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Abstract. Artificial models of cognition serve different purposes, and their use
determines the way they should be evaluated. There are also models that do not
represent any particular biological agents, and there is controversy as to how
they should be assessed. At the same time, modelers do evaluate such models
as better or worse. There is also a widespread tendency to call for publicly
available standards of replicability and benchmarking for such models. In this
paper, I argue that proper evaluation of models does not depend on whether they
target real biological agents or not; instead, the standards of evaluation depend
on the use of models rather than on the reality of their targets. I discuss how
models are validated depending on their use and argue that all-encompassing
benchmarks for models may be well beyond reach.
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1. Introduction

In the modeling ecosystem of cognitive science, there are various kinds
of models. Some are used merely for exploration, some serve explanatory
purposes, while others provide a better understanding of cognitive phenom-
ena. In this paper, I focus on the evaluation of artificial models of cognition.
Artificial models are to be contrasted here with model organisms that can
serve as proxies for studying cognitive phenomena. For example, in behavior-
ism, rats and pigeons were popular model animals; in today’s neuroscience,
macaques have become important, not to mention, obviously, human beings,
who may be studied as proxies for all cognitive systems. In other words, ar-
tificial models are simply non-biological models, and they can take the form
of computer programs, robots, trained neural networks, and so forth.
One field where artificial cognitive systems are studied is Artificial In-

telligence. Another is cognitive robotics. There are currently two strands of
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research in robotics relevant here: on the one hand, there is research on an-
imats, or possible creatures, which is supposed to provide insight into the
principles of cognition or behavior (which has roots at least as deep as Tol-
man’s 1939 “schematic sowbug”); on the other, there is robotic simulation
of animals intended as explanation of real biological systems. The claim that
animats are genuinely explanatory of biological systems is controversial be-
cause animat models do not correspond directly to existing biological agents
(see Webb, 2009). So should one dismiss all animat research as producing
mere gimmicks?
This controversy has deep roots in cognitive research. In the 1950s

and 1960s, investigators pursued several explanatory strategies: one was
cognitive simulation, which proceeded via building complete computational
models such as the General Problem Solver (Newell, Shaw & Simon, 1960);
another was building artificial neural devices such as the Perceptron (Rosen-
blatt, 1958) or robotic animals (Walter, 1950); and still another was what
was to become cognitive psychology, called “information-processing psy-
chology” at the time (for exemplars, see Miller, 1956; Broadbent, 1958; or
Sperling, 1960). Information-processing psychology did not attempt to build
complete implementations at all, but investigated the structure of psycholog-
ical processes as based on information-processing considerations, and some
psychologists, otherwise supportive of information-processing accounts of
cognition, were quite critical of artificial modeling (Neisser, 1963). As cogni-
tive psychologists used the kind of experimental evidence that was method-
ologically strict and widely accepted in psychology, information-processing
psychology paved the way for recognizing cognitive research in general as
valuable.
As there was no consensus about the value of artificial models in

the 1960s, there is none today: animat modelers obviously do not agree with
Webb (Beer & Williams, 2009). They usually defend the value of animat
research by arguing that animats are not relevant to theories of cognition in
the same way as robotic simulations are (Barandiaran & Chemero, 2009),
and that different standards should be used for evaluating them. This leads
naturally to what is my focus in this paper: What are normatively and
descriptively adequate ways of evaluating artificial models of cognition?
Before I go on, some general remarks are in order. Artificial cognitive

systems may take the form of a computer simulation or a physical entity.
This distinction does not, however, correspond exactly to two kinds of sim-
ulation that are traditionally distinguished, namely representational and
immediate ones (Krohs, 2008). Representational simulations are complex
representations of a target phenomenon. For example, a digital simulation
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of the weather in a computer is representational. Note that only a finite num-
ber of features are represented: no simulation can represent all the physical
features of rain, so some of its features cannot be found in the simulation.
Immediate simulations are used to model the target directly using physi-
cal resources; for example, a wind tunnel in aerodynamic research actually
has aerodynamic properties, and a robotic model of an imaginary animal
actually moves in space. But, at least according to some researchers, a com-
puter simulation that instantiates an artificial cognitive system may just
as well be classified as immediate. The researchers in question think that
computer simulations of cognition are like a jazz improvisation produced
by a computer: as information, it is indiscernible from a real improvisation
(Dennett, 1981).
Here, I put aside the question of whether a cognitive computer simu-

