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Abstract. A gene expression data set, containing 3051 genes and 38 tumor
mRNA training samples, from a leukemia microarray study, was used for differ-
entiation between ALL and AML groups of leukemia. In this paper, single and
combined discriminant methods were applied on the basis of the selected few
most discriminative variables according to Wilks’ lambda or the leave-one-out
error of first nearest neighbor classifier. For the linear, quadratic, regularized,
uncorrelated discrimination, kernel, nearest neighbor and naive Bayesian classi-
fiers, two-dimensional graphs of the boundaries and discriminant functions for
diagnostics are presented. Cross-validation and leave-one-out errors were used
as measures of classifier performance to support diagnosis coming from this ge-
nomic data set. A small number of best discriminating genes, from two to ten,
was sufficient to build discriminant methods of good performance. Especially
useful were nearest neighbor methods. The results presented herein were com-
parable with outcomes obtained by other authors for larger numbers of applied
genes. The linear, quadratic, uncorrelated Bayesian and regularized discrimi-
nation methods were subjected to bagging or boosting in order to assess the
accuracy of the fusion. A conclusion drawn from the analysis was that resam-
pling ensembles were not beneficial for two-dimensional discrimination.

Introduction

Genomic research is the foundation upon which the rules of person-
alized medicine are developed. An important issue to consider related to
this topic is how various diseases modify gene expression. The microarray
technique presents an opportunity for a more efficient approach to classi-
fication, using simultaneous observation of gene expression via DNA mi-
croarrays. Many studies on microarrays concern this subject, e.g. classical
works under Golub et al. (1999) and Marchiori et al. (2005). Tumors are
very often a cause of death. Thus, an especially large amount of work in the
analysis of microarray experiments is concerned with research on cancers
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(e.g. Marchiori et al., 2005; Pomeroy et al., 2002). Accurate identification
of cancer type is often essential for successful treatment. For example, dif-
ferent types of leukemia are treated in different ways. Thus, it might be
useful to use discriminant analysis to support diagnosis. In exploring this
topic, a leukemia data set containing expression levels of genes is applied in
the current work.
Discriminant analysis is often used to determine which variables are

the best predictors of classification. Moreover, it can be applied to assign
observations to categories or to groups. For a set of observations contain-
ing values of variables and classification information defining groups of ele-
ments, every discriminant method supplies a criterion to classify each case.
Due to the “curse of dimensionality” in microarray analysis, most standard
statistical methods might not be useful. Because of the high number of in-
vestigated genes in one microarray, the pre-selection of features for inclusion
into the classification rule is essential. Often, only a few tens of genes are
really active; the remaining genes are not important for improvement of the
discriminant procedure. In supervised classification, the variables with the
biggest discriminant power are sought out. We search for genes useful for
differentiation, without a significant decrease of information coming from
the data. Medical decisions may be supported according to the classifica-
tion model, which is based on chosen variables. It is interesting to discover
which, of several potential discriminant methods, have the lowest rates of
misclassification.
Classical techniques (supplying parametric discriminant functions) as-

sume joint normality of predictive variables. However, in many cases this
assumption, or assumption of equal covariance matrices for quadratic dis-
crimination (QDF), can be doubtful. Various procedures have been dis-
cussed as alternatives to classical discriminant analysis. Some of them are:
regularized discrimination (RLDF or RQDF), kernel discriminant function
(KDF), k nearest neighbors discrimination (kNN) and Naive Bayesian dis-
crimination (NB) (Hand et al., 2001a, 2001b).
Currently, researchers in classification tend to combine procedures,

based on similar types or different base classifiers (Kotsiantis et al., 2007;
Rokach, 2009, 2010a, 2010b). Specifically, considerable attention has been
paid lately to families of classifiers originating from two ideas: bootstrap
aggregations and boosting. From the first group, we choose the classi-
cal bootstrap ensembles called bagging, while from the second, adap-
tive boosting (AdaBoost) is selected. Because these fusion procedures are
time consuming, the constituent classifiers with high levels of complex-
ity may cause computational problems. Combining may improve perfor-
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mance of a simple, though not optimal, constituent classifier. To some
extent, fusion has the possibility to circumvent the drawbacks of such
a classifier.
Reduction of dimensionality may be achieved by both extraction (cre-

ating new variables, representing the discriminant properties of the original
data set) and by selection, where a smaller subset of original variables is
looked for. However, original variables are clear and familiar for a physi-
cian. The possibility of giving the physician an easily interpretable graph,
which could support solving classification problems, was studied. A simple
interpretation of two or three-dimensional graphs prompted verification as
to whether discrimination based on a few original highest discriminating
variables allows for the proper prediction of new subjects. Interpretation of
such low-dimensional plots would not demand that physicians have special-
ized statistical knowledge or software.
The research presented herein is dedicated both to visualization of

discrimination procedures and to their evaluation. The aim of the work
was to perform a performance comparison and visualization, on low-
dimensional plots, of parametric and nonparametric discriminant proce-
dures for leukemia differentiation. This was achieved using gene expression
data presented by Golub et al. (1999). The data set was obtained from
human acute leukemia patients. Golub et al. (1999) looked for class dis-
covery (the cluster analysis) and examined a special case of discriminant
analysis.

Dataset and Reduction of Dimensionality

A leukemia data set was examined (Table 1). The material, used in
the discriminant analysis, comes from Golub et al. (1999). The issue is
the discrimination between two types of leukemia: acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL). The data set contains
gene expression data from Affymetrix U95 microarrays of 11 AML and 27
ALL patients.

