method for calculating the time delay 7 and embedding dimen-
sion d, which will reliably reconstruct the original signal. The parameters used in
digital signal processing are key to arranging adequate parameters of the anal-
ysed attractor embedded in the phase space. The aim of this paper is to present
a method employed for phase space reconstruction for EHG signals that will
make it possible for their further analysis to be carried out.

Introduction

Information about the complexity of a dynamic system is difficult to
obtain, but with help in solving that problem comes nonlinear dynamics
(deterministic chaos). Dynamic systems could be described by linear and
non-linear differential equations. The majority of systems which occur in
nature and medicine are non-linear, so they are “responsive” to the initial
conditions. For this reason, small changes in them cause significant differ-
ences in the signal at the output of the system. Non-stationary from their
nature, biomedical signals could be analysed by linear and non-linear meth-
ods. However, this also shows that non-linear methods are more useful to
analyse the dynamics of a process. During the analysis of such dynamic
biological systems, often the non-linear part of the signal is ignored. That
problem is solved more easily by linear methods, which allow the description
of the system composed of several variables interacting with each other to
be taken as the analytical solution.
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In the analysis of dynamical systems, the first step is usually the recon-
struction of the attractor in phase space. The attractor is a set of points in
phase space (nonlinear dynamic system description), for which asymptoti-
cally tends the trajectories over the time close to infinity (Ruelle, 1990). In
processing the structure of most biomedical signals, an effective method for
visualization of the attractor is calculation of the time delay and embedding
dimension (Erem et al., 2016).

Reconstruction of the phase space in cases where the equations describ-
ing such a system exist, or in which knowledge of all of the system’s vari-
ables is associated with a particular system, is simple. However, in the case
of ignorance of a system’s variables, so-called “phase space reconstruction”
can be performed (Huffaker, 2010).

The method of reconstruction in this d-dimensional phase space has
been proposed by Takens (1981) and Packard et al. (1980). They had to
have only one variable x measured N times with the sampling frequency
fs= 1/t5.

D — dimensional phase space consists of d-independent variables. With
a one-dimensional time series, other dimensions are obtained by delayed
counterparts of the observed variable. For the time series matched as

{z1,xa,...,xN} there are vectors described as:
Yi=[z; 2igr ... !Ez‘+(d71)r],
where 7 = it is the reconstruction of delay or lag, i =1,2,... ,N—(d—1)7

and d — the embedding dimension.

Methods of Selecting Time Delay

The attractor reconstruction method of Takens (1981) requires the
proper selection of time delay 7. For small values of 7 the coordinates of
vectors Y; are themselves nearly equal. The reconstructed vectors in phase
space are too close to each other, making it impossible to obtain information
on the dynamics of the system (redundance). If the time delay 7 is too large,
the reconstructed vectors in phase space are far apart. At the same time,
the samples come out of the scope of correlation, which is not very high for
dynamic systems (irrelevance) (Casdagli et al., 1991). Practically biological
time series have a finite number of samples (including noise), so the attractor
reconstructed phase space is not ideal. That is why the method for deter-
mining the time delay 7 is so important in the original signals’ phase space
reconstruction (Klikova et al., 2011). In the literature, several methods by
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which value 7 can be selected are mentioned. These include: autocorrela-
tion, mutual information, higher order statistics, fill factor and wavering
product. It is well known from research on EHG signals that the most valu-
able measure of time delay is mutual information (Alamedine et al., 2014;
Diab et al., 2015; Przybyla et al., 2014).

Mutual information I(7) was developed by Fraser et al. (1986). This
method can measure the statistical independence of the points z(k)
and z(k + 7). Average mutual information can be defined by the formula
(Abarbanel et al., 1993):

P(x(k),x(k + 7))
I(r) = E P(x(k),x(k+ 7)) lo )

where P(z(k)), P(xz(k+7)) are probability distributions and P(z(k),z(k+T))
is the cumulative probability distribution. First, the minimum of mutual
information is used as an indicator of time delay (Palit et al., 2015).

