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Abstract. The subject of the paper is a contemporary interpretation of J.S.
Mill’s elimination method using selected concepts of Zdzisław Pawlak’s decision
logic. The aim of the interpretation is to reformulate the original rules (canons)
of Mill’s induction so that they correspond more precisely to his concept of
cause as a complex sufficient condition. In the first part of the paper, we turn to
Mill’s writings and justify the thesis that in his understanding the cause is an
aggregation of circumstances, and not a single circumstance; next, we point out
that Mill’s original canons (for example the canon of agreement and the canon
of difference) do not allow causes-aggregations to be singled out from empirical
data. In the second part of this paper, we present such aspects of Z. Pawlak’s
decision logic that serve as the basis for the formalisation of the method of
eliminative induction. We describe exhaustively the schema of induction that
involves a gradual – divided into three stages – simplification of a set of impli-
cations corresponding to the observed dependencies [system of potential causes,
effect]. The simplification is deductive because it maintains consistency within
the set of implications. We show that such schema is ideal for isolating com-
plex causes (aggregations of circumstances), ultimately described using complex
conditional formulas of decision logic.

Keywords: Mill’s methods, eliminative induction, decision logic, concept of
cause, John Stuart Mill, Zdzisław Pawlak.

Introduction

John Stuart Mill is the author of well-known canons of eliminative in-

duction, often described in methodological literature. He is also the author
of a certain conditional concept of causality, in light of which these canons

should be considered. Typically, however, they are presented independently
from the concept of cause, which can somewhat falsify the idea of elimina-

tive induction associated with them. This is because Mill himself does not
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explicitly point to any link between his concept of cause and the canons of
induction.

As one reads A System of Logic, it seems that its author examines
the issue of induction in a manner partially inconsistent with his concept

of cause. Discussing the inductive method, comparing the preceding and
successive phenomena, he does not treat predecessors as a complex whole

consisting of circumstances causing the effect, but only as a single circum-
stance. But, according to his concept, the cause of a phenomenon should be

treated as an aggregation of circumstances – a whole preceding the effect.
With this approach, the induction method could be applied to search for

various causes of the same effect; and speaking the language of logic: to
search for complex alternatives, whose components would be conjunctions

of individual circumstances. In this paper, we will discuss (selectively) the
system of logic which ensures that such alternatives are found.
This paper is divided into two parts. The leading theme of the first part

(Chapter 1) is the analysis of Mill’s concept of cause, as well as the relations
of said concept with the (now historical) canons of induction. The subject

of the second part (Chapters 2 and 3) is the modern method of eliminative
induction, which we believe to be consistent with Mill’s concept of causality.

This method is a part of Zdzisław Pawlak’s decision logic, which has been
developed as a formal basis for data processing in computer systems. Despite

such a modern origin, this system has its theoretical roots in Mill’s logic,
and the induction schema proposed in this system has its distant prototype

in Mill’s canons.1

1. J.S. Mill’s concept of cause and eliminative induction

1.1. The concept of physical cause

The presence of causal relationships in the world directly rationalises
inductive science in Mill’s writings, and to deny them would negate this

doctrine. In his view, the only concept of cause that the theory of induction
needs is a notion that can be obtained through empirical experience. The

law of causality, which says that every phenomenon has its cause, is the main
pillar of inductive science in Mill’s writings. According to Mill, the inductive

process, by its nature is an examination of cases of causal relationships
(Mill, 1851, p. 381). A cause whose character is physical (and only those

may be the subject of scientific examination) can be established on the
basis of observation. This assertion is opposed to Hume’s belief that causal

relationships cannot be grasped through experience.
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In this regard, the physical cause2 is a physical phenomenon which af-
fects another physical phenomenon causing a certain physical effect therein.

Thus, the field of the causal relationship is a set of physical, material phe-
nomena that can be learned through sensory experience (and sometimes

described in terms of attributes). A causal relationship occurs when there
is a constant succession between phenomena and events that precede them,

and when it is necessary. The cause for a phenomenon is a predecessor
or a set of predecessors, after which the phenomenon occurs invariably

and inevitably (unconditionally) (Mill, 1851, p. 352). The phenomenon oc-
curs unconditionally after the occurrence of a certain fact, if the said phe-

nomenon would not have occurred but for that fact. For example, food is
the cause of a man’s death, if he would not have died had he not eaten

that food.

1.2. Cause as a complex sufficient condition

According to Mill, invariable succession occurs between a successor and
a set of predecessors. For practical or psychological reasons, we often single

out one of the predecessors and call it the cause, while other ones are called
the conditions. We recognise that condition to be the cause, whose partici-

pation in inducing the effect seems most evident, or the one on which we
focus at a given time. For example, if a person eats food and consequently

dies, we are, according to Mill, liable to say that the cause of death was
eating the food. However, it does not necessarily mean that there is an in-

variable relationship between eating that food and death. After all, while
one person may die after eating food, another will stay alive after eating

the same food. Survival will depend, inter alia, on the weight of the person,
weather conditions, state of health, etc. If the man who ate the poisonous

food weighed 140 kilograms and only consumed a small amount of toxin,
he might not die, even though the same amount would kill a person with

a significantly lower body weight. There is therefore a causal relationship
between the whole of the circumstances and the phenomenon that invariably

follows them (Mill, 1851, p. 340) – in our example it would be all the cir-
cumstances surrounding eating poisonous mushrooms and the phenomenon

of death that invariably follows.
The whole of the circumstances is a set of predecessors that can be

treated either mereologically as a physical whole, or distributively, as a struc-
ture defined on physical objects (individual conditions).3 Therefore, the real

cause is the whole of these predecessors. No isolated condition, which is
a single phenomenon, is more closely related to the effect than any of the

other conditions. Each of them is just as necessary for the effect to occur.
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The whole of the phenomena of nature is a mixture of unconditional
consequences of the preceding set of causes of a permanent character. Mill

argued that invariable succession occurs between each phenomenon occur-
ring in nature, and the phenomenon that preceded it (Mill, 1851, p. 339).

