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Daring ideas may be beaten, but they may
start a winning game.
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Abstract. The first good message is to the effect that people possess reason
as a source of intellectual insights, not available to the senses, as e.g. axioms
of arithmetic. The awareness of this fact is called rationalism. Another good
message is that reason can daringly quest for and gain new plausible insights.
Those, if suitably checked and confirmed, can entail a revision of former results,
also in mathematics, and – due to the greater efficiency of new ideas – accelerate
science’s progress. The awareness that no insight is secured against revision, is
called fallibilism.

This modern fallibilistic rationalism (Peirce, Popper, Gödel, etc. oppose the
fundamentalism of the classical version (Plato, Descartes etc.), i.e. the belief in
the attainability of inviolable truths of reason which would forever constitute
the foundations of knowledge. Fallibilistic rationalism is based on the idea that
any problem-solving consists in processing information. Its results vary with
respect to informativeness and its reverse – certainty. It is up to science to
look for highly informative solutions, in spite of their uncertainty, and then to
make them more certain through testing against suitable evidence. To account
for such cognitive processes, one resorts to the conceptual apparatus of logic,
informatics, and cognitive science.

Keywords: a priori, complexity, computability, fallibilism, fallibilistic rational-
ism, fallibility, fundamentalism, Gödel’s speedup strategy, guessing with clues,
information processing, informativeness vs certainty, problem-solving, risk.

§1. The main notions of the cognitivist approach employed
in the present discussion

In this essay, I adopt the cognitivist approach to reality. In the focus of
its ideas there is the notion of problem-solving with utm-computation, where
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the prefix hints at computation defined in terms of the Universal Turing
Machine. This notion is closely linked with the following ones: computability,
information processing, guessing with clues, complexity, informativeness vs
security.
The opposition in the last item refers to this paper’s title. This is to

mean that the more innovative an idea, the more it is informative, and the
less secure, that is, less certain; a low security is what we call a high risk.
Science accelerates when scientists succeed in creating bold, i.e. risky but
highly informative conjectures. Their authors should be brave enough to
risk failure, and in the next step clever enough to reduce the risk through
observational confirmation.
Let us briefly discuss the concepts listed above in their mutual rela-

tions. The idea of utm-computation, taken as the focal point, is understood
in the cognitivist framework as the strictest concept of computation. Thus it
provides us with the most fitting departure point for successive extensions
of scope. For instance, analog problem solving is computational as well,
but not utm-computational. Thus the feature of being utm-computational
constitutes a sufficient condition for any of the broader concepts of compu-
tation.
The broadest of them can be used in order to partially define the con-

cept of information processing. This is to mean that every computation is
a procedure of information processing, but not vice versa. What can be-
long yet, besides various kinds of computation, to the realm of information
processing?1

Leaving apart much mental phenomena, like chains of pictures maun-
dering in dreams, etc., let us focus on what is cognitively most significant:
to wit, the act of guessing solutions for a problem one is trying to solve, not
through random guesses, but intelligent guessing with clues.
This is like the departure point of a skilled detective’s chain of reason-

ing. In the course of investigation, his guesses should be checked against
new findings, then suitably modified, in order to ultimately find a correct,
well confirmed, solution. Another exemplification can be taken from flashes
of intuition as experienced by scientists at the dawning of a discovery. As an
example there may serve Gödel’s idea of analogy between the liar paradox
and the behaviour of the concept of provability. The transition from such
a first preapprehension to a final result is implicit (i.e., unconscious) infor-
mation processing, much different from the utm-computational processes
performed on explicitly recorded symbols.
I use the phrase “guessing with clues” as a commonplace counterpart

of the concept of intuition. The colloquial character of this phrase is more
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likely to evoke experiences familiar to anybody, not only to those trained in
philosophical nuances.
Such guessing is a clear example of information processing which is nei-

ther utm-computation nor any other computational proceeding. Thus, both
the class of guessings with clues and the class of computations are proper
subsets of the vast set of information-processing procedures. The issue of
guessing, rather ignored in standard accounts of cognitive science, is crucial
in the present discussion on account of its connections with innovativeness
and with fallibility (the notions occurring in the title of this essay). This
should become obvious soon; here let it just hint at a kinship of guessing
with Turing’s (1939) oracle.2