Table 1. Characterization of applied medical data set

Number Variables Number
Data Set Medical decision problem, coming from:

of cases number of groups

Discrimination St. Jude Children’s
Leukemia 38 3571 2

between AML and ALL Research Hospital
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The first issue that often appears in discriminant analysis is the need
to decrease the dimensionality of a problem without an essential loss of in-
formation from the data set. For this analysis, the statistical reduction of
the number of variables was achieved with the usage of multivariate estima-
tors. For discrimination, the minimizing Wilks’ statistic (named for Samuel
S. Wilks) and maximizing Mahalanobis distance between centroids of pop-
ulations are equivalent. These statistics measure variability among groups,
and so can be used for the selection of variables with the highest discrimi-
native power.
Squared Mahalanobis distance in the p-dimensional space (µi − µj)

′

Σ−1(µi −µj) (Duda et al., 2001, p. 107) is the measure of distance between
two multivariate normal distributions N(µi,Σ) and N(µj ,Σ) of equal co-
variance matrices Σ, where µi is the mean vector of the distribution in
population πi (i, j = 1, . . . , k). Analogously, squared Mahalanobis distance
between observations x and y is defined as (by choosing the inverse of within-
population covariance matrix as Qmatrix, i.e. Q = Σ−1

i in the formula given
by Webb, 2002 on p. 422):

r2i (x, y) = (x− y)′Σ−1
i (x− y) (1)

whereΣi is the covariance matrix in the population πi (i = 1, . . . , k). A point
y can also represent the whole population πi (i = 1, . . . , k), when y = µi.
Then, we obtain the squared Mahalanobis distance of point x from popula-
tion πi, defined as the squared Mahalanobis distance from x to the mean µi

(Duda et al., 2001, p. 35 or p. 626):

d2i (x) = (x− µi)
′Σ−1

i (x− µi) (2)

Mahalanobis distance is a fundamental distance useful in multivariate
statistical problems. The advantage of Mahalanobis distance over Euclidean
distance is that the former does not depend on the axes’ units, because the p-
dimensional vector of variables is “scaled” by the variances. Furthermore, it
uses multivariate statistical dependencies (covariance in Σi). Euclidean dis-
tance is a special case of Mahalanobis distance (when all pairs of variables
are uncorrelated and all variables have the unit standard deviation). Squared
Mahalanobis distance may also be generalized into a so-called generalized
squared distance (which is in fact dissimilarity, not metric) expressed as:
(x− µi)

′Σ−1
i (x− µi) + ln(detΣi). It incorporates an additional component

equal to ln(detΣi), connected with a measure of variability in the popula-
tion πi.
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Selection of variables can be achieved with the application of a proce-
dure that optimizes the corresponding selection criterion. To choose vari-
ables with the highest discriminative power, one can use different statistical
criteria for entry or removal of variables, such as maximizing the smallest F
ratio between pairs of groups or minimizing the overall Wilks’ lambda. The
number of variables in the final model, chosen by stepwise selection meth-
ods, depends on two parameters: the F -value for the change (including or
removing the variable) in Wilks’ lambda and the tolerance level for entering
the variable (the value 10−3 was chosen). The F -value statistics measuring
the significance of the change in Wilks’ lambda, when a (p + 1)-th vari-
able is added to the model, is given as (Norusis et al., 1990, p. B–19, for-
mula 1.26a):

Fchange =
n− k − p

k − 1
·
(

Λp

Λp+1
− 1

)
(3)

where Fchange is interpreted as the F value for including variables or ex-
cluding them, k is the number of populations, p is the number of variables,
n is the total number of cases in all k populations and Λp is the Wilks’
statistic for the set of p selected variables.
For the nonparametric Bayesian classifier and other nonparametric clas-

sifiers, variables are selected on the basis of the criterion that minimizes the
leave-one-out error of the quick first nearest neighbor classifier. Both meth-
ods allow one to obtain the same two or three most discriminating genes.
Next, the subsets of 2, 3, 5 and 10 genes are applied in the construction of
discriminant functions.

Description of Discriminant Methods

On the basis of the selected variables, various parametric and non-
parametric discriminant methods were applied. The parametric class in-
cludes Bayesian linear and quadratic discriminant functions with differ-
ent modifications, e.g. regularization (McLachlan, 2004). Parametric meth-
ods were examined for special cases, such as regularized discrimination
(Duda et al., 2001; Webb, 2002), diagonal linear and diagonal quadratic
discrimination (DLDF, DQDF), and Euclidean discrimination, i.e. nearest
mean classifiers (NMC, identifies the pattern as belonging to the group with
the closest centroid). All of these special cases are connected with a prob-
abilistic distance, either Mahalanobis or generalized. Additionally, a selec-
tion of variables for parametric discriminant functions is connected with this
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probabilistic distance, as mentioned previously. Some examined parametric
classifiers were also applied in fusion with resampling methods.

Bayesian Parametric Discriminant Analysis. The main concern of dis-
criminant analysis is connected with the second step, i.e. classification (iden-
tification). Let us assume the loss function with equal costs, when the ob-
servation is allocated to the population πi, though in fact it comes from
population πj (i, j = 1, . . . , k). A posteriori probability is the probability
that the respective case belongs to a specific population πi (i = 1, . . . , k).
This probability is based on our knowledge of the variables’ values in disjoint
populations π1, . . . , πk and on a priori probabilities. Bayesian discriminant
methods compute a posteriori probability p(πi|x) of x belonging to popu-
lation πi. It is defined by applying Bayes theorem (Webb, 2002, p. 7) and
after substituting f(x) by

∑k
j=1 qjfj(x) (from the law of total probability)

as the following:

p(πi|x) =
qifi(x)∑k

j=1 qjfj(x)
; i = 1, . . . , k (4)

where qi = p(πi) is a priori probability of the population πi and fi(x) =

p(x|πi) is the class-conditional probability density function in πi. In the cur-
rent work, a priori classification probabilities that a case belongs to the
population were taken as proportional to sizes of groups (q1 = 11/38
i q2 = 27/38). Parametric methods assume that each population has known
distribution, for example p-variate normal distribution N(µi,Σi), where the
density fi is given as (Rao, 1973, p. 575):

fi(x) = 2π(−0.5p)[det(Σ−1
i )](−0.5) exp

[
−0.5(x− µi)

′Σ−1
i (x− µi)

]
(5)