lation really is cognitive or just represents a cognitive process. What I am
interested in is how one should treat artificial models of cognition. Is more
detail better? Or maybe models should be more general? Are some models
completely divorced from reality, as Webb seems to suggest? Or maybe they
are, contrary to appearances, representations of some observable cognitive
phenomena? Below, I will argue that these questions are answered differ-
ently depending on the use one makes of a model. Some artificial models
cannot have explanatory uses, and in that case, they cannot be evaluated
based on their representational power only.
The structure of the paper is as follows. In section 2, I will discuss

important uses of artificial models of cognition. The list I provide is not
supposed to be exhaustive, though it seems to lend some empirical support
to the claim that evaluation standards depend on the use of models. I point
out that the relationship between models and theories is more complex than
usually presupposed, which makes it more difficult to assess the usefulness
of modeling efforts. In section 3, I claim that universal benchmarks for mod-
els are out of the question and that they can actually hurt the progress in
research on cognition. At the same time, I will argue that explanatory uses
of models – be they biologically realistic or not – are possible only when
models are representational of their targets. In this respect, there is no dif-
ference between robotic models of real animals and animats. Nevertheless,
there is some truth to Webb’s dictum that animats may have precious little
to tell us about real animals: even if they are able to represent some fea-
tures of animals, they may fail to be genuinely informative. To justify this
claim, I will introduce a distinction between the model’s intended focus and
its scaffolding. The distinction will be used to justify the point that only
some parts of models are crucial in their evaluation; I will also introduce
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non-descriptive models, in which the distinction may be drawn but whose
evaluation is different. In conclusion, I claim that modeling in cognitive sci-
ence does not rely on a single standard of evaluation; instead, the standards
employed depend on the use made of the model by the modeler. In other
words, evaluation is relative both to the goals of the modeler and to stan-
dards in the scientific community, and there are no general, use-independent
benchmarks for all cognitive models.

2. Uses of Artificial Models

Just like standard idealized models in science, models have various ap-
plications in scientific investigation. In this section, I discuss some (but
surely not all) uses of artificial models in cognitive science. They range from
prediction and explanation, to formalization of verbal theories, to concep-
tual exploration and thought experiments, to engineering purposes, espe-
cially in AI. I will claim that, depending on one’s purpose, one and the
same artificial model can be assessed differently.

2.1. Models as predictive and explanatory tools
The primary use of modeling is to describe, predict, and explain vari-

ous phenomena. Usually, models are said to have those functions as long as
they correspond to the phenomena in question; however, according to some
authors, models may sometimes be treated as fiction without being explana-
torily irrelevant (Suárez, 2009; Godfrey-Smith, 2008). It is notable that the
latter position is largely developed in connection with non-explanatory uses
of models (such as conceptual exploration), and there is an obvious objec-
tion against fictionalism about explanatory models: if they are fictions, how
are they supposed to explain the non-fictional (Levy, 2012)? Due to lack of
space, I will not go into the details of this important discussion here. For
my purposes the most important thing is that even fictionalists think that
models are representations, i.e., they refer (or fail to refer) to target systems.
But although, in the case of many modeling efforts, the target systems do
not exist at all, we are able to say what properties they would have if they
did exist. In other words, the only difference between fictionalists and re-
alists is that realists usually take models to be idealized, truth-constrained
representations of reality, while fictionalists call idealized models “fictions”.
But they share the same assumption, namely that there is something about
models that allows them to represent reality, though fictionalists stress that
the representational power of models cannot be captured merely by isomor-
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phism or structural resemblance (Suárez, 2003). Indeed, this is what realists
also claim: the intention of the modeler and the practice of the research com-
munity count as well (Weisberg, 2013). However, there has to be a certain
structural relationship between the model and the target system; otherwise,
these would not be models but symbols, viz. representations whose semantic
values depend merely on convention.
Let me turn to artificial models of cognition. Most commonly, they

are computational models, expressed in terms of programs and input data,
trained artificial neural networks, or other computational tools. There are
two ways in which formal computational models of cognition are usually
taken to correspond to cognitive phenomena. First, they may be weakly
equivalent to a cognitive process, in that they only describe its input and
output data. Second, they may be strongly equivalent, in which case they
also correspond to the process that generates the output data. These no-
tions have been used in the methodology of computer simulation since
the 1960s (Fodor, 1968, chapter 4). Similar terminology has been introduced
by Bernard Zeigler in his classic theory of modeling and simulation (1976):
a model is said to be replicatively valid if it can generate the output data
from known input data; it is predictively valid when its output corresponds to
yet unobserved data, and structurally valid when the structure of the model
corresponds to the operations of the real system being modeled. Zeigler’s
predictive validity is equivalent to Fodor’s weak equivalence, and structural
validity to strong equivalence. (Note that Weisberg, 2013, p. 41, makes the
same distinction but uses the somewhat confusing terminology of the dy-
namical and representational fidelity of models.)
These distinctions correspond neatly to the possible uses of models.