Informativeness is a gradable property of judgments and theories. The
greater the amount of information carried by a text or another vehicle,
the higher it is said to have informativeness. It is the least, amounting to
zero, in logical tautologies, say p ⇐⇒ p, whose probability degree is the
highest, that is, which amounts to 1. And it is the greatest in contradic-
tions, say ¬(p ⇐⇒ p), whose probability amounts to zero; the feature
of the highest informativeness of contradiction gets reflected in the law
(p ∧ ¬p) → q.
The comparison of these extremes reveals their being the reverse of

each other. That is to say, high informativeness (as a profit) compensates
low probability, i.e. low safety, i.e. a risk (as a cost); whereas high probability
(as a profit) compensates low informativeness (as a cost). This is why this
relation is conveniently referred to as the informativeness-safety tradeoff.
The way toward a highly informative theory starts from a highly inno-

vative idea. Either feature carries a risk. High informativeness of a theory
means an abundance of diverse consequences that ought to be tested em-
pirically; the greater such a wealth of inferences, the more it is likely that
some of them turn out fallacious, and this implies the denial of conjectures
entailing the error in question. Newton’s theory of gravity, for instance,
after its having been newly born – that is, before being exposed to ob-
servational tests, might have been contradicted by astronomical data, by
observations concerning the speedup of falling bodies – observation of sea
tides, etc.
After each such exam is successfully passed, the theory in question

becomes more and more corroborated. Then corroborations reduce the risk
– that is, increase certainty – whereas the high informativeness, measured
with the wealth of significant consequences, remains the same.
As for the innovativeness of an idea, the risk it carries consists in its

being quite new, that is, not exposed so far to any controlling observations.
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After having been so exposed, if it gets corroborated by agreement with ob-
servations, then it turns out less risky than it had been before passing tests.
At such a new stage it grows more widely accepted, hence more familiar, and
thereby less innovative. Here appears a difference between informativeness
and innovativeness. While the former, i.e., quantity of information, remains
unchanged in the course of a theory’s evolution, the latter is relative to
the stages of evolution.
The concept of innovativeness helps us to state a basic problem of cogni-

tive science (as well as of AI): can standard computer programs (i.e., those
patterned on UTM instructions) can be innovative? In other words: they
generate new axioms?
This problem is related to that of compressing the complexity of in-

formation as discussed by Gregory Chaitin in his algorithmic information
theory. In it, the information content of a bit string is defined as the num-
ber of bits in the smallest computer program that will generate that string.
A bit string S which can be generated by a program P shorter than S is said
to be compressible. This amounts to saying that P is less complex than S.
This notion of complexity can be applied both to mathematical and to em-
pirical theories; a law of physics from which follows an enormous set of
predictions is less complex than the statement being a conjunction of all
those predictions. The Copernican theory was more compressed, i.e., less
complex than Ptolemy’s, and Brahe’s and Kepler’s theory still more com-
pressed.
The quantity of information output provided by a program cannot be

greater than the information quantity of the given input. As Chaitin put it,
“if one has ten pounds of axioms and a twenty pound theorem, then that
theorem cannot be derived from those axioms”.3 This entails the impossibil-
ity of creating a computer program (an algorithm) that would be innovative;
that is, discover a new axiom not built into that program. The reason is ob-
vious: computerized information processing consists of operations defined
by rules of logic, and these cannot provide a greater amount of information
in conclusions than that contained in premises.4

The list of notions which form this section’s title, with the concept
of problem-solving as its departure point, roughly determines the cogni-
tive approach to reality, provided we conceive cognition as being mainly
a problem-solving enterprise.
On the other hand, such an approach might be called informational

worldview. For it is the notion of information that is focal in understanding
the world, owing to the definitional links (as listed above) with each other
constituent of the cognitive approach.5
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However we name this approach, it is characterized by the features of
being rationalistic, optimistic, and fallibilistic: Rationalistic and optimistic
for its trust in the power of human reason as a source of reliable cognition,
and fallibilistic for its awareness that, usually, the way towards reliability
leads through risking the failure of our guesses. Anyway, such failures should
not be seen as an oppressive evil, but be welcome as a means to eliminate
errors and closer approximate truth.

§2. Exponentially accelerated progress of science:
Can it last for ever?

When considering the progress of knowledge, two domains should be taken
into account, each ruled by different kinds of laws of evolution: one concerned
with physical factors of development, the other with intellectual factors. This
latter are connected with the limitations of algorithms, as mentioned above
in §1; to wit, their inability to produce axioms. Hence it is the privilege of
human intelligence alone to move forward the frontiers of mathematics with
innovative ideas, usually in the form of axioms. Not rarely, axioms happen
to be evident to our intellect, but even if not, they have a chance to be
justified through their ability to compress information. According to Gödel,
such a progress, due to human inventiveness, may stretch out endlessly,
as long as mankind will exist.
Physical factors are much more limited in their developmental potential.