On the other hand, the nonparametric approach is based on nonparamet-
ric estimates of group-specific probability densities fi, for example using
the kernel or nearest neighbor methods. The observation is classified to
the group with maximum a posteriori classification probability. Thus, all
Bayesian discriminant methods define the partition of the multidimen-
sional space into disjoint classification regions, corresponding to populations
π1, . . . , πk.
Assuming multivariate normal distribution N(µi,Σi) in population πi,

we obtain discriminant rules based on squared Mahalanobis distance (with
Σ = Σi in formula (2)) or its generalization, given as the following:

D2
i (x) = (x− µi)

′Σ−1
i (x− µi) + ln det(Σi)− 2 ln qi (6)
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where qi is a priori probability of the population πi, Σi is the covariance
matrix and µi is the mean vector for the population πi. This formula defines
a measure of “generalized squared distance”.
The above-stated distances (2) and (6) are strictly connected with clas-

sification. Each element is classified as belonging to the group to which
it is the closest in terms of distance (6). Using the generalized squared
distance D2

i , we can derive a posteriori classification probabilities as the
following (SAS/STAT, 1990, p. 680):

p(πi|x) =
exp(−0.5Di(x))∑k

j=1 exp(−0.5Dj(x))
; i = 1, . . . , k (7)

The probability (7) can be expressed using the quadratic discriminant score
as well. Let us consider the classification function obtained from the dis-
tance D2

i (x), given as:

Ei(x) = −1
2D

2
i (x)

which can be rewritten as quadratic discriminant score (QDF) (Krzyśko,
1990, p. 15; Rao, 1973, p. 575):

Ei(x) = −1
2(x− µi)

′Σ−1
i (x− µi)− 1

2 ln det(Σi) + ln qi (8)

(i = 1, . . . , k). For equal covariance matrices Σi = Σ (i = 1, . . . , k), this clas-
sification function reduces to the formula of the linear classification func-
tion (LDF) (Krzyśko, 1990, p. 19; Rao, 1973, p. 575):

ei(x) = (x− 1
2µi)

′Σ−1
i µi + ln qi; i = 1, . . . , k (9)

We can as well express the linear classification function in equivalent clas-
sical form (Krzyśko, 1990, p. 20):

ei(x) = µ′
iΣ

−1
i x− 1

2µ
′
iΣ

−1µi + ln qi; i = 1, . . . , k (10)

and also as dependent on Mahalanobis distance:

ei(x) = −0.5d2i (x) + ln(qi); i = 1, . . . , k (11)

In these formulas, the subscript i denotes the relevant group; x is the ob-
served vector value. Ei(x) and ei(x) are the resulting classification scores
for observation x. Moreover, it holds:
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p(πi|x) =
exp(Ei(x))∑k

j=1 exp(Ej(x))
; i = 1, . . . , k (12)

Thus, minimizing the distance D2
i (x) is equivalent to maximizing the dis-

criminant score Ei(x). In the case of Σi = Σj = Σ (i, j = 1, . . . , k), it is also
equivalent to maximizing ei(x). Moreover, taking the additional assump-
tion of equal a priori probabilities qi = qj (i, j = 1, . . . , k) into account,
it is equivalent to minimizing the Mahalanobis distance di(x). Linear or
quadratic classification functions can be used to predict to which group each
case most likely belongs. Each function permits us to compute classification
scores for each case and for each group ((8)–(11)).
Both linear and quadratic discrimination methods assume that the data

come from a multivariate normal distribution. However, deviations from the
multivariate normality are usually not fateful. Additionally, for linear dis-
crimination, the homoscedasticity assumption (that Σj are homogeneous
across groups) is taken. Again, minor departures are usually not meaning-
ful. Quadratic or linear discrimination with diagonal covariance matrices Σi,
in which independence of variables in each discriminated group Πi is as-
sumed, is called diagonal or uncorrelated discrimination (DQDF, DLDF,
for linear or quadratic, respectively). DQDF and DLDF have the advan-
tage over classical classifiers in those situations in which covariance matrix
singularity raises a problem. The DQDF method, in opposite to the DLDF
method, includes different variances in groups, though like DLDF, it as-
sumes linear independence of variables.
For the analysis conducted for this study, regularized QDF and LDF

(when covariance matrices in populations are equal) were applied as single
and then combined classifiers. Generally, regularization means avoiding over-
fitting to the training set. It uses penalization for the fit. Regularization for
discrimination (RFD) was proposed by Friedman (2001). RDF is the mod-
ification of linear or quadratic classical classifiers (Pękalska, 2005, p. 94;
Webb, 2002, p. 37). For p >> N , when the data matrix can be large, it has
a rank of, at most, N < p. If then, the pooled covariance matrix Σ or partic-
ular matrices Σi, Σj become singular, the inverse cannot be derived. Then,
a solution may be the usage of, e.g. the regularized form of covariance ma-
trix Σi (Heijden et al., 2004): G

(r,s)
i = (1 − r − s)Σi + r diag(Σi) + smI,

where r, s from the interval 〈0, 1〉 are regularization parameters, diag(Σi) is
the diagonal matrix obtained from Σi, m is the average value of p diagonal
values in matrix Σi and I is the identity matrix. Regularized covariance
matrix G(r,s)

i may be the base of a distance corresponding to Mahalanobis
distance. For r = s = 0, we obtain a special case, which is a classical linear
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or quadratic discriminant function. For s = 0, a version of the regularized
discrimination that shrinks the covariance matrix towards its diagonal is
obtained.

