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Abstract. Classic understanding of logic as an instrument of cognition, which,
in effect, pertain rather to human’s mind than to reality itself, gives rise to the
fundamental mapping problem of reconciliation of this reality with any possible
practices of its representations in thought. In other words, it is essentially not
the same thing that can be thought and that can be. However, after unusual
and highly abstract (essentially geometric) Grothendieck constructions gave rise
to so called categorial analysis of logic, it became possible to show, that (up to
categorial equivalence) Parmenides after all was right.
Keywords: appearing, categorial equivalence, Grothendieck topos, ontology,
sheaves, theory of Ω-sets.

Introduction

...τὸ γὰρ αὐτὸ νοεῖν ἐστίν τε καί εῖναι1 – this notoriously famous thesis
of ancient Greek philosopher Parmenides still seems in a highest extent
counterintuitive for our contemporary mind. Yet we know a number of so
called “hunches” of quite the same sort Greek natural philosophers were
renowned for, which later turned out to be scientifically proven truths. Thus
Democritus insisted that everything consists of atoms – some tiny, physically
indivisible parts – and in some sense it was perfectly right – if bold – guess.
Anaximander speculated that, considering humans’ extended infancy, we
could not have survived in the primeval world in the same manner we do
presently – so humans necessarily must have evolved. As we all know by
now evolutionary theory confirms this intuition of the ancient thinker in
precision and detail.
Nevertheless, both traditional and contemporary classic understanding

of logic as an instrument of cognition, which, in effect, pertain rather to
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human’s mind than to reality itself, gives rise to the fundamental mapping
problem of reconciliation of this reality with any possible practices of its
representations in thought. In other words, it is essentially not the same
thing that can be thought and that can be. And only thanks to relatively
recent formal theoretical results it became possible to study logic not as
an arbitrary instrument of knowledge, but rather as a special case of some
abstract topological construction, and thereby – in more or less strict sense
– as an aspect of reality itself. These aforementioned results were obtained
in the sixties of the last century mostly by great French mathematician
Alexander Grothendieck. Radically new foundations for algebraic geometry,
which he introduced and developed at that time, were formulated by him
in a very special language – language of category theory. This theory itself
emerged in the field of mathematics a bit earlier – in the forties of the
last century – both as very abstract, though very productive algebraic tool
and as an conceptual alternative to traditional set-theoretic foundations of
mathematics.
Thus, at first unusual and highly abstract (but essentially geometric)

Grothendieck constructions quite surprisingly gave rise to so called catego-
rial analysis of logic, while particularly such constructions as Grothendieck
topos and categorial equivalence will be shown as crucial in the rigorous
proof of Parmenidian thesis.

1. What exactly identity means

Great German logician Gottlob Frege once famously noticed that propo-
sitions of the logical form a = a are considerably less informative than
propositions of the form a = b, – while the former are obvious and triv-
ial tautologies like “to be is to be” or “the morning star is the morning
star”, which, being formally admissible as logic sentences, are barely make
sense, the latter contain substantial amount of new information and thereby,
generally speaking, must be justified somehow. For instance, proposition
“the morning star is the evening star” states that the Morning Star, known
to the ancients as Phosphorous, and the Evening Star, known to the an-
cients as Hesperus are one and the same heavenly body – Venus. Today
this is a common fact, but the discovery of this identity was a prominent
early advance in astronomy. Even now, although we readily understand
and accept the hypothesis, only a few of us could formulate the argu-
ment and collect the crucial evidence without looking for help in the text-
book.
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So, first of all, as we just seen there are different kinds of identities –
some more productive than the others, and second of all – unlike poetic
metaphors, they admit rigorous proof. Let us see what kinds of identities
are used in mathematics. First kind of identity is almost trivial – it is equal-
ity of sets. Nevertheless in ZFC axiomatics2 this equality is guarantied by
special axiom – axiom of extensionality, which posits that two sets are equal
(identical) if the multiples of which they are the multiple, are “the same”.
Therefore, the identity of sets is founded on the indifference of their belong-
ing. This is written:

∀z z ∈ x⇔ z ∈ y ⇒ x = y

Despite its “almost-triviality” this identity also can be quite produc-
tive and unexpected. Let’s consider the set of first four natural numbers
F = {1, 2, 3, 4} and the set D of all degrees of the equations solvable by
radicals3. There was a time in 18th century when people thought that these
two sets are completely different – for the latter thought to be infinite due to
the common faith among the mathematicians in the early years of 18th cen-
tury that sooner or later they will find formulas for calculating the val-
ues of the solutions of equations of arbitrary degree N . And only in 1832
young French genius Evariste Galois basically showed that two sets F andD
are the same.
Sometimes equality of sets points us to the equality of some routes

from one place (set) to another. For instance, for additive function f there
is always the case that f(ab) = f(a) + f(b). Or, in other words, there is no
difference at all where we “go” first: from the elements of set A to the result
of multiplication (m) and then – along f – to the set of destination C, or
along f – to the elements of C which we will add (a) to each other later. In
both cases we will get to the same element of C. We could write that two
sets which correspond to the result of the consecutive applications of two
operations to A are the same: fm(A) = af(A) = B ⊂ C4.
Our final and most striking example would consist in equating elliptic

functions with tori (“doughnuts” in laymen terms). Algebraic equation of
form y2 = x3 + ax + b defines an elliptic curve on a plane. But when con-
sidered over complex numbers the set of its solutions is equal to the set of
points that define some torus embedded in the complex projective plane.
That is, topologically speaking, a complex elliptic curve is torus.
Much more subtle type of identity is called isomorphism. It is iden-

tity of structures, and not just a quantitative equality of sets. They also
say that there is one-to-one correspondence between sets which preserves
structure. Set is said to be equipped with structure when it is closed under
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some algebraic operations (e.g. together with its every two elements the sum
(product etc.) of these elements also belongs to this set), or its elements are
not “equal” – one is “larger” or “smaller” then another, or there are some
other kind of relations between the elements. Sets may seem completely
different, but nevertheless structurally identical.
So f : X → Y is isomorphism when there is g : Y → X, such that

g ◦ f = idX and f ◦ g = idY . In another words, two objects are isomorphic
if we can define at least one reversible map between them. This definition
does not say anything explicitly about preserving structures, but it follows
from the above conditions that if sets X and Y are endowed with some
structure (for instance, (X, ∗) and (Y, •)), then ∀a, b ∈ X: f(a) • f(b) must
be equal to f(a∗b)5. This property of f often call functoriality whereas map
g is called inverse for f .
Magnificent example of structural identity is isomorphism between

infinite-dimensional space and set of functions of a given kind. A “curve” in
such function space is a subset of functions with some additional conditions
– let’s say it’s a set of all possible ways from A to B. If we find a “point”
on that curve where its derivative equals zero, we thereby find a function
which defines shortest (or longest) way from A to B.
Another example is actually just the extension of aforementioned ex-

ample with our additive function. It can be shown that there is one-to-one
correspondence between the set of positive real numbers equipped with mul-
tiplication and the set of all real numbers with addition. We all know such
f and g very well:

Isomorphism between these two structures is used in a slide rule, when we
take two positive numbers whose product we would like to get, go along f
to another set, where we add two corresponding elements (which is much
easier operation), and go back along g to desired product. It means that
ex is an additive and, therefore, also a functorial map. And at last, most
profound and most unusual kind of identity is categorial equivalence. Pre-
eminently this kind of identity is necessary to justify Parmenidian the-
sis. In particular we will show that “everything that can be thought”, or
thinkable world is a category of some sort, and everything that can be,
or real world is a category of another sort, and then we will prove the
equivalence of these two categories. But in order to do this first of all
we need to say some words about such special entities as categories and
functors.
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2. “Categorial” approach

From axiomatic point of view we have a category C whenever we define
the class6 of objects of the category and for every two objects A,B ∈ C we
define a set of arrows HomC(A,B) and for every two arrows f : A −→ B
and g : B −→ C we always have an arrow h : A −→ C such that h = g ◦ f .
Whenever this condition is met they say that the triangle below commutes:

and typical categorial proof has this form of commuting diagrams. It is
easy to notice that the concept of an arrow (or a map) is a vast general-
ization of set-theoretic function, whereas condition h = g ◦ f is naturally
emerging rule of composition. So, an arrow can be thought as function, but
in a very informal sense – as some abstract sort of action, transformation
or relation, depending on context. Later we’ll see that functoriality is the
minimal universal requirement for all structure preserving actions, e.g. for
homeomorphic map: hence, the abbreviation “Hom” for a set of arrows
and hence, another name for an arrow – morphism. Final and also natu-
ral request then for the composition of arrows is to be associative which
means that (h ◦ g) ◦ f = h ◦ (g ◦ f) = h ◦ g ◦ f and it is also required
that for every object A ∈ C we have a special arrow idA ∈ HomC(A,A)
(it’s called identity arrow or identity map) such that for every two objects
A,B ∈ C and for every arrow f ∈ HomC(A,B) : idA ◦ f = f ◦ idB = f .
If we look at the composition as at some kind of product we will see that
identity arrow plays role identical to multiplicative unit. So, we see that
as an abstract algebraic object a category is very poor and almost mean-
ingless construction. But, on the other hand, exactly the same axiomatic
poverty sometimes allows to draw meaningful and very important conse-
quences based on quite unexpected unification (categorial equivalence) of
seemingly distant domains of formal discourse (categories). To see why it
happens we must notice that highly abstract character of categorial lan-
guage is relatively deceptive – from one hand, a huge variety of entities
comply with the axioms of category: partially ordered set, set of all natural
numbers, singleton together with identity arrow as well as such gargantuan
constructions as all sets together with all functions or all topological spaces
together with all continuous transformations are all categories. But from
the other hand, the more additional structure a particular category has, the
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more intricately organized its arrows must be to make formally “primitive”
composition rule work. It means that if an object of category has any addi-
tional internal structure, it is always preserved by an appropriate arrow in
category in question. As a result, simple and elegant categorial statements
are always supported by implicit rigorous machinery eventually defined on
those “atomic elements” of objects which category theory “shouldn’t take
into account”.
If anything could be called an object of a category as soon as some fun-

damental conditions met (see above), then we can make categories them-
selves serve as objects of some other category. How then an arrow in such
category should look? Let C and D be two categories which are in our case
considered as objects. It can be noticed that in order to internal (categorial)
structure of such special object be preserved by some arrow (and, accord-
ingly, for any diagram in such category to commute) composition rule must
be carried out not only on objects of the category but also on its arrows.
In that way, we get definition of a functor:
Functor F : C −→ D from category C to category D is an arrow which

maps
– every object A of category C to some object F (A) in category D;
– every morphism f ∈ HomC(A,B) to some morphism
F (f) ∈ HomD(F (A), F (B)) so that

F (idA) = idF (A)

F (g ◦ f) = F (g) ◦ F (f).

Naturally, there can be more than one functor between two categories. When
this is the case, some functors themselves can be related somehow. In par-
ticular, we can consider the following situation:

If there exists an arrow α ∈ D which every object X ∈ C puts in corre-
spondence with family of morphisms αX : F (X) −→ G(X) (called com-
ponent α at X) so that for every f ∈ HomC(X,Y ) diagram above com-
mutes, then such arrow α called natural transformation of functors F and
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G. Natural transformation provides the way of transforming one functor
into another while respecting the composition of morphisms of the cate-
gories involved. So, α can be construed as morphism of functors and it is
quite naturally to expect that in some cases this morphism turns out to
be isomorphism. And, indeed, if for every object X in C the morphism α
is isomorphism in D, then α is said to be natural equivalence, or natural
isomorphism of functors:

F ∼= G.

Remember, that isomorphism of two sets X and Y was completely de-
termined by existence of two functions f and g such that g ◦ f = idX and
f ◦g = idY . But great mathematician Alexander Grothendieck noticed7 that
we get much deeper meaning from some special sort of identity between two
categories C and D when from two functors F and G we do not demand
equality of their composition to the identity functor Id – it is enough to be
isomorphic to it!

As a result, two categories C and D are said to be equivalent when there
are two functors F and G such that G ◦ F ∼= IdC and F ◦G ∼= IdD.
Again, as in case of isomorphism of two sets, “equality” of equivalent

categories can be seen only at certain height of abstraction: prima facie,
they are absolutely different constructions but nevertheless they have some
fundamental structural identity. For example, it can be shown that following
two categories are equivalent:

We can see that in this case categorial equivalence reveals inside quite com-
plicated construction a presence of almost identical copies of much simpler

structure: , and . In other cases categorial equivalence hepls to
reveal striking similarities between seemingly distant domains of discourse.
And, in particular, in case that will follow it will help us to rigorously unify
ontology with logic.
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3. Is a world really a Grothendieck topos?