All phenomena without exception, aside from primary causes, are either
direct or indirect results of those primary facts or their connections. Con-

sequently, all phenomena in the world are somehow conditioned. For every
phenomenon, there is another phenomenon or a set of phenomena that can

be called a confluence of positive and negative conditions. By negative con-
dition we mean the absence of causes that could counteract the occurrence

of the effect. Every negative phenomenon is the same as the absence (non-
existence) of a positive phenomenon that could interfere with the occur-

rence of the effect. If a phenomenon occurs invariably, there is a certain set
of positive phenomena, provided that there are no other positive phenom-
ena. A negative condition should be understood, therefore, as the absence

of a positive phenomenon (Mill, 1851, pp. 345–346). Since there are many
possibilities of phenomena that could prevent the effect from occurring,

and to enumerate them all is practically impossible, therefore they can be
given a single, collective name and described as the absence of counteracting

causes. For example, a sentry momentarily leaving his post in the barracks
in the case of an attack by enemy troops can be considered the cause of the

soldiers’ surprise (Mill, 1851, p. 343).
According to Mill, for every phenomenon there is some collection of

phenomena that is a confluence of positive and negative conditions, whose
occurrence is always followed by that phenomenon, whereby those condi-

tions must occur in a convergent manner. The word “convergent” does not
mean “simultaneous” here. The convergence of conditions can be spread

over a certain period and consist in the phenomena occurring in a sequence.
For instance, nowadays it is considered that driving under the influence of

alcohol is often the cause of accidents. In Mill’s terms, drinking and driving
a car would be a convergent occurrence of the condition of a road accident

(although these two conditions alone are not a sufficient condition).
Mill argued that the reason why it is not customary to list every possi-

ble condition is either that they are assumed by default, or because, due to
the purpose of the examination, they can be overlooked without any con-

sequences (Mill, 1851, p. 341). It is also possible not to discover what that
convergence ultimately is. Disclosed herein is indeed the problem of the se-

lection criteria of conditions that should be included as the aforementioned
sufficient condition. Bearing in mind that a whole set of phenomena or

circumstances has an impact on the occurrence of a certain event, the ques-
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tion arises on the criterion of separating the whole of the conditions from
other phenomena. For if we believe that all phenomena remain in causal

relationships with some other phenomena, then with a given phenomenon,
occurring here and now, they can be considered the result of the whole of

the preceding phenomena. Such a solution would bring nothing to the issue
of causality and would be completely futile.

1.3. Distinguished class of phenomena

In research practice, we isolate certain phenomena groups from other
phenomena, which in the light of our knowledge, we consider to be unre-

lated to the examined phenomena (treated as effects). According to Mill,
“The whole of the present facts are the infallible result of all past facts, and

more immediately of all the facts which existed at the moment previous”
(Mill, 1851, p. 382). This approach is impossible to employ in the search
for causes and requires one to remain only within a narrow confluence of

phenomena. The class of distinguished phenomena always occurs among
other phenomena that, theoretically speaking, could affect the explicated

result. It seems impossible to ascertain the absence of indirect relationships
between the distinguished class of phenomena and phenomena co-occurring

with them that are not taken into account, and the impact of the latter on
the effect. In practice, however, it is impossible to consider all the phenom-

ena preceding the effect. Hence there is a need to narrow down the set of
phenomena to a certain distinguished class.

Distinguishing the class of phenomena preceding the effect brings to
mind the concept of a relatively isolated system, which was introduced by

Ingarden to considerations of causality (Ingarden, 1981).4 It is a necessary
procedure, because otherwise it should be assumed that a phenomenon has

for its cause some indefinite confluence of preceding phenomena, which, in
extreme interpretation, assuming that the whole world of nature is linked

by causal relationships, could be called the preceding state of the world. We
assume here clearly that there are a number of conditions essential for the

occurrence of a given phenomenon.

1.4. Necessary conditions and sufficient condition

If the cause is always some whole of circumstances, which are invari-

ably and necessarily followed by a certain effect, then if it is known that the
subsequent effect is affected by several circumstances, they should be con-

sidered as one active cause. Thus, several active phenomena causing some
effect comprise one complex cause. Such a cause can be called a sufficient

condition consisting of certain necessary conditions.
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In Mill’s writings, there are two types of confluence of phenomena
comprising the cause. The first is a set of necessary conditions compris-

ing the sufficient condition, whose occurrence is followed by the effect of
the same kind. In this case, the total value of the effect, say C, cause A

and cause B is the sum of these causes. For example, the movement of
a billiard ball is the result of two forces affecting it – the force of grav-

ity and the force of impact of the cue. Each of these forces has a cer-
tain size and direction, which affect its value. The speed and direction

of the ball set in motion depends on them. Secondly, it is a set of nec-
essary conditions that make up a sufficient condition, followed by an ef-

fect of a different kind than each of the individual phenomena separately.
For example, a combination of two chemicals – hydrogen and oxygen –

results in a qualitatively new substance that is nothing like either of
the elements. Mill believed that he distinguished regularities that in the
first type of relationship operate jointly without change, and regulari-

ties that cease to function as a result of a concurrence and are replaced
by new ones.

This theory undermined the traditional philosophical belief that effects
must be proportionate to their causes. It was in fact the axiom of causality,

which fails, according to Mill, where the convergence of causes leads to
a change in the attributes of the body, and the effect falls under the new

laws, which are unlike those applied to the causes (Mill, 1851, pp. 380–
381).

The concurrence of causes entails active agents interacting together in
a specific set of passive conditions. It should be assumed that Mill did not

attribute to them a more significant role than that of passive agents. The
change of both passive and active conditions causes a different effect to

occur. If we assume that there are two agents affecting a certain set of co-
occurring passive conditions, they are followed by a specific effect. This effect

would differ from the effect resulting from one active preceding agent that
would not be connected with another, with the set of conditions identical in

all other respects. The combined effect of the two active agents is different
from the effect of each of them individually (Mill, 1851, p. 371). For example,

two identical forces that affect an object cause that object to move. Similarly,
each of them separately causes that object to move (although not necessarily

so in each case). As a result of the force, the object moves in both cases;
however, the motion of the object has a different value (i.e. it has a different

speed or direction) when one or the other force affects it individually, and
a different one when there are two forces acting at the same time.

118



A Decision Logic Approach to Mill’s Eliminative Induction

1.5. Causal relationship as functional relation

This question raises the issue of the branching of causes and effects,

that is, whether a cause of a certain kind can have a cause of only one type
and whether a cause of a particular type can produce only one type of effect.

Whether or not the causal relationship is some type of functional assign-
ment has operational significance. Unambiguous assignment poses research

problems for, respectively, detecting the causes of events and predicting the
effects of phenomena.