Replicatively valid models can only describe the experimental evidence gath-
ered so far; predictively valid models are also able to extrapolate to new
input and output data. Both, however, are too weak to explain the target
systems fully: the structure of the model that generates the output data
need not correspond to the real structure of the target system. Hence, we
need structurally valid models to be able to explain the behavior of systems
with computational modeling.
The latter claim can be disputed by proponents of the functionalist

account of computational explanation (Cummins, 1983), who think that
a model is explanatory as long as it suffices to generate new output data
based on new input data, i.e., as long as it is predictively valid. While the
validity of these models is not always coincidental and may stem from the
fact that they describe the explanandum phenomenon in sufficient detail, it
remains controversial that they explain the phenomenon at all (see Piccinini
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& Craver, 2011; Miłkowski, 2013). The basic argument used to support the
claim that only structurally valid models of cognition are explanatory of
cognitive processes is that merely predictively valid models may produce
the same output as a cognitive process, but in a completely different way.
By analogy, although both a bird and a jet can fly, a jet would not be a good
explanatory model of how birds can fly, because the mechanism producing
flight in a jet is not sufficiently similar to the mechanism producing flight
in a bird.
This brings me to an important distinction to be made, namely be-

tween the model’s intended focus and its scaffolding. The intended focus is
what the modeler intends to stand in correspondence to the model’s tar-
get system. The scaffolding plays a merely supportive role, and is tacitly
ignored during the model’s validation. For example, a recent massive model
of the brain, SPAUN (Eliasmith et al., 2012) is able to perform eight diverse
cognitive tasks. SPAUN has been implemented in Nengo, which is a sim-
ulation framework written mostly in Java programming language. But the
fact that Nengo is executed by a Java Virtual Machine (VM) is irrelevant
for its validation as a biologically plausible model of the brain. Obviously,
nobody expects anything strictly analogical to a Java VM in the brain. It’s
only a certain pattern in SPAUN’s information-processing architecture that
is supposed to correspond with the brain. Hence, the Java VM is just scaf-
folding: a necessary component of the model, as Nengo cannot run without
it, which is ignored during the validation of the model.
In weakly equivalent models, the structure of the computational process

as implemented by the model is treated as scaffolding. The intended focus
is just the input and output data. In the case of structurally valid, strongly
equivalent models, the intended focus of the model includes the structure
of the computational process as well.
What the modeler treats as the scaffolding and the intended focus is

essential in assessing the value of the model. Again, if we were to think
that SPAUN’s implementation in Java is part of the intended focus, the
model would be biologically implausible. It is plausible only because the
intended focus does not include the Java implementation. Note that if it
turns out that what was treated as scaffolding is also in correspondence with
the explanandum phenomenon (for example, it turns out that, contrary to
appearances, some brains actually do contain Java VMs), then the modeler
can change his or her interpretation of the model.
Unfortunately, it is sometimes difficult to tell the intended focus and

scaffolding apart. The interpretation of models relies on implicit assump-
tions in the practice of researchers and is rarely brought to the fore. What
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is more important, modelers usually need to add multiple new assumptions
to the specification they had at the beginning of the modeling process just to
implement a model, and such ad hoc additions are difficult to identify when
observing the behavior of a model (Lewandowsky, 1993). The ad hoc addi-
tions usually belong to the scaffolding of the model, but they may actually
correct the mistakes made in what is thought to be the intended focus.
Think of a simplistic model of human reasoning. It is a well known fact

that people consider modus tollens slightly less plausible than modus po-
nens as a rule of deduction (Oaksford, Chater & Larkin, 2000). One could
easily implement a model that replicates that experimental data simply
by having classical reasoning rules and a correction rule that would re-
move some of the modus tollens results (for example, by removing 20% of
cases to replicate the experimental data). This is an ad hoc model, but
it could be predictively accurate. Of course, the ad hoc rule is just made
up to fit the experimental data, but one could argue that how the model
has been built is irrelevant to its validity, as the context of discovery is
different from the context of justification, and that the structure of the
model makes it actually explanatory of human reasoning. But just because
the ad hoc addition does not correspond, as far as I know, to what hap-
pens during everyday reasoning processes, the model will not be struc-
turally valid if the ad hoc addition is taken to be part of the intended
focus of the model. If, however, it is declared to be part of the scaffold-
ing, then one should ignore the results of correction in the data. This is
easier said than done; of course, it might be technically possible to ana-
lyze my toy model (if it’s not hopelessly obfuscated by an evil scientist),
but a very complex production system may easily contain thousands of
rules, some of which are merely supportive and not psychologically plau-
sible. But just because of this fact, very complex models with ad hoc or
special supportive additions cannot safely be said to be structurally valid.
It may be probable that they are, but to say so, we need to analyze the mod-
els’ behavior in detail instead of simply taking the results of their operation
at face value.