The central statement of Alain Badiou’s “Logics of worlds” is following:
“A world is a Grothendieck topos” [1, p. 295] and first of all I’d like to show
that this statement is equal to much more comprehensible proposition –
“a world is thinkable” whereas the latter itself is a consequent of another
hypothetical proposition “if a world is real, then it is thinkable”. This hypo-
thetical statement is true, because it is just an ontological interpretation of
the theorem which states that in category of complete Heyting-valued sets
the axiom of gluing holds, or, equivalently, that for every Heyting-valued set
it is possible to define functor from suitable poset category into Set8 which
is a sheaf.
Now let’s see if we can make sense from all aforesaid, because if we

succeed, then we will have at our disposal at least the half of so called “Par-
menidian equality”: the world is thinkable if and only if the world is real.
In order to do so we will need to examine more closely a special kind of cat-
egory called topos and, in particular, quite profound ontological intuitions
made by Alain Badiou regarding this fascinating categorial structure.
In mathematics concept of Heyting-valued set realizes an idea of

potentially existing elements. For example, when elements of set A are func-
tions defined on open subsets of topological space X. Then it makes perfect
sense to speak about actually existing functions (defined on wholeX) as well
as about functions existing in some extent, depending on the size of subset
where given function is defined. Moreover, if f is defined on U ⊆ X and g is
defined on V ⊆ X it is also makes sense to compare the extent of identity of
such functions, measuring the largest open subset of U ∩V on which f = g.
Emerging from this discussion is a generalized concept of a “set” as consist-
ing of a collection of partially existing elements with the degree of identity
of these elements measured on some Heyting algebra Ω9. An Ω-valued set A
is then defined as a pair (A, Id) where Id is a function assigning to every
pair of elements x, y ∈ A an element Id(x, y) ∈ Ω, satisfying two conditions:

Id(x, y) = Id(y, x);

Id(x, y) ∩ Id(y, z) ≤ Id(x, z).

We see that function Id reminds some sort of “quasi-metric”, how-
ever it gets its values in suitable poset. Partially ordered values of func-
tion Id emerge quite naturally in this formal setting because family of
open subsets of topological space are partially ordered. But Badiou goes
far beyond any formal setting and fairly points out on universal (tran-
scendental) character of any appearing whatsoever – to appear is to be
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evaluated on partially ordered transcendental scale (locale). Surprisingly,
his “phenomenological” intuition totally coincides with basically the same
ideas of computer scientist Joseph Gougen who wrote: “A housewife faces
a fairly typical optimization problem in her grocery shopping: she must se-
lect among all possible grocery bundles one that meets as well as possible
several conflicting criteria of optimality, such as cost, nutritional value, qual-
ity, and variety. The partial ordering of the bundles is an intrinsic quality
of this problem.” [4, p. 145] So, evaluation on partially ordered scale really
seems to be the basis of any differentiation and Badiou by no means acci-
dentally borrows aforementioned categorial apparatus together with func-
tion Id which he calls now function of appearing. Special case of Id(x, y)
when x = y, just like in the case of partially defined functions,10 Badiou
calls existence and denotes as Ex. Thus, he ascribes phenomenological and
even existential meaning to these formal evaluations and shows that the
values of Id(x, y) are inherently belong to every “world” in a sense that
every single element of the world necessary appears in it as some qual-
ity/qualities which necessary manifest themselves with some intensity. In
different “world” the same element x can be appeared with different inten-
sity p ∈ Ω, but its appearance nevertheless will have some inherent order
completely determined by Ω and Id. “World” here could mean any situ-
ation whatsoever – it can be our world itself, or any part of it: still life,
battle, painting of battle, somebody’s perceptual picture of some event etc.
The only important thing is that for every multiple A ∈ m and for ev-
ery pair of elements x, y ∈ A we are always able to evaluate the degree
of their identity Id(x, y) as well as for every x ∈ A – the degree of its
existence in m11. As a result, depending on aspect of its appearing, we al-
ways get a collection of some Ω-valued sets m and that is what we will
call a world.
Now, it can be shown that Ω-valued sets form objects of a category de-