According to Mill, various phenomena which have no relation to one
another whatsoever may depend on one and the same factor. After some

event or some fact, two different types of effects may occur in another and
the same time. Mill writes that “the sun produces the celestial motions;

it produces daylight, and it produces heat,” and further “when the same
phenomenon is followed [...] by effects of different and dissimilar orders, it
is usual to say that each different sort of effect is produced by a different

property of the cause” (Mill 1851, p. 355–356). The sun can actually be
the cause of daylight on earth and the cause of the elliptical motion of the

earth around the sun. Assuming, however, the concept of cause in the strict
sense, as an aggregation, i.e. a concurrence of conditions necessary for the

occurrence of some effect, we see that the sun would not be the cause of
the motion of the earth if the latter did not have a certain mass; it would

not be the cause of daylight on earth, if the earth did not have its own
atmosphere with air whose particles reflect light waves. The cause of motion

of the earth is therefore both the mass of the sun and the mass of the earth,
and the cause of daylight on earth – sunlight and air particles on earth.

One can also repeat after Mill that each of these effects is the result of
a separate attribute of the sun – its mass and light, respectively. Mill uses

the term “cause” rather ambiguously, sometimes treating the cause as the
whole of circumstances preceding the effect, and at other times when he

speaks about the cause as the active agent occurring in these circumstances
(Krajewski, 1967, pp. 56–57). Thus, it seems that there are no reasons to

assume that, according to Mill, the same cause, in the same respect, could
cause two different effects.

In contrast, one and the same effect can have many different causes,
in which logical notation would be conveyed as their alternative. Different

causes incite motion, different causes underlie the emergence of some kind of
experience, and finally, different causes may lead to death. In consequence,

an effect of some sort may arise as a result of some particular cause, but
it can also arise without it – as a result of some other cause (Mill, 1851,

pp. 440–441). The consequence of this is the unreliability of canons of elimi-
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native induction discussed below, because when we restrict the number of
output phenomena in the study of the cause, we cannot be sure of the verac-

ity of the conclusions. Noting the regularity of the sequence of phenomena,
we cannot ultimately be certain that there is no other configuration of phe-

nomena, which in fact is the cause of the effect we are investigating.

1.6. Canons of induction

Mill’s method for detecting causal relationships has five variants, the

so-called canons, widely described in the literature.5 Inference based on
Mill’s canons is categorised as inference by eliminative induction.6 Underly-

ing the schemes cited by Mill is the rule of tollendo ponens: A∨B, and ¬A,
thus B. This rule can be interpreted as a rule of keeping non-contradiction,

which involves the removal of contradictory statements until consistency
is achieved.7 This is more evident in the case of complex alternative. For
example, A1 ∨A2∨A3 ∨A4∨A5, and, ¬A1∧¬A2∧¬A3, therefore A4∨A5.

The principle of one of the canons, the most significant one for the
rest of the paper, the so-called canon (method) of agreement, is as follows:

If two or more instances of the phenomenon under investigation have only
one circumstance in common, the circumstance which alone all the instances

agree, is the cause or effect of the given phenomenon (Mill, 1851, p. 396). We
denote with uppercase letters A1, A2, A3, . . . , An certain observational phe-

nomena preceding other phenomena and, lowercase letters b1, b2, b3, . . . , bn
– the observational phenomena that occur after them. Watching sets of

phenomena, one can search for causes or effects. The method used for this
purpose is a method of eliminating phenomena.

Mill’s canons are generally known. In this paper, we address the canon
of agreement and canon of difference as the most natural starting point for

the elimination method in decision logic presented below. Let us assume that
we find during observation O1 that phenomena A1, A2, A3, occur, followed

by b1, b2, b3. Then, we find in observation O2 that phenomena A1, A2, A4

occur, followed by b2, b3, b4, and during observation O3 – A2, A3, A4 occur,

followed by b2, b3, b4. Writing that in columns, we have as follows:

(O1) A1, A2, A3 b1, b2, b3

(O2) A1, A2, A4 b1, b2, b4

(O3) A2, A3, A4 b2, b3, b4

The phenomena whose cause we are searching for occur together with other

phenomena. However, we are interested in one phenomenon that we explain;
it is written as b2 above as the common element in all observations (thus

the symbol b2 is written in bold).
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Canons are used to search for causal relationships. We assume that the
phenomenon whose cause we seek is known (b2), while the phenomenon

that constitutes the cause is unknown. We assume hypotheses according to
which a single phenomenon Ak is invariably followed by phenomenon b2,

where k = 1, 2, 3, 4. In accordance with Mill’s methodology, we assume that
if after a certain phenomenon another phenomenon always occurs, there is

a necessary relationship between them. Invariably consecutive phenomena
can be considered to be linked by causal relationship R. Finding the cause

of a phenomenon means discovering some phenomenon that invariably pre-
cedes it, and eliminating phenomena that do not always precede it. A causal

relationship occurs between such phenomena that always co-exist with one
another, or between such phenomena that whenever one of them does not

occur, the other does not occur either.
Mill’s canons can be written in the form of tables, where the number 1

symbolises the occurrence of a phenomenon, while the number 0 – the ab-

sence of phenomenon (it has been written this way in light of the second
part of this paper):

A1 A2 A3 A4 b2

O1 1 1 1 0 1

O2 1 1 0 1 1

O3 0 1 1 1 1

Referring to the table above, we can say that elimination entails omitting
such phenomena Ak, for which there is 0 in any row of the table, that is Ak

does not occur, while b2 occurs. The logical principle of this abbreviated
procedure is explained in the footnote.8

By using the canon of difference, we establish the occurrence of a cause-
and-effect relationship on the basis of the absence of a certain pair of con-

secutive events, which in other circumstances always occurred successively.
Therefore, we add further observations, which, in some cases, b2 does not

occur. Let us assume that further observations took the following form:

(O4) A1, A2, A3 b2

(O5) A1, A2, A4 b2

(O6) A1, A3, A4 (no b2)

Similarly as in the case of the canon of agreement, we can convey them in

a tabular form:
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A1 A2 A3 A4 b2

O1 1 1 1 0 1

O2 1 1 0 1 1

O3 1 0 1 1 0

Note that in the table illustrating the canon of difference we allow a sym-
bol of absence of phenomenon b2 (being explained). This is an important

step towards the modern method of elimination described in the next chap-
ter, which involves simplifying decision rules with different successors (for

example 0 and 1).
If within a certain isolated system all the possible phenomena preceding

a certain examined phenomenon are given, then Mill’s eliminative induction

is complete and as such is deductive inference. However, only in a handful
of cases of inductive inference can all the predecessors be distinguished.

