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Abstract. Prevention and early diagnosis of forthcoming preterm labor is of vi-
tal importance in preventing child mortality. To date, our understanding of the
coordination of uterine contractions is incomplete. Among the many methods
of recording uterine contractility, electrohysterography (EHG) – the recording
of changes in electrical potential associated with contraction of the uterine mus-
cle, seems to be the most important from a diagnostic point of view. There is
some controversy regarding whether EHG may identify patients with a high risk
of preterm delivery. There is a need to check various digital signal processing
techniques to describe the recorded signals. The study of synchronization of
multivariate signals is important from both a theoretical and a practical point
of view. Application of the Hilbert transformation seems very promising.

Introduction

A biomedical signal can be described as the reflection or a ”shadow”
of the process that causes it. By examining the signal, we receive informa-
tion about the process. Biomedical signals are predominantly characterized
by a high degree of complexity; they are far from stationary. The study
of synchronization of bivariate biomedical signals is important from both
a theoretical and a practical point of view. A change of synchronization
parameter can be very useful for medical diagnostics.
The human uterus is undoubtedly a complex system, like the brain or

the heart. Billions of myometrium cells interact in a complex manner. Our
understanding of the coordination of uterine contractions is incomplete. The
myometrial cells can be excited by action potentials generated by their own
impulses. There are pacemaker cells, which synchronize the activity of the
whole uterus. The other cells are excited by impulses from the neighbouring
cells – these are the pacefollower cells. Unlike cardiac cells, the myometrial
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cells can play the roles of pacemaker cells and pacefollower cells alternately.
It has been shown in earlier studies that nonlinear processes probably gen-
erate uterine contractions (Nagarajan et al., 2003; Oczeretko et al., 2005;
Radhakrishnan et al., 2000a).
EHG is a multi-channel measurement method, so it is important to

the study of synchronization of signals. The notion of synchronization may
be used in a loose sense as the synonym of correlation, the similarity of
the signals, or the similarity of their dynamics. The Hilbert transform,
the cross-correlation, the coherence, the mutual correlation dimension, the
cross-approximate entropy, the mutual information and the nonlinear inter-
dependencies can be applied for this purpose.
For this study, all software implementations were done in Matlab (The

MathWorks Inc., Natick, MA).

Hilbert Transform

The simple and inverse Hilbert transforms are defined by the integrals:

x̂(t) = H[x(t)] =
1

π

∞∫

−∞

x(τ)

t− τ
dτ

x(t) = H−1[x̂(t)] = − 1

π

∞∫

−∞

x̂(τ)

t− τ
dτ

These integrals are understood in the sense of the Cauchy principal value,
because for t = τ , the integrands in the above formulas are endless. The
name “transformation” is used to the right-hand sides of these equations
and the name “transform” to the left hand sides (Hahn, 1996). Operator H
is a linear operator, i.e., if a and b are arbitrary (complex) scalars, and x(t)
and y(t) are signals, then:

H[ax(t) + by(t)] = ax̂(t) + bŷ(t)

In terms of the convolution notation, the equations defining Hilbert trans-
forms may be written:

x̂(t) =
1

πt
· x(t)

x(t) = − 1

πt
· x̂(t)
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since, for example, using the definition of convolution for the first of the
above two equations, it can be presented as:

x̂(t) =
1

πt
· x(t) = 1

π

∞∫

−∞

x(τ)

t− τ
dτ =

1

π

∞∫

−∞

x(t− τ)

τ
dτ

Applying the Fourier transform to the equation defining the simple
Hilbert transform, and using the convolution theorem (the Fourier transform
of the convolution is the product of the two Fourier transforms), we get:

F [x̂(t)] = F

[
1

πt

]
F [x(t)]

F denoting the Fourier transform operator.
Seeing that (Toland, 1997):

F

[
1

πt

]
(ω) = −i sgn(ω)

where sgn(ω) is the sign function, ω is the angular frequency or angular
speed (measured in radians per second),

sgn(ω) =
{
−1 for ω < 0
1 for ω ≥ 0

so:

F [x̂(t)] (ω) = −i sgn(ω) · F [x(t)](ω)

The Hilbert transform can be obtained by multiplying the Fourier spec-
trum of x(t) signal by i (+90) for negative frequencies and −i (−90) for
positive frequencies. Therefore, the Hilbert transform represents a harmonic
conjugate of x(t) signal (Sahoo et al., 2011). Using this, the Hilbert trans-
form can be computed in three steps:
– calculation of the Fourier transform of the given signal,
– rejection of the negative frequencies,
– calculation of the inverse Fourier transform

x̂(t) = F−1 [−i sgn(ω) · F [x(t)](ω)]