Estimation of the average of mutual information from experimental data
is not difficult. In the first step, a histogram is created, wherein each signal
value is assigned to the frequency of its occurrence. This method has found
wide practical biomedical application, mostly in EEG (Ouyang et al., 2016)
and for EHG (uterine EMG) signals (Diab et al., 2012).

Autocorrelation is the second criteria of choosing the time delay 7; it
can be associated with the autocorrelation function R, (7):

N S ek +7) — @]f(k) — ]
N L [z (k) — 22 ’

Rrx =

where: Z = SN (k).

Autocorrelation estimates cross-correlation between pairs of points as
a function of their distance in time. There are several choices for time delay
of the autocorrelation function by reading the characteristic points of the
curve, for example: the first zero of this function, the first minimum, and
the first point of inflection. Choosing the right option is dependent on the
dynamic system. Accepting the 7 of the first zero of the function indicates
that the signals x(k) and z(k + 7) are linearly independent. The relation-
ship between the spatial distribution of the reconstructed attractor points
and temporal autocorrelation of the signal is not clear. In one paper on
this subject, Bassingthwaighte et al. (2013) adopted for the selection of
time delay a value which had an autocorrelation function reduced to 1/e =
0.37. Albano et al. (1988) and Pritchard et al. (1995) used the equation:
T = 3t1/./(d — 1) where t . is the value for which the autocorrelation func-
tion is reduced to 1/e = 0.37 and d is embedding dimension.
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Albano et al. (1991) used so-called higher-order statistics (HOS) to es-
timate time delay. HOS are extensions of measurement of the second order,
such as the autocorrelation function or the power spectrum. For real-time
series, HOS takes the higher-order moments into account. The application
of HOS is usually performed using cumulants. They found that several func-
tions have extremes in the same place, which may be a good estimate 7.
The HOS method is now currently used in bioelectrical EEG and EHG
signal analysis (Lainscsek et al., 2015).

Fill factor is a geometric estimation of time delay which gives the maxi-
mum distance between trajectories (Buzug et al., 1992b). After the attractor
reconstruction of the phase space of dimension d, defined as d 4+ 1, random
points become the vertices of the hyper-parallelepiped. Then, the volume
is calculated. The greater the volume of the thus formed figure, the larger
the volume of space phase occupied (to be filled) by the attractor. Selecting
a number of hyper-parallelepipeds can estimate their average volume. Max-
imum fill factor gives the value of the time delay, and its value is the same
for different embedding dimensions (Korus et al., 2015). This method is not
perfect, because for some attractors, fill factor shows no explicit extremes.
Buzug et al. (1992a) introduced — in addition to the fill factor — integral
local deformation. The essence of it is to study some topological properties
of the attractor, which should not be changed during reconstruction.

The wavering product was introduced by Liebert et al. (1991), who led
the topological considerations concerning neighbour relations between the
points of the attractor. The wavering product is useful for the evaluation
of the smallest embedding dimension because it keeps the topological in-
variant. This is achieved after recognizing that the false nearest neighbours
are present when the embedding dimension is too small. The first minimum
of a wavering product is the proper choice for time delay reconstruction
(Pidrek, 2016).

Methods of Selecting Embedding Dimension

It is very important to choose a sufficient embedding dimension in
phase space, because it should completely represent the dynamics of that
dynamic system. Phase space reconstruction based on Takens’ method re-
quires two variables — the time delay 7 and the embedding dimension d
(Jaskowski, 1995).

The criterion to select the embedding dimension is based on properties
of “non-cutting” trajectory and reversibility of the reconstructed attractor’s
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mapping. As stated by Takens (1981), embedding dimension d should be
higher than attractor dimension D according to the relationship: d > 2D—+1.