Firstly, in practice, we narrow down the number of inference premises, be-
cause we cannot indicate all the circumstances preceding the phenomenon

whose cause we are attempting to establish. Secondly, according to Mill’s
concept of causality, one would have to take into account complex phenom-

ena (Mill, 1851, pp. 372–373) – drinking sour milk can trigger one effect,
eating pickled cucumbers another – and yet another can be provoked by

drinking sour milk and eating pickled cucumbers at the same time (Aj-
dukiewicz, 1974, p. 167). For these material reasons, eliminative inference is

generally non-deductive inference, although its formal schema is deductive
in character.

For the purposes of the rest of the article, the following issue should
be explained. In the case of Mill’s original canons (for example the canon

of agreement described above), it is assumed that all such significant com-
binations of the preceding phenomena have been observed that guarantee

a deductive isolation of a single cause Ak (the ones on which we selectively
focus attention). But what to do if not all such combinations are given?

Such a situation cannot be ruled out, and Mill’s original canons do not
describe it. In many cases, therefore, using them cannot deductively iso-

late a single cause (for example A2). However, if we allow – according to
Mill’s concept of causality – complex causes, we can isolate such a complex

cause. The solution of this problem is provided by decision logic discussed
further.
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2. Selected elements of decision logic

Decision logic mentioned above (in short: DL) is considered pragmat-
ically in this article, that is, as an effective tool for describing eliminative

induction. A comprehensive description of this system can be found both
in the original work of Zdzisław Pawlak (Pawlak, 1991), as well as in vari-

ous secondary studies, for example (Bolc, Cytowski, Stacewicz, 1996). Our
goal is not to duplicate the contents contained therein, but to isolate and

clarify only those notions that allow us to understand the essence of the
new – compared to traditional Millean approaches – the schema of elimi-

native induction. It is extremely important for the conclusion of the article
that this new schema remains consistent with Mill’s concept of causality (as

described above).

2.1. Language and syntax

The language of decision logic (DL) is used to describe a distinguished
set of objects (for example items, people, or events) by a finite num-

ber of attributes and a finite number of their values. For the purposes
of this text, these attributes will be denoted by lowercase letters, that is

a, b, c, d, etc., and their values with digits, that is 0, 1, 2, 3, etc. (which
complies with the original notation system of Z. Pawlak). At the same time,

we shall assume that each attribute has a strictly defined set of allowed
values.

The listed symbols allow us to build atomic formulas of the (attribute,
value) type, which in a specific case means that a certain object has an

attribute of such and such value, for example, a given object is red. Using
the designations adopted above, atomic formulas are, for example: (b, 2),

b2 in short; and (c, 0), c0 in short.
Using atomic formulas we create complex formulas, and the rules for

their construction and available symbols of logical connectives are the same
as in the classical propositional calculus. Here are two simple examples: the

formula (b, 2) ∧ (c, 0), or b2 ∧ c0, is a conjunction of two simple formulas;
while the formula (b, 2) ∨ (c, 0) → (a, 0), or b2 ∨ c0 → a0, is an implication

with a complex predecessor and simple successor.

2.2. Extensions of formulas

In actual applications of DL logic, such as undoubtedly eliminative in-

duction, interpreted systems of formulas are considered; that is, such sys-
tems in which it is known which described objects satisfy individual for-

mulas (they satisfy them within a specific domain in a relatively isolated
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system). In other words: we know what values of attributes (or their logical
combinations) are assigned to individual objects.9

A set of objects that satisfy a given formula z (simple or complex) is
called its extension or meaning, and is denoted as |z|. For example, if it is
found that the objects, x2, x3, x6 (for example specific cars) demonstrate
an attribute c with a value of 1 (for example the colour red), the extensions

of formula c1, or |c1|, shall be the set {x2, x3, x6}.
Extensions of complex formulas are determined in accordance with

the conventional meaning of logical connectives, known from first-order
predicate logic. For example, if the formulas z1 = (a, 0) and z2 = (c, 1)

are satisfied, respectively, by objects from the sets Z1 = {x1, x4} and
Z2 = {x1, x2, x6}, then the extension of the conjunction z1 ∧ z2 is the set

Z1 ∩ Z2 = {x1}.
The exact rules for the determination of extension of complex formu-

las are presented in the table (Z1 and Z2 are, respectively, extensions of

formulas z1 and z2).10

negation |(z1)| = (Z1)
′

conjunction |z1 ∧ z2| = Z1 ∩ Z2

alternative (disjunction) |z1 ∨ z2| = Z1 ∪ Z2

implication |z1 → z2| = (Z1)
′ ∪ Z2

equivalence |z1 ↔ z2| = ((Z1)
′ ∪ Z2) ∩ (Z1 ∪ (Z2)

′)

2.3. Tabular representation of formulas

A particularly transparent method of representing DL logic formulas,

as well as their extensions, is the tabular method. Information in the table
can be interpreted as the results of observations – observations that involve

recording the attributes of individually studied objects. This idea will be
presented by a simple example.

Suppose we are given table T.

objects/attributes a b c d

x1 1 0 1 0

x2 2 1 2 1

x3 1 2 1 1
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– Subsequent rows of the table can be interpreted as conjunctive descrip-
tions of subsequent objects from x1 to x3; for example, the first row tells

us that object x1 demonstrates attribute a with value 1 (for example
colour: red), attribute b with value 0 (for example shape: longitudinal),

attribute c with value 1 (for example size: small), and attribute d with
value 0 (for example hardness: high).

– As explained above, subsequent rows of a table should be written as
conjunctions; for example the first row corresponds to the conjunction

a1 ∧ b0 ∧ c1 ∧ d0.
– Subsequent conjunctions are satisfied by subsequent objects; for exam-

ple, the first conjunction a1∧b0∧c1∧d0 is satisfied by the first object x1,
and the second conjunction a2∧b1∧c2∧d1 is satisfied by object x2. This

issue can be described more narrowly; namely that individual compo-
nents of a given conjunction (that is simple formulas) are satisfied by
an object specified in the row; for example simple formula d1 is satisfied

by objects x2 and x3 (for this reason set {x2, x3} is an extension of d1).
As the above explanation indicates, propositional descriptions of objects

(using DL logic formulas) can be treated interchangeably with their tabular
description; particularly important for us is the description of implications

presented below.