2.2. Models as unambiguous formulations of a theory
Models have obviously other uses than description, prediction, or ex-

planation. One prominent advantage of modeling that most proponents of
modeling in cognitive science and psychology cite is that models “serve as
unambiguous formulations of a theory” (Frijda, 1967). Merely verbal theo-
ries may lack clarity or contain serious gaps that go unnoticed just because
certain questions were not asked. For this reason, it seems reasonable to
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claim that computational – or robotic – implementations require that an
extant verbal theory become more detailed. As convincing as this claim
may sound, there are some difficulties in justifying it. In addition, some
theories of smaller scope, for example so-called microtheories of experimen-
tal psychology, might be equally unambiguous as computational models and
they can be expressed mathematically. In other words, computational arti-
ficial models of cognition are not the only means to achieve unambiguous
formulations of theories.
But before one can talk of models and their relationships to theories,

it has to be made clear what is meant by the terms “theory” and “model”
in the first place. Admittedly, there is no widespread agreement as to what
counts as a theory in cognitive science; but it seems that most modelers
use the notion to denote some scientific representation that is more general
than a model, while the latter describes a single entity or phenomenon.
I will use this rough distinction in what follows, even if the terms remain
somewhat vague and there are problematic cases in between (for example,
microtheories proposed by Newell & Simon, 1972, are at the same time
computational models in the form of computer programs).
The most important problem with the claim that models are unambigu-

ous formulations of a theory is that the relationship between a theory and
a model is definitely not of a logical deduction; so a model is not a formula-
tion of a theory at all. Also, even if it were logically deducible from a theory,
it would have a smaller scope, so it would be its instantiation. There are two
ways one could deal with this difficulty. One could simply say that models
are kinds of theories, a move that is recommended by Sun (2009). But, in
this case, no previous theory gets more unambiguous during modeling; it
is just that modelers produce a new piece of research. This research obvi-
ously does not come from nowhere; so the new theory would be a stricter
replacement for the older one. In this sense, models (new theories) could
be (somewhat clumsily) said to be stricter formulations of old theories, but
what is rather meant is that new theories are more precise than previous
theories.
Alternatively, one can interpret Frijda as saying that theories themselves

become more precise during the development of the model. This is, however,
true only if the model’s accuracy is achieved not ad hoc. In other words, we
can say that models can make the theories more precise only if the intended
focus of the model includes some additional information that disambiguates
the previously existing theory. If it’s just the scaffolding that helps make the
model clearer than the theory, then we should ignore the scaffolding when
assessing the model.
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2.3. Models as means to check the consistency and completeness
of theories
Yet another use of models is to check the consistency and completeness

of theories by implementing them (Frijda, 1967; Farell & Lewandowsky,
2010). Again, we can understand the relationship between models and the-
ories at least in two ways, just like in section 2.2. Also, owing to multiple ad
hoc additions, it may be difficult to say if a discovered inconsistency is part
of an older theory or just a side-effect of model-building. For this reason,
in this use, the distinction between the intended focus and the scaffolding
remains equally important as before.
One thing needs to be noted here. The widespread belief (endorsed for

example by Frijda) that it is impossible to implement a contradictory the-
ory is simply false; while programming languages disallow syntactic errors,
semantic inconsistency is possible: It is certainly one source of bugs in the
code of programs. So the admissibility of using a computational model of
a cognitive process as a consistency check depends on multiple factors, and
in general, for very complex models, it may not be feasible to perform a full
proof of their correctness. For this reason, models as consistency checkers
can, at best, be used as fallible heuristics. There might be a problem with
a theory when it cannot be implemented in a computational model; but
it may also be the fact that the modeler lacks the imagination and skills
required to develop the model. Worse still, a model may be so complex that
it may contain mistakes inherited from the theory, but they simply won’t
show up during the standard validation vis à vis empirical evidence.