One sort consists in bounds imposed by such circumstances of experiment-
ing as the range of telescopes, the speed of light, or the impossibility of
obtaining the extremely high energies necessary for some observations. An-
other sort of physical boundary stems from the nature of vehicles of scientific
communication; this is the issue to be discussed in the present section.
Let us start from surveying the situation in the time of Newton. His

work marks a new era in the history of human cognition. Owing to Newton,
the leisurely progress of science which had started in antiquity and contin-
ued through two millenia ended; then the evolution of science gained with
increasing speed.
Newton and his contemporaries were not fully aware of such a turn.

However, from our present perspective this was a border post to mark not
only a new vision of the universe but also a new pattern of scientific dy-
namics. From that moment on, the graph of evolution was to reflect the
exponential growth in various aspects of academic activities. Studies of this
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phenomenon and of its sources have formed an extensive domain since the
pioneering publications by Derek J. de Solla Price.

There is among them a much instructive and thought-provoking book Science
since Babylon (Yale University Press, 1961). In chapter 5 we find a graph
to represent the exponential growth of the number of scientific periodicals
since the establishing of Philosophical Transactions of Royal Society of London
in 1665.

We read in the graph that the number of periodicals, starting ca. 1700 with
ten, has grow by ten times every 50 years with the exception of the 18th
century when the growth was slower. The numbers are listed in the following
columns (first the dates, next the numbers of titles).
1700 — 101

1800 — 102

1850 — 103

1900 — 104

1950 — 105

2000 — 106

The dates are rounded off, but this does not deform the picture.
Similar graphs presenting the exponential growth, though with differ-

ent rates of increase, reflect the number of researchers, of publications, etc.
Among them, the mentioned growth of periodical titles is specially repre-
sentative as it hints at relations between the factors considered: the greater
the number of periodicals, the greater the output of publications and the
greater the amount of researchers as their authors.6

As for the increasing number of authors, the considering of this processs
reveals a dramatic limitation of scientific growth to be expected in the not
so distant future. Note that in the most developed countries the population
growth rate is constant. This means that, contrary to Malthus’ exponential
growth model, the quantity of population does not grow. On the other hand,
in the same countries the accelerating progress of research is exponential,
and this determines the enormous increase in the number of authors. When
comparing these figures, we find that in the relatively near future (say, two
centuries) the population of scientific authors would equal the whole earth’s
population.
Such an obvious absurdity leads to a question about the future of sci-

ence. Should scientific growth stop when it reachs a ceiling? Would this be
an upper limit of growth?
To address this question, one should notice a certain sidedness of Price’s

approach. His notion of scientific development is closed within the cate-
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gory of numerical indexes concerning what can be called physical vehicles
of information, such as printed publications, library and laboratory spaces,
numbers of researchers, etc. The amount of them cannot grow to infinity,
and ultimately they have to encounter a ceiling. In such a perspective, sci-
ence appears helpless in the face of the unending complexity of nature’s
makeup.
However, there does exist a line of scientific growth which is not bound

by any physical limitations. It consists in the increase of the amount of
information conceived as an abstract entity. Such an entity does not reduce
to any physical vehicles, though it needs them for communication purposes.
We obtain a striking example of the difference between the two types of

increase in the realm of information, when taking into account the appear-
ance of Newton’s Philosophiae Naturalis Principia Mathematica in 1687.
This happened in the same time interval in which the first scientific period-
ical, the Philosophical Transactions (1665) was established.
Either date opens a new era in the history of science, but in a very

different way. Imagine that the theory of gravity was published in one of
the first issues of Philosophical Transactions. It would appear as one among
several articles in that issue. As a printed publication among some other
ones, it would add a single item to the picture of quantitative growth, but
this would be no significant event; a single article does not make any telling
difference in number.
On the other hand, with respect to the informativeness of content, the

publication of the theory of gravity means such an unimaginably great in-
crease of information that no numerical estimation would render such an
enormous scale of growth. The law of gravity is regarded as the greatest
of scientific discoveries of all times, and the paradigm according to which
other laws of physics have to be fashioned. It has proved to be in the highest
degree explanatory and predictive. Therefore it has given the natural sci-
ences a giant speedup whose scale surpasses the performances of exponential
increase.
This fact sheds light on the issue of the rapidly increasing progress of

science as raised by the title of the present paper. As for the quantitatively
accelerated increase of the vehicles of information in its present form, it
cannot be continued forever. As for the accelerated increase of the amount
of information due to scientific discoveries, we should appreciate the power
of the human mind. A source of such power is alluded to in this essay’s title
in terms of daring innovative ideas. This is to be inspected closer in what
follows.
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§3. How the acceleration of science depends on the emergence
of new bold ideas