2.4. Decision rules

In the analysis of the notion of eliminative induction, the most impor-

tant types of formulas are special kinds of implications, called decision rules.
Such rules are used to make decisions about the values of distinguished at-

tributes, the so-called decision attributes, on the basis of the value of other
attributes, so-called condition attributes.11 Therefore, whether an implica-

tion belongs to the decision rules set or not depends on the prior division of
attributes into condition and decision attributes. For example, if in a set of

attributes {a, b, c, d} we choose attribute d as the decision attribute (and the
rest as condition attributes), then implication a1 ∧ b0 → d0 is the decision

rule, and implication a1 ∧ b0 → c1 is not.
Among decision rules, we need to further distinguish conjunctive rules

– that is, those in whose predecessors there are conjunctions of simple for-
mulas; and disjunctive rules – that is those in whose predecessors there are

alternatives (disjunctions) of simple formulas or their conjunctions. For ex-
ample, rule a1 ∧ b0 → d0 is a conjunctive rule, and rule a0 ∨ (a1 ∧ b0) → d1
– a disjunctive one.
In the induction schema presented further, what plays the most im-

portant role is the issue of the consistency of conjunction rules. Two rules
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of this kind are called inconsistent, if they have the same predecessor but
different successors. Otherwise, they are referred to as consistent. And so:

rules a1∧b0 → d0 and a1∧b0 → d1 are inconsistent, while rules a1∧b0 → d0
and a1 ∧ b2 → d0 are consistent.

The discussed division applies also to the sets of rules: a set of rules R is
defined as inconsistent if it contains at least two inconsistent rules; otherwise

it is called consistent.
Each set of conjunctive decision rules has a clear graphical interpre-

tation as the so-called decision table. For example, a set of three rules
(a1 ∧ b0 ∧ c1 → d0), (a2 ∧ b1 ∧ c2 → d1), and (a1 ∧ b2 ∧ c1 → d1) can be

summarised in the table below, which, in addition to the rules themselves,
contains additional information regarding objects (for example events or

observations) for which they are satisfied.

objects/attributes a b c

x1 1 0 1

x2 2 1 2

x3 1 2 1

Rows in the table above correspond to subsequent rules, white columns –
subsequent attributes of the predecessors of the rules, and the grey col-

umn – the attribute that occurs in the successor of all rules (there may be
more decision attributes, and thus elements of the successors of the rules).

In addition, in the first column, objects that satisfy subsequent rules are
indicated.

From the perspective of eliminative induction, decision tables, as well
as their respective rules, should be interpreted empirically: each row of the

table describes a separate result of observation, during which it has been
concluded that such and such values of condition attributes are accompanied

by such and such values of decision attributes.

2.5. Cores and reducts of rules

In order to understand the schema of eliminative induction below, it

is of utmost importance to know the concepts directly related to the sim-
plification of rules, that is, the concepts of core and reduct. Their mean-

ing will become clear in the course of discussing the example of elimina-
tive induction (see below); however, we shall provide the necessary defini-

tions now.
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A set of rules R′ is called the reduct of a set of rules R (due to the set
of condition attributes), which is designated as RED(R), if two conditions

are satisfied: (1) there are no inconsistent rules in R′; (2) all attributes in
predecessors of rules R′ are indispensable (that is the omission of even one of

them would result in an inconsistent set of rules, and thus a set comprising
of at least two inconsistent rules). Therefore, set RED(R) consists usually

of simpler rules than rules from set R – simpler in the sense that they do
not contain certain redundant (that is, dispensable) condition attributes.

A set of attributes found in all the predecessors of rules from RED(R)
can be called the reduct of condition attributes of the set of rules R and

marked as RDC(R).12 A set of indispensable attributes – those attributes
that need to occur in every reduct – is called the core of set R and is written

as CORE(R).
If we refer to the example from the previous point, the analysis of the

table shows that: there are two reducts of condition attributes, RDC1 =

{a, b} and RDC2 = {b, c}; and hence, there are two reducts of the set
of rules: RED1 = {(a1 ∧ b0 → d0), (a2 ∧ b1 → d1), (a1 ∧ b2 → d1)} and
RED2 = {(b0∧c1 → d0), (b1∧c2 → d1), (b2∧c1 → d1)}. In contrast, the core
of set R, which is a set of attributes found in all reducts, is CORE(R) = {b}
(because {b} = {a, b} ∩ {b, c}).
The concept of reduct and core for individual rules is defined in a similar

way as above. Rule r′ is called the reduct of rule r in a set of rules R, which
is marked as red(r),13 if two conditions are satisfied: (1) rule r′ is consistent

with other rules in the set R, and (2) all attributes in the predecessor of r′

are indispensable (their removal would result in inconsistency with other

rules in the set R).
A set of attributes present in the predecessor of rule r can be called

the reduct of condition attributes of rule r and marked as rdc(r). A set of in-
dispensable attributes in the predecessor of rule r – the attributes that must

occur in every reduct – is called the core of rule r and marked as core(r).
The description of the final stage of eliminative induction requires one

more notion of reduct to be introduced, namely that of a disjunctive rule.
Let us remind that a disjunctive rule means any implication p → q, whose

predecessor p contains an alternative of simple formulas or conjunctions of
simple formulas. It can be written as follows: p1 ∨ p2 ∨ . . .∨ pn → q (index i

does not denote the value of an attribute in this case, but the subsequent
number of the component of the alternative).

In a given set of decision rules R, disjunctive rule r might be too ex-
tensive; that is, not all components of alternative p must be indispensable

to make a decision on the values of decision attributes. Apart from some
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of these components, a rule just as “good” can be obtained, albeit a sim-
pler one. This observation leads directly to the concept of reduct of the

disjunctive rule.
Rule r′: p′ → q is called the reduct of the disjunctive rule r:

p1 ∨ p2 ∨ . . . ∨ pn → q, if three conditions are satisfied:

(1) p′ contains only some of the components p1, p2, . . . , pn

(2) |p′| = |p| = |q| (equality of extension)

(3) p′ has the smallest possible number of components from the set
{p1, p2, . . . , pn}

3. Eliminative induction schema in decision logic

3.1. General description and schema

The concepts introduced above, as well as their clear tabular interpre-
tation, will now be used to describe eliminative induction – the description

which has a de facto algorithmic form, which in turn makes it possible for
the procedure it describes to be automated.14

Suppose that there is a given set of conjunctive decision rules R, which
can be interpreted – as we know – using a decision table. Let us remind

that such a set is most often created by way of observation: in subsequent
cases it has been registered that the respective values of condition attributes

(pre-selected, and thus strictly defined) were accompanied by appropriate
combinations of decision attributes (also strictly defined).