noted Ω−Set. Moreover, it proves to be topos. And this is what every world
is, from categorial point of view. Topos is a category endowed with quite
rich additional categorial structure, and in his most recent book “Mathe-
matics of transcendental” [2] Alain Badiou defines topos almost poetically,
saying that topos is a possible universe which is both big and centered,
and which presents its own internal logic. Let’s then examine more closely
what does it mean for a category to be “big”, “centered” and “to present
logic”.
In contrast to set theory where there is straightforward answer to the

question on size of universe – answer about its cardinality, it is not so
clear in category theory. What rather matters here is which actions are
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possible in this universe and which compositions of actions, in particular.
Another, and even more appropriate way to ask about the size of a cat-
egory construed as a place of appearing being (world) is to ask whether
we can “see” from a point within the category the vast configurations lo-
cated elsewhere in the category. Since seeing, as with any action, must be
thought in terms of arrows, for given configuration (it’s called diagram12)
it is natural to demand the existence of an object c of the category from
which there exist arrows which go from c to every object of the diagram,
whereas every arrow of the diagram enters to the composition of an arrow
coming from c:

Such system is called a cone for the diagram D, or D-cone. The category
will be big enough if many diagrams admit cones. Of course, diagram can
admit several cones for we can “see” the same fragments of the category from
different objects, but there can be universal object which is itself visible from
every other object from which we see the diagram – a point where we see
the diagram as closely as possible. Technically it means that for any other
D-cone there exists unique arrow f : c′ −→ c such that following triangle
commutes for every di ∈ D:

If this is the case they say that diagram admits the limit and that
the limit cone of the diagram D has the universal property with regard to
this diagram. The concept dual to the concept of limit is that of co-limit
– a universal object c which is seen by the diagram from as far away as
possible. And a world as a category is precisely big enough for all its finite
diagrams to admit both limits and co-limits. But there is “little bit” more13.
Every topos (and thereby – every world) has some sort of “central object”
that is called subobject classifier – an object C of the category with marked
element14 true : 1 −→ C such that for every monic arrow f : a −֒→ d there
exist unique characteristic (centralizing) arrow χf : d −→ C such that the
following square is a pullback:
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The problem is that there considerable ambiguity left whenever try
to determine a part of an object (subobject) in the category – a monic
arrow f (an categorial analog of set-theoretic injective inclusion), generally
speaking, localizes part a of an object d only up to the class of equivalence
(in ordinary set-theoretic sense), but in topos the situation is much more
accurate: there exist an object C which is “seen” from any other object d
included in monic configuration a −֒→ d (that’s why Badiou calls topos
centered) and reciprocally any part of any object d can be “seen” (located)
up to isomorphism!
And this is where a world gains its inner logical resource for any predi-

cate (partition) function π : A −→ C “centers” monic arrow i assigning to
every x ∈ A the degree of intensity p ∈ C with which an element x ∈ π.

Whereas in case of Set, where C = 0, 1 π : A −→ C just separates in
A its subset B of all such x ∈ A that π(x)15 (square on the diagram pulls
true along π back into subset B of A specified by pullback condition – in
this case π(x) = “true”)16, in Ω-Set surprisingly enough the role of central
object C plays Heyting lattice Ω itself, so subobject here looks like bizarre
entity capriciously “glowing” with different intensities p ∈ Ω. Formally,
subset π : A −→ Ω of Ω-valued A also determines a monic arrow iπ :

B −→ A, but B has the same collection A of elements as A with equality
given by: IdB(x, y) = π(x) ∩ π(y) ∩ IdA(x, y), i.e. x and y are identical
in B to the extent they are identical in A and belong to π. From logical
point of view these intensities of “belonging” correspond to certain “truth-
values” in Ω with which elements of the world manifest their property π.
Moreover, it can be shown that not only predicates of the form π(x), but all
propositional constructions, employing relations with n terms, as well as all
other connectives and quantifiers of logical calculus also can be expressed
by the arrows of topos17 while nature of this logic every time is completely
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determined by internal structure of topos in question. It must be added
that not only in case of Ω-Set, but in general case of topos as well its object
classifier has the structure of Heyting algebra, whereupon internal logic of
topos is essentially intuitionistic.

4. Thought and being are the same

Formally, a subset of Ω-valued set A is a function π(x) : A −→ Ω that
has:

π(x) ∩ Id(x, y) ≤ π(y);

π(x) ≤ Ex.