There is a method proposed by Grassberger et al. (1983), which al-
lows for simultaneous calculation of the two dimensions. Subsequently, the
attractor is reconstructed in the low-dimensional phase space and its di-
mension, for example the correlation dimension, is calculated. There are
several methods for selecting the embedding dimension. The most useful
are: false nearest neighbours (FNN), singular-value decomposition (SVD)
(Broomhead et al., 1989) and the Cao criterion.

The way to estimate the minimal embedding dimension is to use the
false nearest neighbours (FNN) method (Abarbanel et al., 1993). The idea
behind the method is the fact there are phase space points (vectors), which,
in the case of a small embedding dimension, seem to be the neighbours —
the distance between them is very small. After enlarging space dimension,
distance also increases rapidly — it means that we deal with a so called “false
nearest neighbour”.

All vectors have their neighbours, the nearest being ¥V (k). The dis-
tance between y(k) and y™ ¥ (k) is matched by R4(k). The euclidean distance
plays a very important role. Increasing the dimension of the space by 1 gives
the distance between y(k) and y™V (k) in (d + 1)-dimensional phase space.
If the distance Rg41(k) is large in comparison with the R4(k), the vector
could be considered as the nearest false neighbour. This fact is described by
the criterion indicated as follows:

lz(k +dr) — 2NN (k + d7)|
Ra(k)

where R;q is the so-called tolerance threshold. In calculation practice,
the number of false nearest neighbours is approximately constant for
10 < Ryq < 50.

This method has its drawbacks. If we have a time series consisting
of a relatively small number of bins, we will get a very small embedding
dimension, while increasing the number of samples causes its increase. In
practice, we have finite data sets, so points may be close neighbours but
distance does not increase with the increase of d as is required.

The Cao’s (1997) criterion is a very interesting method for assessing
minimal embedding dimension. The procedure is similar to false nearest
neighbours. For a given time series x1, s, ..., Ty vectors are constructed in
d-dimensional phase space. Similar to the FNN method, there is parameter

 llvarn (k) — ¥ (k. )|
Tyalk) — 2V (k. )|

> th7

a(k,d)
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In the case where ||yq(k) — yX¥ VN (k,d)|| = 0, the next nearest neighbour
is taken into account. Other remarks are the same as for the previously
described method of FNN. Perfect choice of the embedding dimension means
that there are no false nearest neighbours, but the main problem is the choice
of the tolerance threshold. Cao has introduced quantity E(d, 7) described by:

1 N—drt
g o ok,
which is the average of the all a(k,d). E(d,7) depends on the embedding
dimension d and time delay 7 and is equal to E(d)— E(d, ) = E(d), because
time delays are chosen at the beginning of the calculation. To investigate the
changes of magnitude during the transition from dimension d to next d + 1,
it was defined:

E(d,T) =

E1(d) = %

Cao found that E1(d) does not change significantly over a certain
value d0, if the only analysed time series comes from the attractor. There-
fore, we assume d0 as a value of the embedding dimension. In practice (due
to the fact that the tested data have a finite length), it can be quite difficult
to determine whether F1(d) does not significantly change. For this reason,
another quantitative gauge has been introduced, which also allows one to
distinguish deterministic signals from stochastic. It was marked as E2(d):

B E*(d+1)
E2(d) = Twa
where:
E* = 1 Nih’x(k‘—l—dﬂ — VN ((k,d) —I—dT)’
N—dr = ’ '

This method is now used in many fields of science (Chen et al., 2014;
Xia et al., 2016).

Application in Uterine Bioelectrical Activity Signal Processing —
Phase Space Reconstruction

The data used for this research was recorded at the Akureyri Primary
Health Care Centre and Landspitali University Hospital in Iceland (Alexan-
dersson et al., 2015), between 2008 and 2010. The signals used were pro-
vided as an open dataset on the Physionet web (Goldberger et al., 2000).
This database consists of records of 122 EHG signals, performed on 45 preg-
nant women, derived from a system consisting of 16 electrodes in a 4-by-4
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configuration on the patient’s abdomen. They were divided into two groups:
first, in the third trimester of pregnancy and second, during labour.