The Hilbert transform is associated with a phase shift of the analyzed
signal by 90 degrees. Therefore, a sine signal becomes a cosine signal and
vice versa. Below are some examples of Hilbert transformation pairs (pairs,
because the signals are on the left sides of the equations and their transfor-
mations are on the right).
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sinω0t ↔ − cosω0t

cosω0t ↔ sinω0t

δ(t) ↔ 1

πt

rect(t) ↔ 1

π
ln

∣∣∣∣∣
t+ 1

2

t− 1
2

∣∣∣∣∣

Applications of the Hilbert transform in the analysis of biomedical sig-
nals are connected with the concepts of the analytic signal, envelope, in-
stantaneous phase and instantaneous frequency (Boashash, 1992a, 1992b).
Frequency is the number of events (cycles or vibrations) occurring per time
unit. Let us consider a material point moving with uniform motion in a cir-
cle. Projection of uniform circular motion upon a diameter (Figure 1a) per-
forms the simple harmonic motion:

x(t) = A0 cosϕ = A0 cosω0t

where:
ϕ is the phase,
A0 is the amplitude.

The Fourier transformation of the signal is represented by the sum (with
the appropriate weights) of sine and cosine functions. The frequency, the
amplitude and the initial phase of the component functions are constant.
The real signals received by experiments or by routine medical diagnostics
are often non-stationary. Such signals are very badly decomposed into har-
monic components. Here, the frequency and the amplitude change, so it is
necessary to generalize the concept of frequency.
The concept of the analytical signal was presented by Gabor (1946)

in optics. For a scalar time series x(t), received from a measurement of
a nonlinear system, the corresponding analytic signal z(t) is defined by:

z(t) = x(t) + iH[x(t)] = x(t) + ix̂(t)

where H[x(t)] is the Hilbert transform operator.
The envelope (Figure 1b) (or instantaneous amplitude) of signal x(t) is

defined by:

A(t) =
√
x(t) · x(t) + x̂(t) · x̂(t)
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and its instantaneous phase angle (Figure 1b) in the complex plane is

ϕ(t) = arctan
{
x̂(t)

x(t)

}

Figure 2 shows the envelope of signal y = 3e−4t sin(40πt). The following is
a Matlab script for finding that envelope.

t = 0:1/999:1;
x = 3*exp(-4*t).*sin(2*pi*20*t);
set(0,‘DefaultFigureColor’,[1 1 1]);
plot(x,‘Color’,‘k’,‘LineWidth’,2);
hold on;
y = hilbert(x);
A = sqrt((real(y).*real(y))+(imag(y).*imag(y)));
A = abs(y);
plot(A,‘Color’,‘k’,‘LineWidth’,3);
hold off;

Figure 1. a) Simple harmonic motion x(t) = A0 cosϕ = A0 cosω0t, b) Envelope
A(t) and instantaneous phase ϕ(t) of signal x(t)=A cosϕ(t) (modified
from Boashash, 1992a)

The instantaneous frequency is related to the rate of change of the
instantaneous phase:

f(t) =
1

2π

dϕ(t)

dt

because

ω = ϕ′ = 2πf
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The calculation of the instantaneous frequency for a given signal seems very
simple at first glance. In Matlab, there is a “hilbert” function that, when
applied to the signal x, gives us the analytical signal y = x + ix̂. However,
the use of the instruction:

f = diff(angle(hilbert(x)))

where the function angle returns the phase angles in radians, which lie
between −π and π, and diff(x) calculates differences between adjacent el-
ements, leads to unexpected results. Even for sinusoidal signals, we obtain
many large spikes in the negative direction. The cause of this is the noise
which is amplified by the diff operation. Therefore, as suggested on the
website of Matlab (MATLAB Newsgroup, 1997), this operation must be
carried out within the function angle, as it can be seen in the following
statement:

f = angle(conv(ones(1,5),y(2:length(y)).*conj(y(1:length(y)-1))))

As a result of using this method, for a signal with several frequencies you
will get only the maximum frequency, which we take for the instantaneous
frequency value.

Figure 2. The envelope of signal y = 3e−4t sin(40πt)
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Using the Hilbert transform, we can estimate the indicator of phase
synchronization from the difference of phases. Systems are synchronized in
a phase if:

ϕx,y(t) = |nϕx(t)−mϕy(t)| ≤ const, m, n = 1, 2, 3, . . .

where:
m and n – are integers, often m = n = 1, and
ϕx(t) and ϕy(t) – instantaneous phases of signals x(t) and y(t).