2.4. Models as guides in discovery and search for other models
Models are also used to guide the discovery and search for models (Fri-

jda, 1967; Barandarian & Chemero, 2009). Namely, by running computer
simulations and reconfiguring robots, one can perform thought-experiments
with systems that are too complex for people to understand without any
external aids. For this reason, Di Paolo, Noble, and Bullock (2000) call these
thought-experiments “opaque”; Dennett (1991) recommended using artifi-
cial life exactly for the same reason. By running experiments on artificial
systems, modelers may discover that their initial intuitions were actually
wrong. These might be not only intuitions but complete theories as well:
they may uncover unexpected implications of a theory. It might be illumi-
nating even when no experimental evidence was taken into account, and
may lead to interesting new hypotheses (Frijda, 1967).
This use of models is especially stressed by Barandiaran and Chemero

(2009) in their vindication of animat modeling. It is understood quite
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broadly to encompass even such applications as comparisons between “ex-
planatory paradigms” and exploration of potential interactions between
theories. The talk of comparing paradigms might seem slightly surprising,
given that paradigms for Kuhn (1970) were understood as incommensurable,
therefore incomparable. The notion of “paradigm” is apparently used here in
a weakened sense to mean a general methodological approach. What Baran-
diaran and Chemero probably mean by “comparing” is building comparable
models to instantiate assumptions of different paradigms in this weak sense
– for example, the symbolic paradigm and the connectionist paradigm in
cognitive science. It is possible, for example, to build LEGO robots driven
by these two modeling methodologies and compare their performance. But
such comparisons, again, rely on a somewhat problematic distinction be-
tween a theory and a model, and this makes the results of such comparisons
somewhat fallible.
Another point worth stressing as regards models used to guide discov-

ery is what Braitenberg (1984) called the law of the uphill analysis and
downhill invention: namely, artificial models are (usually) easier to under-
stand, so building them helps to analyze the real systems. Note that there
is an important exception to Braitenberg’s “law”, called Bonini’s para-
dox: sometimes modeling is more difficult to understand than real systems,
which is especially true of some connectionist models (Dawson, 2004). But
even in complex systems, changing the parameters of a model and run-
ning the experiments again might be illuminating; this is what Cleeremans
and French (1996) call “probing the model”: They accentuate the impor-
tance of changing the parameters of running models for understanding phe-
nomena.

2.5. Uses of models whose intended targets do not exist
All the above mentioned uses are common to models with a real target

system and ones without one. But if there is no observable target system,
it may seem that artificial models of cognition are not explanatory: at least
they cannot be explanatory of something that does not exist. After all, one
cannot explain why Sherlock Holmes solved a murder mystery because Sher-
lock Holmes, alas, never existed. Barandiaran and Chemero (2009) defend
the view that there might be what they call “generic models” that “stand
in abstract and generic correspondence with multiple phenomena”, in con-
trast to functional models, which correspond to behavior (or input/output
functions) of targets, and mechanistic models, which require one-to-one cor-
respondence with a target. Besides that, they also distinguish “conceptual
models” that correspond only to a theory.
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As I already mentioned in section 2.2, the relationship between theories
and models is not of correspondence at all (and need not be), as theories
have a different scope, grain, and level of generality. Hence, theories do not
usually contain all kinds of detailed descriptions and the scaffolding needed
for a complete model to work. But for the sake of argument, let us assume
that there is a way to understand the notion of correspondence as used
by Barandiaran and Chemero. Would that mean that models need to be
checked or validated by testing whether they correspond (in some sense)
to a theory? I doubt that.
Let me elaborate. Even if scientists build models that describe imag-

inary animals, they usually think that these models are not just literary
fiction, created (only) for fun (which is what even fictionalists would ac-
cept). They seem to assume that there is a body of knowledge which is not
reducible to formal or mathematical principles of the models they build;
in short, these models are supposed to tell us something about observable
phenomena, just like other idealizations in science. Some of the models, in-
cluding conceptual models, while not meant as direct representations of any
real observable target phenomena, instantiate at least some properties of
observable phenomena in a useful way.
One interesting example is given by Barandiaran and Chemero: “The