These two axioms are natural conditions imposed on any action coher-
ently marking out a part of something in situation with more then binary
choice. We want to be sure that if x strongly belongs to the part Aπ and x
is very identical to y, then y itself must belong to Aπ and belong strongly.
Second condition is just an observation that degree of element’s belonging
to the part can’t be superior to that of its own degree of presence (existence)
in the whole. It happens sometimes that one more condition is met:

π(x) ∩ π(y) ≤ Id(x, y)

The latter means that predicate π separates in A its part to which no
more than one element belongs “absolutely”. Or, two elements belong to
the part only to the extent that they are identical. Such subobject is called
singleton, but Badiou calls it an “atom”. Now, for a ∈ A (that is for an
element of multiple A in strict ontological sense) we can define a function
a(x) = Id(a, x) which associates to every x ∈ A its degree of identity
with some fixed element a. In terms of predicates it’s the one which says
something like: “to be like this thing a in world m”. This function is not
only atomic, but it also is real for it has been ostensively defined by pointing
on ontological being a ∈ A.
We saw that each element a ∈ A yields singleton a(x) and Ω-valued

set A is called complete if each of its singletons is of the form of a(x) for
a unique a ∈ A.
Badiou does exactly the same thing defining his “object” as couple

(A, Id) under the condition that every atomic predicate π(x) : A −→ Ω be
equal to real atom a(x) = Id(a, x) for every x ∈ A [1, p. 251]. So, basically
he repeats the definition of complete Ω-set. But then we can ask ourselves:
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is it true that every atomic predicate π(x) of every A ∈ m, however un-
realistic or fancy, can be reduced to real ostensive form Id(a, x)? Is our
linguistic resource essentially sutured to reality itself? It seems that Badiou
doesn’t know how to rigorously justify positive answer to this question for
he just “materialistically postulates”: every atom is real. However, Ω-Set
and subcategory of Ω-Set generated by the complete objects are known to
be equivalent as categories (a result due originally to D. Higgs [7]). Which
means, up to categorial equivalence, that the world is real.
Now, as Robert Goldblatt puts it, the completeness property for a Ω-

set allows a very elegant abstract treatment of the idea of the restriction of
a function to an open set [5, p. 389]. Given a ∈ A and p ∈ Ω the function
Id(a, x) ∩ p happens to be a singleton, and if A is complete then there is
exactly one b ∈ A with Id(b, x) = Id(a, x)∩p. We’ll call such b the restriction
of a to p and denote it as a ↾ p.
Let’s see what formal instruments it gives us in the view of finishing

categorial justification of Parmenidian thesis by considering the following
construction: if we have a Ω-set A=(A, Id) we could try to associate to an
element p of Ω all the elements x ∈ A which have the degree of existence
Ex = p. It would be our schema for thinking that seizes hold of objects
of a world analytically, according to the existential stratification of their
appearing. Badiou himself takes as an example for his analysis a “world” of
the battle of Gaugamela (1 October 331 BC) in which Alexander destroyed
the Persian army and the power of Darius III and “center of the Persian
army”, in particular (A). The degree of existence in this particular case
means the combat capacity of different parts of Darius’s setup: royal guard,
the elephants, the Hyrcanian and Indian cavalry, the scythed chariots, the
Greek mercenaries etc. taking into account the whole dynamic of the battle-
world for these parts are modified by becoming of this world, which is also
the dynamic of its appearance18.
Generally speaking, to a fixed degree of combat capacity there corre-

spond several elements of an “object”. The problem then seems to be the
following: we would totally recover world’s logic (a world would be thinkable)
if, based on the analysis of appearing of its parts, we would be able to choose
a single element in A which has a synthetic, envelope-value with regard to
objective appearing of the multiple in the world. Or, as Badiou asks about
the case in question: “Does there exist an element of the object “center of
the Persian army” which subordinates all others to itself in terms of the
destiny of the object as a whole within the battle-world?” [1, p. 286]
In order to answer this question systematically, let’s examine the fol-

lowing diagram:
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Here we formalize our idea of stratification of A with the operator FA which
guarantees the correlation that goes from p ∈ Ω towards a subset of A:

FA(p) = {x : x ∈ A ∧Ex = p} .