With these assumptions, the task of eliminative induction (EI) is as
follows: to minimise the number of rules (table rows) and their elements

(table columns and/or their individual components) – in such a way, how-
ever, that will allow us to obtain a consistent set R′ of the same decision

power as set R.15

This task is accomplished in stages: (1) first, we determine the attributes

that can be eliminated from all the rules (meaning that some condition
columns in the decision table are removed); (2) then, we simplify individual

conjunction rules in the pre-reduced set R, eliminating the redundant fac-
tors (from predecessors of rules); (3) finally, we group rules with the same

successors, use them to create disjunction rules, and simplify their prede-
cessors. As a result, set R is reduced to the maximum, where some rules are

disjunctive and other conjunctive.
Represented using the concept of reduct introduced above, the descrip-

tion would be as follows: (1) first, we find reducts of the initial set R;
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(2) then, having limited ourselves to only one reduct R′, we find reducts of
individual rules from R′; (3) next, we create disjunction rules with different

successors and find their reducts. The results of such a procedure are the
final reducts of disjunctive rules.

In a quasi-algorithmic form, the schema of eliminative induction is as
follows.

SCHEMA OF ELIMINATIVE INDUCTION

1. Eliminate dispensable attributes in set R
1a. Determine dispensable attributes in R, the core CORE(R) and

reducts REDi(R).
1b. Select one REDi(R) and proceed to step 2 for that reduct (or R′)

2. Eliminate conjunctive rules components
2a. For each rule ri from set R

′ find core core(ri).

2b. For each rule ri from set R
′ find a set of its reducts RED(ri) =

{ri1, ri2 . . .}.
2c. Create a set composed of all reducts of all rules (or R′′).

3. Eliminate disjunctive rules components

3a. For each unique successor q of rules from R′′ create a disjunctive
rule;

3b. Find reducts of subsequent disjunctive rules.

3.2. Example of elimination

Suppose we are given the following decision table, which represents the
set of 7 decision rules (further simplified).16

The initial decision table T has the following form:

a b c d e

x1 1 0 0 1 1

x2 1 0 0 0 1

x3 0 0 0 0 0

x4 1 1 0 1 0

x5 1 1 0 2 2

x6 2 2 0 2 2

x7 2 2 2 2 2
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Attributes a, b, c, and d are condition attributes, while attribute e is
a decision attribute. Each row in the table corresponds to some decision

rule; for example, the first row corresponds to rule r1: a1∧b0∧c0∧d1 → e1.17

Below we present the subsequent steps of elimination (according to the

schema in 3.1), whose aim is to reduce the number of rules and number of
components in successors of rules (while maintaining the original decision

power of the whole system).
Step 1 (simplification of the whole set of rules; eliminating attributes/

columns)
Dispensable attributes: c.

Indispensable attributes: a, b, d; CORE(R) = {a, b, d}.
Reduct (there is only one): RED(R) = {a, b, d}.
The new table T ′ (after eliminating attribute c)

a b d e

x1 1 0 1 1

x2 1 0 0 1

x3 0 0 0 0

x4 1 1 1 0

x5 1 1 2 2

x6 2 2 2 2

x7 2 2 2 2

Step 2 (eliminating components from predecessors of rules)
For individual rules ri – corresponding to the rows in the table above –

dispensable attributes, cores and reducts should be determined. The results
are summarised in the table.

Rules Dispensable attributes Cores of rules Reducts

r1 a, d {b} {b, a}, {b, d}

r2 b, d {a} {a, b}, {a, d}

r3 b, d {a} {a}

r4 a {b, d} {b, d}

r5 a, b {d} {d}

r6 a, b, d ∅ {a}, {b}, {d}
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Reducts of individual rules ri, i.e. rij (rij is the j-th reduct of i-th rule),
are as follows (x is the lack of attribute in a given rule):18

Reducts of rules a b d e

r11 1 0 × 1

r12 × 0 1 1

r21 1 0 × 1

r22 1 × 0 1

r31 0 × × 0

r41 × 1 1 0

r51 × × 2 2

r61 2 × × 2

r62 × 2 × 2

r63 × × 2 2

Step 3 (eliminating components of final rules)
In the examined example, the final rule is a rule with successor ek

and predecessor being an alternative of all predecessors of rules rij with
successor ek.

Simplifying the final rule, that is determining its reduct, entails the
removal of unnecessary components of the alternative from its predecessor.

In determining the reduct, it is necessary to define the meanings/extensions
of formulas f , that is sets |f |.
Subsequent final disjunctive rules are as follows:

z1: p1 → q1, i.e. (a1 ∧ b0) ∨ (b0 ∧ d1) ∨ (a1 ∧ d0) → e1

z2: p2 → q2, i.e. a0 ∨ (b1 ∧ d1) → e0

z3: p3 → q3, i.e. a2 ∨ b2 ∨ d2 → e2

Each of them should be simplified by determining a suitable reduct (see 2.5.).
For example, we present subsequent steps of simplifying the rule z1.

Rule z1: p1 → q1, so (a1 ∧ b0) ∨ (b0 ∧ d1) ∨ (a1 ∧ d0) → e1
Successor of the rule and its extension: q1 = e1, |q1| = {x1, x2}
Predecessor of the rule and its extension: p1 = (a1 ∧ b0) ∨ (b0 ∧ d1) ∨

(a1 ∧ d0), |p1| = {x1, x2}
Subsequent components of the predecessor and their extensions:
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p11 = (a1 ∧ b0), |p11| = {x1, x2}

p12 = (b0 ∧ d1), |p12| = {x2}

p13 = (a1 ∧ d0), |p13| = {x2}

Dispensable components: {p12, p13}

Indispensable component: p11
Reduct of the rule: p11 → q1, i.e. a1 ∧ b0 → e1
The next two final rules are simplified in much the same way. Finally,

after complete elimination, we obtain the following set of three decision rules
(rather than the original seven):

a1 ∧ b0 → e1

a0 ∨ (b1 ∧ d1) → e0

d2 → e2

3.3. Causal interpretation of the elimination schema

In order to link the presented schema with the problem of detecting
causal relationships, which in Mill’s terms has been analysed in detail in

Chapter 1, one should assume the following rules of interpretation:
a) Distinguished attributes and their values are equivalent to Mill’s dis-

tinguished class of phenomena (it is an invariable set of attributes and
their values).

b) Condition attributes are interpreted as potential components of causes
being sought (causes that are complex wholes); while decision attributes

– as effects.
c) Decision rules (decision table rows) are interpreted as results of ob-

servation, from which the actual causes should be extracted – that is,
causes consistent with all observations under the distinguished class of

phenomena.
d) The result of elimination is a complex cause that is sought (as op-

posed to simple causes in Mill’s canons), described by a complex logical
formula, which is usually (though not necessarily so) an alternative.