The records had a sampling frequency (fs) of 200 Hz and an anti-aliasing
filter with a high cut-off frequency of 100 Hz was used. A major problem
of EHG analysis is to design a signal conditioning, because the parame-
ters of this phase space are strictly determined by the characteristics of
the measured signal (Graczyk et al., 1998). This is important especially
for analysis of uterine electrical activity in normal and complicated labour
(Euliano et al., 2009).

Part of the exemplary, raw signal (containing the 1000 samples) is shown
in Figure 1. In order to have the best knowledge about the information
embedded in the vector of the analysed signals, we should use raw signals,
without any preprocessing. In Radomski’s earlier publications, (2014, 2015)
it has been proved that differentiated signals are better for the analysis
of EHG signals. Part of the exemplary, differentiated signal (containing the
1000 samples) is shown in Figure 2.
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Figure 1. Raw EHG signal
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Figure 2. Differentiated EHG signal
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The signals were analysed by the Cross Recurrence Plot (CRP) Toolbox
for Matlab, shared by Marwan (2014). At the beginning of phase space
reconstruction, time delay was calculated by using mutual information —
first, for the raw signal (Figure 3a) and second, for the differentiated signal
(Figure 3b). For both signals, the “number of beans” was determined based
on an amount range of classes depending on the analysed signal sample
amounts taken for analysis (Legg et al., 2007), as described by the statistical
equation: NoB = 1+3.3-log(n), where: n is length of data series (n = 1000,
NoB = 11).

We have received time delay equals 2 for the raw signal and 1 for dif-
ferentiated signal (first minimum of the mutual information).
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Figure 3. Mutual information for the EHG signal:
a) the raw, b) the differentiated

The next step of phase space reconstruction process was to estimate the
embedding dimension. For this purpose, we used the false nearest neighbours
method. For the time delay, previously obtained values were adopted as fol-
lows: for the raw signal 7 = 2, for the differentiated signal 7 = 1. As for the
other parameters: neighbourhood criterion R = 10, the size of neighbour-
hood S = inf, random samples N = 1000 (for the entire signal) and the
Euclidean norm was chosen. We found the embedding dimension to equal
approximately 9 for both signals — the raw (Figure 4a) and the differentiated
(Figure 4b).

For comparison of the results and effectiveness of Marwan’s FNN
method to determine the embedding dimension, the Cao criterion was used.
As a result, the same values as for FNN — 3 were obtained for both signals
(Figure 5a and 5b). This may prove the correctness of calculations in the
embedding dimension for this EHG signal.

Once we have these parameters (d, 7) we can reconstruct the attractor
embedded in a particular phase space. Reconstructed attractors for the raw
(Figure 6a) and differentiated (Figure 6b) datasets are shown below.
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In an analogous way, all the signals contained in the database were anal-
ysed. After analysis, it was found that the amplitude of contractions, their
frequency, the chosen channel, and the condition of the patient’s gestation
(labor or pregnancy) had no significant impact on the calculated time delay
and embedding dimension.

Conclusions

The choice of the embedding dimension d and the time delay 7 is im-
portant for nonlinear data analysis. Both parameters are tightly correlated
— firstly, one needs to calculate time delay 7 to be able to calculate em-
bedding dimension d in relation to its value. This is the first step in the
analysis of the nonlinearity of a data set. Spontaneous depolarisation and
repolarisation due to ionic currents — the main properties of smooth muscle
cells in the uterus — are manifested as an electrohysterogram (EHG). Elec-
trohysterograms of signals are dependent on patients and there is a need
to develop methods to better investigate and analyse EHG signals. For reli-
able application of electrohysterography in obstetrics, there is a need to find
a method for examination of its nonlinear properties. After the reconstruc-
tion of the phase space formed by this data, wider quantitative and qual-
itative analysis could be carried out. The process of reconstructing phase
space is not very complicated if it is performed using the method presented
in this paper.
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