Nonparametric Methods. Bayesian kernel discriminant functions (KDF)
and k-nearest neighbor classifiers (1NN or kNN) belong to the nonpara-
metric class. Nonparametric Bayesian methods do not assume any form
of distribution in discriminated populations. Thus, they use nonparametric
estimates, such as the Parzen-Rosenblatt kernel method (Webb, 2002), for
probability densities in all populations. For nonparametric Bayesian meth-
ods, either Mahalanobis distance or Euclidean distance can be employed.
This distance from the given point x0 is defined by matrix Vi (SAS/STAT,
1990, p. 681):

d2i (x, x0) = (x− x0)
′V −1

i (x− x0) (13)

where the matrix Vi (i = 1, . . . , k) can be the pooled or within-groups matrix
of covariances. To define the proximity (a posteriori probability), the kernel
method uses a p-dimensional ellipsoid. The volume of this ellipsoid depends
on the smoothing parameter (radius r for kernel method) and on the dis-
tance (13). Large r values produce more regular estimates of the density
function; however, then large data sets are needed. The kernel method with
radius r and matrix Vi can use different kernel functions, for example normal
or uniform. The base of these kernel functions’ definition is the volume of
the ellipsoid defined by matrix Vi: {x : d2i (x) = r}, where the distance di is
specified by formula (13). For the given kernel and the given radius r (equal
for different groups), these volumes differ among groups if the covariance
matrices are not equal in all k populations (SAS/STAT, 2008). In Bayesian
kernel discrimination, the problem of correct estimation methods often oc-
curs if the number of dimensions is high, relative to group sizes. In the
current paper, the parameter r was chosen to minimize the criterion, which
was the CV estimate of error rates.
The nearest-neighbor (NN) method uses the given number, k, of train-

ing set elements for each discriminated observation. The classifier finds the
value (radius) that is based on the distance values from the classified ob-
servation to the k-th-nearest data point according to the chosen distance
function (e.g. Euclidean or Mahalanobis distance). Classified observation is
identified as belonging to the population associated with the training el-
ement that achieves the smallest (for 1-NN) or k-th smallest (for k-NN)
distance function. Usually, selection of k is not crucial; however, choosing
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values from 3 to 7 neighbors is preferred to prevent the possibility of ties.
The k parameter was chosen in the presented investigation according to
distance, as proposed by Lissack et al. (1976). The applied kernel function
is the classical Gaussian one.
Other nonparametric density estimation than that of the kernel method

is applied by the Naive Bayesian procedure (Duda et al., 2001; Hand et al.,
2001b). The predicted class is the one with maximum a posteriori probabil-
ity. However, the assumption that each of the class densities is a product of
marginal densities is taken. Thus, a conditional independence in each pop-
ulation class is expected. Strong assumption causes the estimated density
to be much simpler than the real density. Consequently, the Naive Bayesian
classifier is especially useful in highly dimensional problems, when proba-
bility estimation is difficult for relatively small samples.

Classifier Fusion Procedures. Randomly generated subsets of training
data joined with combined classifiers built on them were also considered
as part of the presented study. Bagging (Bootstrap AGGregatING), intro-
duced by Breiman (1996), is an ensemble based on bootstrap samples. It is
created by randomly choosing samples n times from the learning set with
possible replacements, where n denotes the size of the learning set. The clas-
sifier is trained on each bootstrap subsample. Resulting classifiers are then
joined e.g. by averaging a posteriori probability or by taking the unweighted
majority vote.
Boosting can also be considered as a method based on resampling of

the learning data set. However, in boosting, selection of subsequent sub-
samples depends on the results of combined classifier performance achieved
in previous loops. In sequentially generated learning sets, the weights of
misclassified cases are increased, so that the ensemble creates the boosted,
improved classifiers. In spite of the similarity in the step of resampling the
training sets, bagging and boosting are different combining methods. How-
ever, both of them can help in the stability of the constituent classifier.
The known examples of unstable learners are classification trees and neural
networks.
“Boosting” (Freund et al., 1997) the performance of weak classi-

fiers is connected with ARCing-Adaptive Resampling and Combining
(Breiman, 1998). An important property of boosting is the resistance to out-
liers. Friedman (2001) proposed a few explanations for the resistance against
overfitting in boosting procedures. The most popular boosting method
is Adaptive Boosting (AdaBoost) (Freund et al., 1999). This procedure
allows the designer to continue adding classifiers until some desired low
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training error is achieved. AdaBoost is proficient in reducing training errors
exponentially (Freund et al., 1997) and may realize boosting by resampling.
Freund et al. (1998) gave the bound for generalization errors and the

theoretical analysis of any voting methods, so the bound is appropriate for
bagging and boosting. The components of the bound consist of the training
error and, additionally, of the confidence. This confidence is a decreasing
function of the number of observations in the training set and is an increasing
function of the “complexity” of the constituent classifiers, but the confidence
does not depend explicitly on the number of constituent classifiers.
The bagging procedure is generally a variance reduction tool (Hastie

et al., 2001). On the other hand, boosting methods mainly decrease the bias
of the base procedure, though they may also reduce variance. Bagging and
boosting ensembles can be applied theoretically to each classifier, though the
limitations of time and memory exist. For bagging and boosting, decision
trees are usually chosen as constituent classifiers (Breiman et al., 1984;
Rokach et al., 2005). In the current paper, other classifiers, such as LDF,
RLDF, QDF and NMC, were examined.

Classification Error Evaluation. Appropriate classification error estima-
tion is a very important issue, although in cases where the amount of data is
relatively small, the estimation of error rate is not straightforward. To com-
pare the used methods’ results, the proportion of misclassified cases was
estimated. The estimate of error rates is unbiased when the test set is in-
dependent of the training set. However, to obtain such a holdout error-rate
estimate, a large amount of data is needed. Thus, frequently, the expected
loss for a new trial is estimated by cross-validation (CV) or leaving-one-
out (L1o) techniques, which make better use of the data set. Applied er-
ror CV and L1o estimates (Ambroise et al., 2002) make use of the data
set including only the elements applied to derive the discriminant criterion
(training data set). The L1o method achieves a nearly unbiased error-rate
estimate for the new, independent testing set. Performance is defined as
1− e, where e is error of classification.
A summary of the prediction, including a table of errors made for com-

parison purposes, tells how well the current discriminant functions predict
group membership of cases. A comparison was made between different fu-
sion methods of discriminant analysis and how they worked on the genomic
data set. For this purpose, the resubstitution (apparent error), leaving-one
out (L1o), and cross-validation (CV) estimates of the error-rates were used.
The numerical results of single and combined classifiers are illustrated in
the next part of the article, as a part of the visualization discussion.
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Visualization of Single Parametric and Nonparametric
Discriminant Functions

A leukemia data set is one for which we can find only two or three excel-
lent genes that have satisfying discriminant power for classification (Xiong
et al., 2001). For example, the two best discriminating variables named in
the data set presented here are the genes M27891 and X04145, which are de-
noted on the presented graphs by the names “Gene2” and “Gene6”. Thus,
these genes can be useful for visualization of classical and nonparametric
discriminant methods, for numerical and graphical comparison purposes.
In all Bayesian discriminations related to the presented figures, unequal

a priori probabilities proportional to group sizes were taken. Assuming p-
variate normal distribution N(µi,Σi) for i-th population (i = 1, . . . , k), the
decision boundary between each pair of populations πi and πj is defined by
a quadratic equation

{x : Ei(x) = Ej(x)}

for (i, j = 1, . . . , k). This equation defines (p−1) dimensional quadric bound-
ary surface between populations πi and πj (Figure 1). In practice, we do
not know the parameters of the normal distributions, so they are estimated
using the training data.