The phase synchronization index γH is defined as (Mormann et al.,
2000):

γH =
∣∣∣
〈
eiϕxy(t)

〉
t

∣∣∣ =
√
〈cosϕxy(t)〉2t + 〈cosϕxy(t)〉2t

where 〈 〉 is mean over time. If index γH is zero, the phases will not be
synchronized. Otherwise, if the value equals one, the phase difference will be
constant. This index is sensitive to phases but independent of the amplitude
of each signal.
Consider the Fourier spectrum of the analytic signal x(t) + ix̂(t):

Z(ω) = X(ω) + iX̂(ω) = X(ω) + i(−i sgn(ω))X(ω) = X(ω)(1 + sgn(ω))

that is to say

X(ω)(1 + sgn(ω)) =
{
2X(ω) dla ω ≥ 0
0 dla ω < 0

The Fourier spectrum of the analytic signal is a right-sided spectrum.
The phase synchronization calculated by means of the Hilbert transform

has been widely used in the analysis of biomedical signals:
– EEG – electroencephalographic (Sun et al., 2012),
– ECG – electrocardiographic (Prokhorov et al., 2003),
– EMG – electromyographic (Wang et al., 2015),
– MMG – magnetomyographic (Govindan et al., 2015).

Application in Uterine Bioelectrical Activity Signal Processing –
Diagnosis of Preterm Delivery

The data used in this study was recorded at the Department of Ob-
stetrics and Gynaecology, Medical Centre, Ljubljana, between 1997 and
2006. These signals were provided as an open dataset on the Physionet web
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Figure 3. Example of EHG signal of a “pre-term delivery time series” recorded
after the 26th week: 1st channel and 3rd channel

Figure 4. Example of EHG signal of a “term delivery time series” recorded
after the 26th week: 1st channel and 3rd channel
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Table 1. Values of synchronization indices γH between the first and the third
channels in the studied groups (according to the time of delivery and
the time of recording, *,**p < 0.001)

Time of PRE-TERM TERM Time of PRE-TERM TERM
recording (mean ± std) (mean ± std) recording (mean ± std) (mean ± std)
Before the 0.4050 ± 0.188* 0.5910 ± 0.162* After the 0.387 ± 0.154** 0.593 ± 0.144**
26th week (n=15) (n=121) 26th week (n=16) (n=91)

(Goldberger et al., 2000). The EHG records, including the Term-Preterm
Electrohysterogram Database, were collected from patients admitted to the
hospital with the diagnosis of pre-term labor. One record per pregnancy was
recorded. The records were 30 minutes long, had a sampling frequency (fs)
of 20Hz and consisted of three channels. The EHG signals were filtered
by a 0.3 Hz – 3 Hz band pass filter (Fele-Žorž et al., 2008). Groups of
records were analyzed according to the time of delivery: term (Figure 3),
pre-term (Figure 4), and according to the time of recording: before or after
the 26th week of gestation. Statistical analysis was performed by means of
the non-parametric Mann-Whitney test. Values of synchronization index γH
between the first and the third channel in the studied groups (before or after
the 26th week of gestation) are presented in Table 1. Significant differences
were found between the groups of records according to the time of delivery
(term, pre-term) for all times of recording (before, after the 26th week of
gestation).

Detection of Uterine Contractions from Electrohysterogram

Changes in electrical potentials are associated with mechanical activ-
ity, i.e., contractions of uterine muscles. Uterine contraction (TOCO – sig-
nals) may be detected from electrohysterogram by several methods inter
alia: filtration method, statistical method, higher-order zero crossing, and
Hilbert envelope (Horoba et al., 2001; Karlsson et al., 2007; Radhakrish-
nan et al., 2000b). Figure 5 shows a raw EHG signal with marked areas
of bioelectrical discharges (upper trace) and the corresponding uterine con-
tractions – TOCO signal (lower trace). The curve representing mechanical
activity was obtained by means of Hilbert envelope.
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Figure 5. Raw EHG signal with marked areas of bioelectrical discharges
(upper trace) and the corresponding uterine contractions –
TOCO signal (lower trace)

Conclusions

The above examples demonstrate the usefulness of the Hilbert trans-
form in the study of uterine electrohysterographic signals. The use of this
approach may provide diagnostically important information, valid in pre-
dicting preterm delivery.

Acknowledgments
This paper was supported by statutory funds S/WM/1/2014 from the Bia-
lystok University of Technology.

R E F E R E N C E S

Boashash, B. (1992a). Estimating and interpreting the instantaneous frequency of
a signal. I. Fundamentals. Proceedings of the IEEE, 80(4), 520–538.

Boashash, B. (1992b). Estimating and interpreting the instantaneous frequency of
a signal. II. Algorithms and applications. Proceedings of the IEEE, 80(4),
540–568.
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