A complex cause consists of different condition attributes with specific
values.

The example discussed in the previous chapter concerned a situation
in which initially we have taken into account four condition attributes

and one decision attribute (which describe a distinguished class of phe-
nomena), made seven observations (seven preliminary decision rules were

recorded), and then, using eliminative induction divided into three steps,
we isolated two complex causes and one simple cause of three consecutive

events (effects).
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It should be emphasised that for a given set of observations, there can
be more than one result of elimination based on the DL logic – depending,

for example, what reduct of a set of rules is selected in step 1 of the elim-
ination. It seems that all possible results can be treated as components of

the logical alternative. Ultimately, therefore, the broadest convergence of
causes consistent with observations is a certain alternative of the results of

elimination initiated by the choice of reduct.19

In conclusion, let us note that the use of decision logic presented above

applies to a set of individual observations, which correspond to individual
propositions (implications) and not general ones.20 From the implications

representing observations we eliminate (deductively) redundant components
of the predecessors, assuming – according to the causal interpretation of the

schema – that they are not causally related to successors. As a result of the
elimination, we obtain an individual formula (most often complex), whose
predecessor we deem to be the cause of the successor – one that is well de-

fined in the light of observations made. Generalisation of the formula thus
obtained (that is, the assertion that it occurs for every possible observa-

tion of a given type) is a certain additional activity that goes beyond the
presented elimination schema. Such generalisation – being de facto a cer-

tain human interpretation of the result – makes the elimination method an
unreliable method of inference.

Due to the elimination methodology described above, the language of
decision logic need not include quantifiers, and consequently it need not

allow general formulas. Still, a natural extension of the presented solu-
tion seems to be such a method of elimination that takes into account

general formulas (as the object of elimination). In this context, it ap-
plies to certain working hypotheses which are generalisations of the results

of elimination based on DL logic. In order to choose from among alter-
natives of such hypotheses one that remains consistent with subsequent

(new) observations, one would have to use a different elimination schema
based on formalism allowing the use of quantifiers.21 This, however, imme-

diately raises the question whether a better result (i.e. a better founded
hypothesis) could not be obtained by means of decision logic? Would it

not suffice to add the above-mentioned subsequent observations to the set
of observations made thus far, and then apply the elimination method de-

scribed herein? Such research questions are worth addressing in another
paper.
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Summary

In A System of Logic, Mill presents the empirical concept of causal-
ity, which is a prerequisite for the reasonableness of the inductive method.

The rejection of the idea of the existence of causal relationships between
phenomena would render the canons of induction pointless.

In Mill’s writings, cause cannot be understood as a single phenomenon.22

We assume that cause is a specific convergence of phenomena. From this

point of view, evidence of inferences described by Mill’s canons of eliminative
induction can be treated as a set of observation propositions that involve

convergences of different circumstances.
Since Mill wrote of a convergence of phenomena that make up a cause,

and claimed that among all phenomena that occur at some point and phe-
nomena that occur in the next moment, there is an invariable and uncon-
ditional order of succession, therefore cause should be sought in a certain

class of phenomena, and the cause itself (when being determined) should
also be considered as, in the language of Ingarden, a relatively isolated

system. Otherwise, it would be insurmountably difficult to isolate a series
of links that may or may not have an impact on the occurrence of an ef-

fect.
Mill’s canons describe an induction method of detecting causes, but

Mill’s interpretation tends to indicate that they serve to detect individ-
ual phenomena, not complexes of phenomena. Since Mill’s concept of cause

applies to complexes of phenomena, the original canons of induction are
incompatible with it. Because of this incompatibility, we believe that in-

ference based on Mill’s canons is a partial realisation of the idea of elim-
inative induction – partial in the sense that using these canons, we have

shown only some ways of eliminating attributes not causally related to
the examined effect, and we have also isolated only individual attributes

as causes.
The schema of elimination developed under decision logic must be con-

sidered a much broader solution to the problem of eliminative induction –
provided, however, that examined phenomena are described in the language

of that logic, based on the language of propositional calculus. However, the
suitability of this language (and, more broadly, the entire formalism of de-

cision logic), is proven by the fact that it allows to isolate from a given
set of observations complex causes (and not just simple ones), described

by complex logical formulas. This in turn is consistent with Mill’s original
understanding of cause as a complex of phenomena.
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N O T E S

1 We realise that the modern developments of decision logic, as well as the associated
rough set theory are extremely extensive, and are applied, among others fields, in computer
science. In this text, however – due to the objective we have set for ourselves, namely to
show that the method of eliminative induction can be consistent with Mill’s concept of
causality – we only refer to the basic approach to decision logic, presented by Z. Pawlak
in: Rough Sets – Theoretical Aspects on Reasoning about Data.

2 Mill sets it apart from efficient cause, which is not necessarily a physical object. The
field of efficient causal relationship would be the set of all possible objects – both physical
and non-physical (material and non-material). Such a broad field of causal relationship
prevents empirical, and therefore intersubjective examination of causation. Mill associates
the notion of efficient cause with deductions relating to the ultimate cause of all things
(Mill, 1851, pp. 505–506).

3 This distinction between mereological and distributive has been adopted due to the
further portion of the paper, which does not discuss wholes, but sets of events linked by
relationships. Mill writes about an aggregate, a whole – and therefore he means a set
in the mereological sense (although such a concept, distinguished from the notion of
a distributive set, had most likely not been well known). However, such an aggregate
can be treated distributively, provided that objects form a structure that is a set of
elements linked by a relationship or relationships (for example a set of events connected
by the symbol of conjunction). This is how we shall proceed in the subsequent part of
the paper. The notion of eliminative induction in Mill’s writings will be interpreted using
the apparatus of decision logic, which provides a tool for describing relationships between
separate events. Given Mill’s understanding of the cause as a certain whole, it might
be interesting to examine the possibilities of interpreting the concept of cause in the
language of mereology, and then link it to decision logic. In this paper, we do not address
this issue in any detail in the course of our inquiry, albeit recognising its potential for new
research and analyses. Explanation of different meanings of the term “set” may be found
in Borkowski (Borkowski, 1970, p. 146). A more detailed discussion of the motivations
behind mereology, as well as explanation of formal differences in relation to the distributive
sets theory may be found in Leśniewski (Leśniewski, 1992, chapters 2, 3, 4) or Whitehead
(Whitehead, 1919).

4 A system can be called relatively isolated if it is isolated only to a certain extent,
temporarily, and in some respects, but not isolated in other respects. A system is isolated
in some respects when it is not subject to the effects of the world for some time and in this
particular respect, or it does not affect the external world in this respect, and in that time.