Figure 1. Ellipsoids of estimated a posteriori probabilities with quadric
classification boundary equalizing generalized distances (6) from
population centroids, for variables x2, x6, x3 (left) and x1, x2, x3
(right); apparent errors = 0.105, CV = 0.12 (SD = 0.13)

The quadric discriminating each pair of populations πi (probability
density is represented by ellipsoids, Figure 1) is obtained for the classi-
cal Bayesian classifier. For unequal covariance matrices Σi and Σj (i, j =
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1, . . . , k), the kind of quadric discriminating each pair of populations de-
pends on whether the matrix Σ−1

i − Σ−1
j (or Σ

−1
j − Σ−1

i ) is a positive def-
inite matrix (then a hyper-ellipsoidal boundary is obtained) or is a semi-
positive definite one (ellipsoidal cylinder, parabolic-type cylinder or ellip-
soidal paraboloid are possible). Then, the eigenvectors corresponding to
nonzero eigenvalues of the above stated positive definite (or semi-positive
definite) matrix determine the hyper-ellipsoid axes (Krzyśko, 1974). If ma-
trix Σ−1

i − Σ−1
j (or Σ

−1
j − Σ−1

i ) is not defined as positive or semi-positive,
one obtains, for example, a hyperboloid. For multivariate normal distribu-
tion N(µi,Σi), the concentration hypersurfaces of the density create a fam-
ily of hyper-ellipsoids with the common center point µi (Morrison, 1990).
Hyper-ellipsoid axes’ lengths are given by the eigenvectors of the covariance
matrix. The lengths of the succeeding axes are proportional to the square
root of non-increasing eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 of the covariance
matrix Σi. For quadratic discrimination, the subsets of p-dimensional space
that are classification regions are not necessarily the joined area, if the data
set is more complex. Then, even for the same classification region, we may
obtain separated parts. In two-dimensional space, this case corresponds to
two branches of a hyperbolic boundary. In three-dimensional space, such
boundaries can be, for example, hyperboloids. Two and three-dimensional
examples of Bayesian discrimination in Figures 1–6 present several different
forms.
Three-dimensional Gaussian distribution yields Bayesian decision

boundaries that are either hyperplanes or hyperquadrics. In the case of
three-dimensional Gaussian discrimination, the quadric surface separates
quadratic decision regions (Figure 1). Taking p = 3 selected the most dis-
criminated variables (Genes 2, 3 and 6, i.e. M27891, X04145 and U05259);
the ellipsoids around centroids of populations µ1 and µ2 (Figure 1) are
obtained as surfaces for an arbitrary a posteriori probability p(πi|(x) (7)
or generalized distance Di (6). The three-dimensional surface of constant
probability densities in each discriminated population πi also creates an el-
lipsoid. The shape of the ellipsoid is the same because it is also determined
by the inversed covariance matrix Σ−1

i .
The two ellipsoids for a chosen value of a posteriori probability intersect

in a boundary, which generally is a quadric. If the densities are more com-
plicated than Gaussian, the classification boundary regions may be more
complex.
On the left side of Figure 1, the boundary is constructed on Gene2,

Gene6 and Gene3. Matrix Σ−1
i − Σ−1

j is not defined as positive (negative)
or semi-positive (semi-negative),
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3.5758 0.4104 0.7807
0.4104 −3.0298 1.3152
0.7807 1.3152 2.7481

so the boundary is hyperboloid. The corresponding equations for classi-
fiers (8) for two groups, respectively, are calculated as:

E1(x) = (x2 x6 x3 )



−2.4328 −0.4778 −0.8815
−0.4778 −6.3347 0.6064
−0.8815 0.6064 −4.8122


 (x2 x6 x3 )

′ +

+ (−1.2930 1.6206 16.4592 )(x2 x6 x3 )
′ − 4.7456

E2(x) = (x2 x6 x3 )



−0.6450 −0.2728 −0.4911
−0.2728 −7.8508 1.2643
−0.4911 1.2643 −3.4381


 (x2 x6 x3 )

′ +

+ (1.8428 −9.7621 8.3512 )(x2 x6 x3 )
′ − 4.7456

The identification of x is carried out for the first group if E1(x) > E2(x).
If not, it is carried out for the second group. For comparison of quadrics
in three-dimensional space, Gene1, Gene2 and Gene3 are also applied.
On the right side of Figure 1, the quadric boundary for Gene1, Gene2 and
Gene3 corresponds to two 3×3-covariance matrices Σ1 and Σ2, i.e.