Baldwin effect (Baldwin, 1896) ... was nicely demonstrated by a computer
model by Hinton and Nowlan (1987) and gave rise to a revival of the sub-
ject (Weber & Depew, 2003).” The computer model was not a realistic
model of life at all, but shared enough properties with biological evolution
to be useful. The target of the model was not an observable phenomenon;
but representational properties of the model were such that they described
a range of biological phenomena anyway. In other words, a single intended
target system does not exist; but the intended focus does correspond to fea-
tures of real systems. There are entities that have at least some properties
described by the focus of the model, and this is why the Baldwin effect
is worth studying in biology. Otherwise, it would be mere science fiction.
To wit, some artificial models can be explanatory about empirical phenom-
ena by instantiating general principles. They do not need to correspond to
a complete animal at all, if the complete animal is not what is supposed to
correspond to their intended focus.
What about models whose intended focus is not supposed to correspond

to anything real? For example, one may be simply interested in investigat-
ing possible outcomes of some configurations of a model; these possibilities
might not match any single phenomenon nor have any observable intended
focus. Similarly, traditional “sufficiency” explanations in cognitive science,
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i.e., explanations that show what would be sufficient means for a cogni-
tive system to perform a given task, may be understood as explorations of
the possible. (Whether explaining the merely possible is actually relevant
to science is another matter.) These explanations of the possible are not
necessarily bound with any observable intended focus.
There are also models that are used in engineering to develop new de-

signs, for example in robotics. Surely such robots did not exist in the past
and the reason for building a model is not to explain or describe anything
but to create a new entity that has some capacity. This is a strictly engineer-
ing use of an artificial model. Most successful work in Artificial Intelligence
aims at developing new, effective tools. For example, contemporary ma-
chine translation, though related to cognitive science, is usually performed
in a way that guarantees that a translation engine simply does the job.
The operation of the engine does not explain much about human transla-
tion, if anything at all (we already know the input/output function anyway,
even if we do not know how it is computed). But it may excel at perform-
ing the task. Note that merely engineering uses of models do not require
the modeler to distinguish between the scaffolding and the intended focus;
actually, these models may be simply tools rather models of anything, to
be exact. In other cases, when models are supposed to match human per-
formance, for example, they can be understood as weakly equivalent models
in the traditional sense.
The uses I enumerated in this section of the paper do not constitute

a complete list; it is just a partial taxonomy that may contain overlapping
categories. Nonetheless, I think that it may guide our thinking about evalu-
ating models: the most important point is that there are different, sometimes
dramatically so, applications of artificial modeling.

3. Evaluating Progress

Depending on the intended use of the model, the method of evalua-
tion varies. Let me start with theoretically unproblematic engineering ap-
plications. They usually have well-defined capacities that the model is sup-
posed to display, and sometimes automatic benchmarking is possible. For
example, a statistical machine translation engine might be evaluated by
human translators who assess the fluency and the adequacy of the trans-
lated text as compared to the source one. As human evaluators are costly,
several automatic metrics were proposed as a rough evaluation of results
before they are handed over to humans. Defining criteria of fluency and
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adequacy in a formal manner, as it turns out, is not a trivial task in it-
self, and popular benchmarks depend on a metric of similarity between
the reference human translation and the machine-generated one. For exam-
ple, one of the most popular metrics, BLEU (Bilingual Evaluation Under-
study), considers how many phrases (sequences of words, called n-grams),
overlap in both texts. Even if BLEU is known to diverge somewhat from
results of human evaluation (though the correlation of human judgments
and BLEU scores is actually quite high), it is used as a cheap evaluation
tool during the development of machine translation engines (for more detail
and an introduction to evaluation of machine translation, see Koehn, 2010,
chap. 8).
In other words, although there are outstanding problems with the evalu-

ation of machine translation, it is clear in principle what should be compared
and why; what we need is a good mathematical definition of the metric to
perform the comparison. Some other factors might also be taken into ac-
count, such as speed, adaptability, ease of use, or size of the system. All
these are related to the technological use of the model.
Evaluating models whose use is not confined to engineering is by far

more complicated. In cognitive science, traditional descriptive computer
simulations were assessed by looking at how much they correspond to ob-
servable behavior (including input-output functions) or to observable behav-
ior and known facts about the organization of the system. In other words,
depending on the intended level of equivalence – strong or weak – one can
compare the model and the target system, and the results of comparison
can usually be expressed quantitatively.
Note that artificial models with a clear intended target can be validated

vis à vis empirical evidence. So, to use the Baldwin effect example, if there
is a similar process in biological evolution, one may verify whether it has
properties predicted by the model developed by Hinton and Nowlan. In the
case of cognitive models without a real intended target system, observable
evidence will be related to selected cognitive capacities or principles. There
is nothing especially difficult about evaluating such models, though it is
not useful to create specific benchmarks before an encompassing theory
is built.
Models that are not intended as explanatory tools but rather as proofs