5 Polish authors writing about them include, among others (Ajdukiewicz, 1974, pp. 165–
181), (Kotarbiński, 1990, pp. 283–296). A strict formulation of Mill’s canons and their
formal analysis is found in (Łoś, 1948, pp. 269–297].

6 Inductive inference is inference that leads from individual premises to a general con-
clusion. As a result, a general proposition is formulated that A is the cause of B. Finding
a causal relationship between two individual phenomena entails the conclusion that there
is an invariable succession between these phenomena. Therefore, the sentence stating that
phenomenon A is the cause of phenomenon B is a general statement. (Ajdukiewicz, 1974,
p. 163, footnote 29). Inferences according to the elimination method, however, are nei-
ther deductive, nor reductive inferences (Ajdukiewicz, 1985, vol. 2, p. 222). We cannot
indicate all circumstances preceding the phenomenon whose cause we are seeking; also we
omit complex phenomenon. Ajdukiewicz gives the example that drinking sour milk can
have one effect, eating pickled cucumbers – another, and drinking sour milk and eating
a pickled cucumber at the same time – yet another (Ajdukiewicz, 1974, p. 167).
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7 As we will see later, the same rule of preserving consistency is used in the modern
method of elimination; however, it applies to preserving consistency of decision logic
rules (see 3.2).

8 In the strict sense, Mill’s canons of eliminative induction are based on the rule tollendo
ponens, which applies here as follows: Let A be a set of preceding events, and b – a set of
events that follow them: A = {A1, A2, A3, A4}, b = {b2}
Cartesian product of sets A and b: A× b = {〈A1, b2〉, 〈A2, b2〉, 〈A3, b2〉, 〈A4, b2〉}
Our aim is to isolate such a subset of our Cartesian product whose elements (ordered pairs)
make up the unknown (sought) causal relationship R. Upon subsequent observations, we
find the existence of certain successions, but not between all elements of ordered pairs.
Our observations can be written as follows:
O1 = {〈A1, b2〉 ∪ 〈A2, b2〉 ∪ 〈A3, b2〉 ∪ 〈A4, b2〉 − 〈A4, b2〉
O2 = {〈A1, b2〉 ∪ 〈A2, b2〉 ∪ 〈A3, b2〉 ∪ 〈A4, b2〉 − 〈A3, b2〉
O3 = {〈A1, b2〉 ∪ 〈A2, b2〉 ∪ 〈A3, b2〉 ∪ 〈A4, b2〉 − 〈A1, b2〉
On this basis, we formulate a hypothesis (regarding the unknown causal relationship R):
H1: (〈A1, b2〉 ∈ R ∨ 〈A2, b2〉 ∈ R ∨ 〈A3, b2〉 ∈ R ∨ 〈A4, b2〉 ∈ R) ∧ 〈A4, b2〉 /∈ R.
H2: (〈A1, b2〉 ∈ R ∨ 〈A2, b2〉 ∈ R ∨ 〈A3, b2〉 ∈ R ∨ 〈A4, b2〉 ∈ R) ∧ 〈A3, b2〉 /∈ R.
H3: (〈A1, b2〉 ∈ R ∨ 〈A2, b2〉 ∈ R ∨ 〈A3, b2〉 ∈ R ∨ 〈A4, b2〉 ∈ R) ∧ 〈A1, b2〉 /∈ R.
Thus we obtain:
(〈A1, b2〉 ∈ R ∨ 〈A2, b2〉 ∈ R ∨ 〈A3, b2〉 ∈ R ∨ 〈A4, b2〉 ∈ R) ∧ 〈A4, b2〉 /∈ R ∧
〈A3, b2〉 /∈ R ∧ 〈A1, b2〉 /∈ R.
P After removing inconsistencies as a result of the application of the tollendo ponens rule,
we are left with 〈A2, b2〉 ∈ R.
Hence, the conclusion that A2 is the cause of b2.

9 In the context of the schema of induction presented further, objects xi can be associ-
ated with observations, and more specifically with the observed sets of values of attributes
of these objects (this is consistent with the intention of Z. Pawlak). And so: object xi is
actually the i-th observation (concerning certain attributes of object xi).

10 In the table we use traditional operations on sets: the sum (∪), the product (∩) and
the complement (‘).

11 Here, we need to emphasis the following: decision logic is a formal system and there-
fore the criteria used for the distinction between conditional and decision attributes are
not relevant (for example the criterion of cause and effect, or temporal succession). Some
attributes are simply distinguished as conditional attributes, and others as decision at-
tributes, leaving the interpretation of these choices to the user of the system.

12 Note the distinction between the two reducts: on the one hand, we have a reduct which
is a set of rules (denoted as RED), while on the other hand, we have a reduct which is
a set of attributes (denoted as RDC).

13 Lowercase letters in the name red(r) have been used in order to distinguish between
reducts of rules and reducts of sets of rules (which are marked as RED). The same
principle applies to core(r) defined hereinafter.

14 Applications of decision logic, also called applications of the rough set theory, are very
much present in modern science. See for example (Słowiński, 1992).

15 It is such a set that with fewer rules and fewer attributes examined allows us to make
the same decisions as the original set R.

16 A similar example is found in the book by Z. Pawlak. See (Pawlak, 1991).

17 It should be noted that table T contains more information than the rules themselves,
because indicated therein are not only rules, but also the objects/observations xi, to which
these rules refer. Such references designate extensions of formulas (that is sets of ele-
ments xi), which extensions are used in the third step of the presented method.
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18 The table above does not include rule r7, because it is identical with r6.
19 To put it pragmatically, the issue of the multiplicity of elimination results can also
be approached in a different way, namely by adopting a certain overriding criterion for
selecting the ultimate formula (for example “the shorter the better”) and choose such
components of the alternative that meet it.
20 This seems to be in agreement with Mill’s canons, where the objects of elimination
are individual (single) and properly selected observations but not dependencies or general
laws. What is general in Mill’s method is thus the concept of cause, which is ascribed to
a certain concrete phenomenon. Elimination, therefore, does not refer to general depen-
dencies.
21 A simple elimination rule of this type could be as follows:

∀x(A(x) → E(x) ∨ ∀x(B(x) → E(x)), but A(m) ∧ ¬E(x), SO ∀x(B(x) → E(x).
22 Although there are positions claiming that from a formal point of view, there is no
reason not to treat a set of phenomena as a single phenomenon (Szaniawski, 1959, p. 291),
(Krajewski, 1967, p. 91).
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