0.1458 0.0814 0.0000
0.0814 0.2256 −0.0440
0.0000 −0.0440 0.1138

and
0.0902 0.0595 0.0121
0.0595 0.9141 −0.1512
0.0121 −0.1512 0.1796

Matrix Σ−1
1 −Σ−1

2 is now defined as positive, so the classification bound-
ary is designed from the ellipsoid (Figure 1, right). Two separate classifica-
tion regions are single joint regions. In Figure 1, only parts of the classifi-
cation boundaries are visible. The misclassification rates, corresponding to
the right and left parts of Figure 1, are the same, according to CV and L1o
(presented in Table 2 for best three genes: Gene6, Gene2 and Gene3). Per-
formance results for discriminant functions, illustrated in Figure 1, as well
as for other single classifiers built on the best three genes, are presented
in Table 2, in columns for 3 variables (CV and L1o).
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Table 2. Generalization errors (*100%) of single classifiers for 2, 3, 5 and 10
selected genes

nr of variables 2 3 5 10

Method/error CV L1o CV L1o CV L1o CV L1o

LDF 10.5 10.5 7.9 7.9 7.9 7.9 8.4 7.9

QDF 10.0 10.5 11.6 10.5 5.5 5.3 19.7 18.4

RLDF r = 0.2; s = 0.5 10.5 10.5 7.9 7.9 8.2 7.9 5.3 5.3

RQDF r = 0.2; s = 0.5 10.5 10.5 10.5 10.5 7.9 7.9 5.3 5.3

RLDF r = 0.02; s = 0.05 10.5 10.5 8.2 7.9 7.9 7.9 7.6 5.3

RQDF r = 0.02; s = 0.05 10.5 10.5 10.5 10.5 6.8 7.9 5.8 7.9

DQDF 10.5 10.5 10.5 10.5 7.9 7.9 5.8 5.3

Parzen 10.5 10.5 10.3 7.9 7.9 5.3 5.3 5.3

Parzen r = 1 9.0 10.5 7.4 7.9 7.9 7.9 5.5 5.3

kNN 8.4 7.9 7.9 7.9 7.6 7.9 5.8 5.3

1NN 6.3 5.3 2.6 2.6 2.9 2.6 7.9 7.9

3NN 14.2 15.8 12.9 13.2 7.9 7.9 5.3 5.3

5NN 10.5 10.5 9.7 10.5 7.9 7.9 5.3 5.3

NB 10.5 10.5 8.2 7.9 8.2 7.9 5.0 5.3

min 6.3 5.3 2.6 2.6 2.9 2.6 5.0 5.3

max 14.2 15.8 12.9 13.2 8.2 7.9 19.7 18.4

mean 10.3 10.3 9.0 8.8 7.3 7.1 7.0 6.8

sd 1.7 2.2 2.5 2.4 1.4 1.6 3.8 3.5

var.coeff(%) 16 21 27 27 20 23 55 52

Underlined – best results

For linear discrimination LDF, we obtained the following three dimen-
sional classifier functions:

e1(x) = ( 0.1147 2.0317 14.8041 )(x2 x6 x3 )
′ + 13.9228

e2(x) = ( 0.1147 2.0317 14.8041 )(x2 x6 x3 )
′ − 7.9932

The identification of a new pattern x is performed for the first group if
e1(x) > e2(x). If not, it is performed for the second group.
For the reason that in three-dimensional space it is difficult to analyze

the details of the discriminant procedure from the inside, the next presented
figures are illustrations of two-dimensional discrimination. Eleven AML pa-
tients are denoted on the plots by stars (“*”) and 27 ALL patients by
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Figure 2. Estimated classifier functions and boundary of linear discrimination
LDF; apparent error = 0.105, CV = 0.105 (SD = 0.07)

symbols “+”. Apparent (resubstitution) errors and CV errors with corre-
sponding standard deviations (SD) are given in the titles of the plots.
For a linear classification, equal covariance matrices are assumed. In

consequence, linear boundaries are obtained (Figure 2). If a discrimination
is performed on more than two classes, the decision boundary for any pair
of populations is a hyperplane in p-dimensional space, so all pair decision
boundaries are linear. The LDF misclassification error is connected with
the area of overlap between the two densities in discriminated populations.
For different a priori probabilities qi 6= qj , the Bayesian classification error
of LDF is equal to (Krzyśko et al., 2008, p. 33):

q1/(q1 + q2)F (−0.5M +M−1 ln(q2/q1)) +

+ q2/(q1 + q2)F (−0.5M −M−1 ln(q2/q1))

where M =
√
(µi − µj)′Σ−1(µi − µj) is the Mahalanobis distance between

two groups’ centroids µi, µj and F is the cumulative distribution function
of multidimensional normal distribution N(µi,Σ). Thus, assuming equal
a priori probabilities, the Bayesian error of LDF is equal to F (−0.5M)
(Morrison, 1990, p. 348).
The classification boundary is a set of points equalizing Mahalanobis

distance modified by ln(det(Σi))− 2 ln(qi), given by formula (6). For equal
covariance matrices, ln(det(Σi)) can be neglected. If equal a priori proba-
bilities qi and common Σ are assumed, then the classification boundary is
fixed in the ‘middle’ between the projected means vectors, and each point
of the boundary lies in equal Mahalanobis distance from the two popula-
tions’ centroids µi and µj . If however the qi were different in populations,
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moving the cut-point toward the smaller population would improve the clas-
sifier performance (6). The Bayesian rule (7), incorporating different a priori
probabilities qi, minimizes the expected loss.
If qi are not equal, they are usually estimated by proportions of observa-

tions belonging to the differentiated population. In this way, the Bayesian
linear classification rule results in the shift of the boundary by 2 ln qi to-
ward the class with the smaller a priori probability. In the presented work,
probabilities proportional to population sizes in the training set were taken,
i.e. q1 = 11/38 = 0.289737 and q2 = 27/38 = 0.710526. In the examined
dataset, q1 and q2 are apparently different, thus shifting improves the per-
formance. Therefore, ellipses from LDF visualizing classification functions ei
have different values in corresponding contours. At the same time, the iden-
tical shape of contours and the same direction of axes is visible. This comes
from assumption of equal covariance matrices in populations (or the same
pooled Σ matrix), so both eigenvalues (λ1 ≥ λ2) are also the same in both
matrices.