What is the correlation between FA(p) and FA(q)? Remember, that Ω
is partially ordered set (and, hence – a category), so in general there are
incomparable elements, but it can be shown that for a complete A if q ≤ p

then for every y ∈ FA(p) the restriction y ↾ p ∈ FA(q), and therefore, an
arrow ϕq(x) = x ↾ q makes our diagram commute, which means that the
operator FA is a functor.
Now, going back to our problem, its analytical part would consist in

choosing from every part FA(q) a “typical” representative xq correspond-
ing to each degree q. The element will be typical if the global importance
of its existence is greater than that of elements with the same existen-
tial degree. But there is one more crucial condition that should be met:
for a subset B ⊆ A of representatives to admit a unique supremum, or
synthetic term that corresponds, through analytical procedure of typical
selection, to the degree that acts as an envelope in Ω, these representa-
tives must be, loosely speaking, “of the same kind”. Badiou insists that
military genius of Alexander was able to calculate the synthetic position
of the element “scythed chariots” for the object “center of the Persian
army” only because “all other elements of thew object, in their spatial dis-
position and differential evaluations, were compatible with each other. (My
emphasis.) They were under the sway of a battle plan which articulated
them all with the supposedly desisive action of the 200 scythed chari-
ots” [1, p. 287].
In formal setting to this “poetic” criterion correspond precise mathe-

matical definition: in complete Ω-set A a, b ∈ A are compatible if a ↾Eb =
b ↾Ea (we will denote this relation a∽ b). Probably, this property of com-
patibility will become more graphic when we notice that it follows almost
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immediately from the definition that if a∽ b then Ea ∩ Eb = Id(a, b). So,
actually, we could reverse the implication and say that a and b are compat-
ible when their identity with regard to their mutual intensity of existence
is maximal19. It is also important to keep in mind that at first singleton was
defined as a function π(x) : A −→ Ω, so is restriction b(x) = Id(a, x) ∩ p.
Now, if we recall the motivation for Ω-set construction from the beginning
of Part 3, then we’ll see that compatibility of partial functions f and g,
defined on open subsets of topological space X, is just a coincidence of
their values on the full intersection of their domains – an absolutely natural
condition, under which we are able to “glue together” these two functions.
Essentially the same intuition can be applied for understanding onto-logical
(or existential) compatibility of two singletons a∽ b. Ω also happened to
be topological space, so the restriction of singleton a(x) on the open sub-
set Ex ⊆ Ω is sort of re-evaluation of atomic part Aa on the scale, more
adjusted to distinguish properties of b, and vice versa. And the equality
a∽ b then Ea ∩ Eb = Id(a, b) means that, being measured on the scale Ω
properly calibrated relative to their coexistence Ea ∩ Eb, singletons a(x)
and b(x) behave identically as predicate functions, i.e. a(x) and b(x) “say
the same about the others”, or they are identically different from every
other x ∈ A.20

Finally, compatibility induces “ontological” partial order < on elements
of A based on their degree of existence:

∀a, b ∈ A : a < b⇔ a∽ b ∧ Ea ≤ Eb.

Intuitively seems clear that inequality in being must entail inequality in
existence but reciprocal is already not that obvious.
And this is exactly what needed to complete our analysis for it can

be sown that in a complete Ω-set A every subset B ⊆ A whose elements
are pairwise compatible has a unique join. It means that function ε(x) =
⋃

b∈B

Id(b, x) defines a singleton when B has pairwise compatible elements

and this singleton prescribed by unique element ε ∈ A such that ε = supB.
Now, if we defineCovΩ(p) to be the collection of all subsets C of Ω that

have
⋃
C = Ω, take C ∈ CovΩ(p) and consider a selection B of elements

xq ∈ FA(q) corresponding to all q ∈ C, it can be shown that ε ↾ q = xq!
In geometry this construction is called gluing (whereas functor FA is

a sheaf), but we saw that purely onto-logical sense also can be ascribed to
it. For ε guarantees a comprehensive grasp of the unity of a multiple B ⊆ A
in terms its logic of appearing, (since ε ↾ q = xq), in terms of compatibility
(since xq1 ∽ xq2) and in terms of its order in being (since xq < ε).
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Conclusion