of possibility are to be evaluated in a different way. A proof of possibility
may overthrow a theory that declared something to be impossible. Take
for example McClelland and Rumelhart’s (1986) model of past tense acqui-
sition in English: it demonstrated that it is possible to learn morphology
without explicit rules. The model was at first also intended as representing
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an observable target (though with important simplifications; for example,
the network used to learn past tense used only verbs, not complete sen-
tences, on its input, and that constitutes a Galilean idealization). It was
soon criticized (Pinker & Prince, 1988), but the proof that it is logically
possible to account for morphology without any explicit rules seems to be
still generally accepted. One does not need to treat the original model as
descriptive of the real acquisition process but as a generic model of such
phenomena; in such a case, this model is fine, criticisms of Pinker and Price
notwithstanding.
But there is a perceived danger in changing the intended use of a model.

One may object that to change the use of a model is to lower the criteria of
evaluation. If it’s always possible to change one’s mind about how a model is
supposed to be used, then it becomes easier to get valuable models and more
difficult to go completely wrong. This is, it seems, one of the motivations
behind Webb’s (2009) criticism: it is much harder to make a biologically
faithful model of a cricket than to create a simple imaginary creature along
the lines of Braitenberg (1984).
Generic models as such simply contain less information – this is what

yields generality at the price of depth. So, choosing theoretically relevant
phenomena as intended targets is important; otherwise, the models are too
general to be interesting. In other words, it’s not enough for the proponent
of a generic model to show that his or her model has an intended focus that
corresponds to real principles or capacities. What the model shows should
be non-trivial. For example, numerous models showing that complex be-
havior may be the outcome of very simple constituent operations, combined
using simple principles, are now considered too trivial to be interesting.
They may be correct as far as it’s true that the complexity they produce is
not spurious; this kind of result is hardly novel.
In other words, more generality is not always better, just as trivial de-

tails do not matter. Not all models without a biological intended target
system are divorced from reality, as Webb seems to suggest. These mod-
els instantiate properties that modelers consider important for understand-
ing; for example, principles of cognition or social interaction. Yet animats
usually work in a very simplistic way, and for this reason, building them
is not as beneficial for neuroethology as biorobotics is: To build a model
of a real ant, one needs to know a lot about ants, and perform experi-
ments that had not been performed before. The important thing here is
that many animats may have large scaffolding and a very small intended
focus. A case in point is StickyBot: a robot resembling a gecko that is
supposed to explain how geckos are able to walk on the ceiling (Santos,
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Sangbae, Spenko, Parness & Cutkosky, 2007). The problem is that we al-
ready knew how they do this without the model: it is the structure of
the gecko’s feet and van der Waals force that allows the animal to stay
on whatever surface it wants to be. In StickyBot, the intended focus of
the model includes only the feet, and that’s precious little. The rest of
the robot does not explain anything else and is simply gimmickry (Sanz
& Hernández, 2010). In my terminology, the StickyBot model is composed
mostly of scaffolding that captures people’s attention. And it does: it won
Time Magazine’s Best Invention of the year 2006. In the section Toys,
to be exact.
In general, a model’s representational value depends on the ratio be-

tween the scaffolding and the intended focus. In cases where the scaffolding
becomes bigger than the intended focus, there should be a good justifica-
tion for such a decision. Otherwise, the model might be a mere gimmick,
just like StickyBot. The representational value of a model is important
for explanatory, predictive, and replicative uses of modeling; for models
as tools that make theories more precise or are used to check their con-
sistency, the representational value of the model itself may sometimes be
ignored during evaluation (but the theory being checked or made more pre-
cise should not be empirically unsound, otherwise, there is no point in using
the models).
What about models of possible cognitive systems in cases when noth-

ing observable matches the intended focus at all? The models of this fla-
vor, which belong to the field dubbed “Android Epistemology” by Gly-
mour (1987), can be evaluated either in the light of engineering criteria,
which makes them theoretically rather unimportant; or in the light of the-
ories of cognition that they would conform to. The theories in question
need to contain operational criteria of success of modeling; i.e., they have
to define cognitive capacities in such a manner that they can be tested. But
herein lies the problem: different theories conceptualize cognition, and cog-
nitive capacities or processes, in dramatically different ways. For this reason,
such artificial models will be theory-dependent in a fairly strong way. Their
validity will depend on the empirical validity of a particular theory. Even
Android Epistemology needs to be related to observable cognitive systems
to be scientifically relevant.
To this, someone might object, in a Platonist vein, that exploring the