Figure 3. RLDF regularized with parameters r = 0.2 and s = 0.5; apparent
error = 0.105, CV = 0.105 (SD = 0.01)

Though regularization with parameters r = 0.2 and s = 0.5 slightly
changes the classification boundary of RLDF in comparison to LDF, the
errors are not changed (Figure 3, Table 2). Those parameters do not ap-
parently modify the linear classifier, but diminishing both parameters r and
s could create regularized classification more different from LDF.
For quadratic QDF in Figure 4, the classification boundary is a set of

points equalizing Mahalanobis distance modified by ln(det(Σi)) − 2 ln(qi),
given by the formula (6). Component ln(det(Σi)) is a measure of diversity in
population πi (i = 1, 2). Thus, in the theoretical case of the equal remaining
part: (x − µi)

′Σ−1
i (x − µi) − 2 ln(qi) (which was the criterion for linear

classification of function LDF), another population might be identified. For
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Figure 4. Estimated classifier for quadratic discrimination QDF; apparent
error = 0.105, CV = 0.1 (SD = 0.01)

Figure 5. RQDF regularized with parameters r = 0.2 and s = 0.5; apparent
error = 0.105, CV = 0.105 (SD < 0.001)

the resulting matrix Σ−1
1 − Σ−1

2 , which is not (semi) positive-definite, we
obtained the hyperbola, visible as the boundary for quadratic discrimination
in Figure 4.
The RQDF regularized classifier with parameters r = 0.2 and s = 0.5

(Figure 5) does not show apparent difference in the classifier boundary in
comparison to the plot of classical QDF, and errors remain the same. Dimin-
ishing both parameters to r = 0.02 and s = 0.05 causes greater difference
in the regularization matrix G(r,s)

i , in comparison to covariance matrix Σi.
However, the performance of the classifier, when based on two variables,
was not improved for RQDF in comparison to QDF discrimination, but was
improved for a larger number of genes (Table 2).
In Figure 6, a linear independence of two genes is assumed in each

population. Thus, axes of classification function contours are orthogonal to
coordinate axes. This is explained by the fact that eigenvectors of covariance
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Figure 6. Uncorrelated (diagonal) DQDF; apparent error = 0.105, CV = 0.105
(SD < 0.001)

matrices are orthogonal to coordinate axes. Uncorrelated (diagonal) DLDF
and DQDF are very useful for classification of high-dimensional issues in
the bioinformatics domain, where we usually face singularity and problems
with inversion of the matrices. However, in small dimensionality (p = 2, 3, 5
and 10 in our case), the apparent benefit over classical discrimination QDF
is not obtained for less than 10 genes; for 2 genes, the misclassification rates
are the same (Table 2).
A quite different boundary was obtained for the Naive Bayes model,

where the assumption of normality is not made (Figure 7). For each of
the discriminated populations, the Naive Bayesian model assumes the in-
dependent features xl (l = 1, . . . , p), i.e. (Hand et al., 2001b, p. 353):
P ((x1, . . . , xp)|πk) = P (x1|πk)P (x2|πk) . . . P (xp|πk).

Figure 7. Density estimation and boundary of Naive Bayesian classifier;
apparent error = 0.05, CV = 0.105 (SD < 0.001)

The nonparametric kernel classifier with Gaussian kernel and radius
r = 1 is presented in Figure 8. Contours of density obtained by Parzen-
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Figure 8. Gaussian kernel discriminant function with r = 1 – estimated
densities and boundary error = 0.05, CV = 0.09 (SD = 0.04)

Rosenblatt kernel density estimation show that distributions in differenti-
ated groups do not differ substantially from the two-dimensional Gaussian
distributions; thus, classification error is similar to that of parametric clas-
sifiers. The boundary is then the most similar to that of quadratic discrimi-
nation, though it is more flexible for the part of the space with mixed classes
in two-dimensional space. For Gene2 between −0.5 and 0.5 and Gene6 be-
tween −0.6 and−0.3, this boundary was closer to the Naive Bayes boundary.
The shape of the nonparametric nearest neighbor classification boundary
strongly depends on the number of neighbors. For the 1NN classification re-
gion for the AML group (“stars” marks), it consisted of two parts (Figure 9).

Figure 9. Nearest neighbor classifiers 1NN (apparent error = 0.105,
CV = 0.06, SD = 0.03) and 5 kNN (apparent error = 0.105,
CV = 0.105, (SD < 0.01)

Graphs made for visualization purposes were obtained by the au-
thor’s own programs, based on the PRTOOLS package for Matlab (Duin
et al., 2007).
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Visualization of Combined Classifiers

Methods based on resampling of the training set, typically bagging and
AdaBoost, were based on various constituent classifiers.
The NMC method, which can be regarded as a special case of classical

LDF (for Σ = I), was applied to resampling ensembles. In addition, resam-
pling fusion techniques were applied to the regularized linear and quadratic
classifiers (RLDF and RQDF).
The bagging ensemble of classical LDF with 100 loops was compared to

bagged regularized classifiers RLDF (Figure 10, left). The errors obtained
by the resampling ensemble for both constituent classifiers were the same,
i.e. CV = 0.105. The right side of Figure 10 contains classifiers obtained
by 100 loops of bagging when constituent classifiers are QDF and regular-
ized RQDF (in both cases CV = 0.105). The boundary function of bagged
RQDF (tiny, dotted line) has a more regular shape than QDF (Figure 10,
right). For discrimination between ALL and AML with the usage of the two
best discriminating variables, bagging 100 loops was not beneficial to either
QDF or RQDF.

Figure 10. Final classification boundaries after 100 loops of bagging for linear
LDF and RLDF (left and dotted: apparent, CV and L1o errors =
0.105) and QDF with RQDF (right and dotted: apparent error,
CV = 0.105 with SD = 0.07, L1o = 0.18)