An action in converse direction is also possible: given a sheaf F over Ω
we can construct a corresponding Ω-set AF which is complete. The con-
structions A −→ FA and F −→ AF can be extended to arrows21 to give an
equivalence between categories of sheaves over Ω (Sh(Ω)) and a category of
complete Ω-valued sets which already has been shown to be equivalent to
category Ω-Set itself.
The construction of sheaf was possible, in particular, because we could

defineCovΩ(p) on Ω. It was relatively easy in case of poset category but can
be quite tricky in general for what we do is define topology J on a category.
It is called Grothendieck topology, a category C equipped with J is called site
and a category of sheaves on a site Sh(C, J) is called Grothendieck topos.
Finally, we can see more clearly why Badiou says that the world is

Grothendieck topos if the world is real in a sense that it can be identi-
fied with a category of complete Ω-valued sets (but we showed above that
it realy can be done) then there both analytic and synthetic procedures
are really possible which totally recovers its logic as appearing multiplic-
ity. Therefore, a world is thinkable. Reciprocal is also true: if transcenden-
tal thinking F of the object is achievable, i.e. we are able to pass ana-
lytically from the collections of parts of the object A to a collection of
elements of A in such manner that comprehensive synthesis of that part is
also available, then we always can define within a world a corresponding
part which is real (AF is complete). But it means that our work is done for
Parmenidian equivalence just has been completely categorically justified:
a world is thinkable if and only if a world is real.

N O T E S

1 ...For it is the same thing that can be thought and that can be (Greek).
2 Zermelo-Fraenkel set theory
3 The problem of equations “solvable by radicals” is the following: is it possible for

a given type of algebraic equation to establish a sequence of the algebraic operations
(four basic arithmetic operations plus n-th degree rooting) which, when applied to its
coefficients, determine the value of the solutions?
4 Sometimes they call such subset B ⊂ C the image of A under given transformation,

or, as in our case – under composition of two transformations.
5 Note, that both f(a), f(b) and f(a) • f(b) are actually the elements of the set Y.
6 The concept of class allows to examine huge collections of objects that are not, strictly

speaking, sets – for example, objects of category of sets by definition are all sets and we
know that there is no such thing as set of all sets.
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7 The notion of equivalence of categories was introduced for the first time by
Grothendieck’s in his legendary “Tôhoku” paper – revolutionary article on homologi-
cal algebra which was published in 1957 in Tôhoku Mathematical Journal after almost
3 years in redaction. (See: [6])
8 Category of all sets.
9 Complete distributive lattice, or Heyting algebra was introduced by Dutch logician

Arend Heyting as a model for intuitionistic logic, and we will come back to this important
fact in our later discussion of so called “internal logic of topos”.
10 For more formal details see: [5, p. 274-276].
11 I’d like to notice once again that Ex = Id(x, x) not always needs to get maximum

value (as would be the case in regular metrics where proximity of element to itself is
always maximal). This is fortunate because it allows us to express truly existential idea of
authenticity of presence in m, ranging it, figuratively speaking, from das Man to Dasein.
12 Diagram must be thought as any possible fragment of given category. So it can be any

collection of objects and arrows whatsoever – it may be empty, or it may have infinite
number of objects and arrows, it may have objects but no arrows, it may have some
objects connected with several arrows and other objects not connected at all etc.
13 Besides finite limits, co-limits and subobject classifier, every topos also has so called
map object BA – categorial analog of set of all functions from set A into set B. It can be
thought as kind of a limit of the following quasi-diagram: ( )×A B. This limit optimizes
the property “being produced with A and seeing B from this product”.
14 A limit for the empty diagram, denoted 1, or terminal object – an object uniquely

“visible” from every other object of given category. Formally, there exist, for every object
of the category one and only one arrow which goes from this object toward 1. Since
everything in a category must be defined in terms of arrows, an element of an object
is an arrow 1 x−→ d that effectively chooses exactly one element x in d.
15 Axiom of separation in ZFC.
16 Pullback is a limit for diagram of the form A

f
−→ C

g
←− B, i.e. subset D of A × B

specified by pullback condition f(x) = g(y).
17 For elaborate study of expressive power of toposes see [8].
18 It was F. W. Lawvere who first thought of Grothendieck topos as a space (or rather

space-time) of sets continuously varying over Ω.
19 Generally, Ea ∩Eb > Id(a, b). is the case.
20 Let’s take as an example the “office-world” and consider two its atomic parts: “red-

head” and “blonde”. These redhead and blonde individuals will be compatible if their
overall presentation in the office structure is also similar (they both are workaholics, both
are heads of their departments etc.)
21 See: [3, p. 160–162]
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