space of possible cognitive systems does not require having any theories of
cognition. After all, are all animats really so strongly connected to theories
of cognition? The problem with such a position is that we would need to
know first what kind of space the model is exploring. How can we tell that it
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is a model of cognition, and not, say, of merely reactive behavior? Without
a theory, artificial modeling of possibilities is blind. And with theories, it
may be validated.
An example is in order. One of the contemporary hypotheses in cog-

nitive science is that “mind is life”, which is sometimes understood more
literally as a claim that cognition relies on metabolic processes of some kind.
This is an obviously troublesome position for robotic modelers. Should they
accept it, they would need to build a robotic model that relies on some
form of metabolism. Interestingly, Montebelli et al. (2010) created a robot
that generates energy from unrefined renewable biomass. The problem with
this robot model is that we do not know whether it operates successfully to
achieve any goals. As such, it may be called just a motor engine that uses
biomass to move. It is simply utterly unclear which property of metabolic
processes is important to cognition and in what way: the modelers do not
say that. Even if metabolism might be brought to bear on the autonomy
of an agent, even if it is a source of normativity for the agent, it is still
not obvious that replacing a standard battery with a biological source of
energy makes any difference unless we understand the role of metabolism
in cognition.
Does this mean that “mind is life” has been reduced to absurdity?

Certainly, its opponents would be tempted to say so. But the relationship
between the biomass-driven robot and the theory is not one of a logical
deduction. Even if we discredit the model, the theory could still be upheld.
This means that evaluating models can only be a fallible guide to evaluating
theories; but some theories cannot be fully evaluated otherwise, as empirical
evidence is too scarce or the phenomena too complex.
Even if there were any simple methodology to create benchmarks to

evaluate artificial computational models, there would still be no simple way
to assess the progress. The relative merits of models, if they could be com-
pared using the same scale and with some ordering relation, depend them-
selves on theoretical progress, the breadth and scope of theories and their
empirical validation. Simple evaluation is but a bureaucrat’s dream. Uni-
versal benchmarks for all uses of models simply cannot exist.
This is true for most theoretical uses of artificial models of cognition. For

checking the consistency of theories using modeling, we need fairly complete
theories to start with. Otherwise, the inconsistencies found might be caused
by the scaffolding built for the model to work. In these cases, however, the
validity of the model depends simply on its correspondence with a theory,
and assessing it is still an art, not a methodology.
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4. Conclusions

In this paper, I have reviewed some uses of artificial modeling in cog-
nitive science, and related it to different ways of validating the models.
I introduced a distinction between the parts of the model that are relevant
to the model’s correspondence to target systems – namely the intended focus
of the model, and the parts that simply support the model to help represent
its intended target systems, which I dubbed scaffolding. The standard way
of validation of models of cognition consists in assessing the match between
empirical phenomena and the intended focus, i.e., in checking whether the
data generated in the model matches the observation. For models built for
theoretical purposes, for example to compare, check consistency, or oth-
erwise explore theories, their validity depends either on a correspondence
between model and theory, or – when the models are supposed to further
progress in the empirical research – on empirical validity of the theory that
they are models of.
One particular difficulty here is that theories in cognitive science are

not easy to evaluate empirically in the first place, and they are usually
validated using models. This might raise a worry that there is a vicious
circle involved. I think this circularity may be broken simply by creating
multiple independent models of a theory; if they lead to similar results,
then their individual independent lies will intersect: the intersection would
be the truth. Briefly, multiple models idealization (Levins, 1966) seems to
be the way out of this circularity.
Artificial models are an important part of the modeling ecosystem. By

looking at how modeling works in practice, and how modelers distinguish it
from building theories, one can gain important insights about the structure
of what is understood as theory in the sciences that peruse artificial mod-
els. There is at least an apparent tension between the received view that
holds that theories are to be understood propositionally, ideally as axiomatic
systems, and the practice of theorizing in such disciplines. Insofar as philos-
ophy of science is supposed to provide normative guidance, it is important
to reflect upon the discrepancy between the traditional norm of axiomatic
theory building and the messy practice. There has not been enough stress
on the heuristic role of models in theory building, nor on the treatment of
models as fallible heuristics used for further discoveries and general theo-
retical exploration. At the same time, there is a plethora of models that
seem to focus on fairly trivial phenomena, such as the emergence of com-
plexity out of simple components. Such stock models have usually precious
little to explain, and they do not seem to be useful for any further discovery.

59



Marcin Miłkowski

Nonetheless, these are the topics that all deserve separate treatment in their
own right.
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