The adaptive boosting procedure AdaBoost was applied with a small
number of loops (10) to allow presentation of combined classification bound-
aries for both constituent and merged classifiers. During the implementation
of ten steps of boosting, after consecutive loops, the classifiers are focused
on previously incorrectly classified objects. Ten boundaries, visible on the
left and right sides of Figure 11, were obtained by use of this method. The
merged classification boundary (Figure 11, bold lines) joins ten constituent
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Figure 11. Ten loops with constituent and boosting boundaries. Left and bold:
boosted Nearest Mean Classifier – Apparent err. = 0.05, CV =
0.105 (SD = 0.02), L1o = 0.105. Right and bold: boosted
QDF-Apparent err. = 0.08, CV = 0.13 (SD = 0.05), L1o = 0.16

boundaries according to a voting scheme. According to cross-validation er-
rors of single (Table 2) and combined NMC classifiers, ten bagging loops
joined with the constituent linear NMC classifier were not beneficial to ba-
sic NMC classifiers (Figure 11, left). Similarly, for classical QDF, ten loops
of boosting (Figure 11, right) were not preferred over the base generalization
error of QDF (Table 2).
Similar errors in the case of classification do not necessarily mean that

the same cases have the same classifications. In particular, erroneous clas-
sification to one of the groups may be more risky from a medical point of
view. Thus, the analysis of conditional classification errors for each group,
associated with specificity and sensitivity, might be an additional suggestion
for assisting one in choosing which of the methods for solving a particular
medical problem is more preferred. From this practical point of view, doc-
tors may be guided by the criteria of sensitivity and specificity, which is
close to their knowledge. Sensitivity and specificity may also be assessed by
eye from plots. Apart from the assessment of apparent generalization er-
rors, the classification boundary shape with overlaid scatter-plots of groups
may also indicate whether the particular kind of classifier is overtrained or
underfitted for the examined problem.

Discussion

Errors estimated by CV and L1o allow one to draw similar conclu-
sions. The increase in numbers of variables from 2 to 10 leads to an im-
proved performance for all examined classifiers, except for 1NN and QDF.
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The QDF exception may be caused by the fact that the covariance matrix of
10x10 size was estimated on the basis of only 11 observations from a smaller
group (AML). L1o error was not smaller for 2 than for 3 variables. In the
same way, this also holds true for CV, again with the exception of QDF. The
smallest CV errors for 2, 3 and 5 variables were achieved for 1NN discrimi-
nation. Many discriminant methods for 2 chosen variables achieved the same
performance (CV and L1o error 10.5%). This is also visible by eye during
comparison of Figures 2–9. Thus, the smallest variability coefficient of CV
and L1o errors was obtained for 2 variables (16% and 21%, respectively),
while the highest one was met for 10 variables (55% and 52%, respectively).
It is of interest to compare the performance obtained in the presented

work to other authors’ outcomes. Golub et al. (1999) applied a weighted
gene voting method, which is a variant of a special case of linear discrimi-
nant analysis (DLDF). The authors of this work applied 50 selected genes
and obtained a test error of 5.8%, which in comparison with errors of sev-
eral applied methods (with 2, 3, 5 and 10 genes in Table 2), is smaller.
However, some methods presented in Table 2 that are based on a small
number of genes obtained better performance, for example 1NN with 2, 3
and 5 variables (L1o equal 5.3, 2.6 and 2.6, respectively).
Dudoit et al. (2002), using an apparently larger number of genes (50)

for ALL and AML discrimination, obtained a test error smaller than Golub
et al. (1999) by applying DLDF. However, LDF based on 50 genes obtained
a higher test error (about 20%) than all classifiers presented in Table 2.
Additionally, CART (tree) with a test error of about 10% apparently had
the worst performance of all the methods, based on the small number of 5
and 10 genes from Table 2.
For a larger number of genes (200), Dettling (2004) obtained an esti-

mate of error equal to 0.04 for single kNN. He also estimated error rates
of 0.04 and 0.06, respectively, for advanced BagBoosting and boosting trees.
For support vector machine (SVM), Ambroise et al. (2002) achieved (test,
bootstrap and CV) errors of 0.15, 0.10, 0.07 and 0.05 for 4, 8, 32, and
210 genes, respectively. SVM for 4 genes was inferior to several methods
based on 2 genes presented in Table 2, especially 1NN. This classifier per-
formed similarly to many classifiers based on 3 and 5 genes, however for
210 genes it was better than most of the discriminations including 10 genes
in Table 2.
Xiong et al.’s (2001) results indicated that the expression information

from three or four genes was optimal for tumor classification in three data
sets: leukemia, colon cancer and breast cancer. Additionally, as few as two
genes achieved misclassification rates below 0.10. This is confirmed in the
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presented paper. Thus, the two-dimensional plots for discriminant methods
presented herein have obtained a motivation for practical usage.
Increasing the number of predictor variables from p = 2 to p = 10

improved the accuracy of the classifiers. The learners were comparable with
results for apparently larger numbers of genes obtained by other authors.

Conclusions

For a small number of genes, the 1NN classifier achieved the smallest
CV and L1o errors. The misclassification rates obtained for two variables
and 1NN were comparable to various classifiers presented in other authors’
works, for which apparently higher numbers of genes were applied.
Bivariate plots are illustrations of different types classifiers in the gen-

eral multidimensional situation. In p-dimensional spaces, the lines are re-
placed by hyperplanes, and curves of second order on the plane are sub-
stituted by quadrics. However, for more complex nonlinear discriminant
functions, the complex surfaces of boundaries are obtained.
The results present the possibility of cancer classification based on the

monitoring of the gene expression of a small number of best discriminating
variables. The outcomes can suggest an approach for recognizing other types
of cancer, where only a few genes have a sufficient amount of discriminative
power. By monitoring only a small subset of genes, the costs in medical
diagnostics may be diminished.
Because the two chosen variables were well discriminating for the ex-

amined diagnostic problem, there were no significant differences between
the errors for the majority of the analyzed methods, both for CV or L1o.
However, for problems presented by more complex data sets, this difference
may be more pronounced.
Resampling methods of combining, known as especially beneficial for

unstable classifiers, did not appear beneficial to examined single clas-
sifiers. Linear classifiers may be unstable, which is observed for rela-
tively small numbers of training cases in comparison to dimensionality
(Skurichina, 2001). However, the examined data set connected with clas-
sification boundaries did not show properties of instability, especially for
linear and quadratic classifiers. For the examined, well differentiable data
set without noise, single classifiers created on the basis of two selected vari-
ables had good discriminant properties. In this way, the ensembles – bagging
with a hundred loops and boosting with ten loops – obtained by resampling,
were not beneficial.
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