Any new bold idea, which pretends to be highly informative, carries
a risk of being erroneous. This property – called fallibility – did not enjoy
esteem in epistemology from Plato and Aristotle till the turn of the 19th
and 20th century. It seemed obvious that fallibility must be counted among
the drawbacks of an assertion or a theory. For a long time people did not
perceive that it might be a merit. In fact, it is a merit insofar as it stems not
from one’s stupidity, but from creative curiosity, a desire for new experiences
and understandings.
That the realization of this fact came so late may seem nowadays a bit

strange. The very meaning of the phrase “likely to be erroneous” should
make people think that fallibility is inseparable from inventiveness. In-
variably, fallibility must accompany our looking for new understanding to
surpass the knowledge existing so far. Hence it is likely to be erroneous,
and such uncertainty remains unless the newly obtained information gets
checked against some evidence. The philosopher who pioneered the under-
standing of the positive aspect of fallibility and coined a term to express his
view, was Charles Sanders Peirce (1839-1914). The name he proposed for
his point reads fallibilism.
This point is to the effect that one may be wrong in his beliefs, under-

standing of the world, etc., and yet still be justified in holding such incorrect
beliefs as hypotheses to be checked. Without such a procedure, no scientific
law would have been established, since each starts its career from being
a conjecture which pretends to become a confirmed assertion; some of them
succeed, some fail, but without such a casting of candidates, including those
doomed to fail, there would be no progress of science.
At the time, Peirce’s claim, though shared in the circle of American

pragmatists, did not influence the academic mainstream. It became known,
discussed, and fairly common among quite a number of philosophers only
after Karl Popper’s campaign, which started with his Logik der Forschung,
1935, against the Vienna Circle’s inductionism.7

Not only philosophers but also practicing scientists through many cen-
turies were not ready to endorse fallibilism. The need for daring conjectures
which are so far-reaching that they involve a risk of error, was not more
widely acknowledged until the emergence of the scientific revolutions at the
turn of the 19th and the 20th century. This was the time in which the first
message about quanta given by Max Planck appeared in 1900, and about
relativity, by Einstein, in 1905.8
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In the field of mathematics, the revolutionary turn was taken a bit ear-
lier by Georg Cantor with his theory of infinite sets. This provided math-
ematics with a new unexpected basis; it complies with the concept of rev-
olution in a science as a turn in its foundations. The next revolution in
mathematics was to come with Kurt Gödel’s discovery of the undecidability
of arithmetic, in 1931.
Nobody in antiquity, in the Middle Ages, and even at the first stages

of modernity, imagined such a course of affairs. The schoolmen as well as
Renaissance scholars, were convinced that the whole of knowledge had been
completed in antiquity as a body of fully reliable assertions. It was lost – they
maintained – in the stormy times after the fall of Rome, and it was theirs
to reconstruct that precious output as recorded in old manuscripts. After
that work was done, it was believed, mankind should be in full possesion of
knowledge to be only commented upon and diffused, without any need to
add something essentially new.
In the 17th century the authority of the ancients faded, but there re-

mained the same static picture of science. With the difference that not the
teachings of Aristotle, but Newton’s achievements became deemed as the
last and ultimate word of science. This view dominated still in the 19th
century. For example, Max Planck’s professor advised him to engage rather
in another science than physics; in physics, he argued, nothing essentially
new could be added. The famous physicist Hermann von Helmholtz (1821–
1894), and other great masters of physics by the end of that century, were
of the same opinion.
This did not leave any place for failure in scientific cognition. Though

individuals may have erroneous views, it was their problem, but the knowl-
edge so far attained and accepted by the whole academic community was
regarded immune against doubt. Like in the time of Plato and Aristotle,
and in the following twenty centuries, the world of learning identified sci-
ence with a set of fully reliable results, established forever.

§4. The accelerated progress of science faced
with the universe’s complexity

In our century’s perspective, the frontiers of science appear to be moving
forward and forward. Should this last as long as human civilization would
exist? Or, does there have to come a point in which science’s potential would
be discharged?
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Such a question has not arisen on the ground of the static concep-
tion of knowledge, for instance, that was cherished in the Middle Ages.
In the 17th century there appeared two great seers, Pascal and Leib-
niz, who perceived and admired the infinite complexity of the universe,
but their conceptual devices were too thin to translate these visions into
a tractable research project. Only the advanced theory of infinity, due to
such mathematicians as Dedekind and Cantor, and its applications to com-
putational complexity (Gödel’s and Turing’s diagonal proofs), as well as
discoveries of the complexity of the subatomic world (initiated by Maria
Skłodowska-Curie), provided us with conceptual tools to address infinity
and complexity.
The problem of limitations in exploring the universe is concerned

with space, time, and the structure of matter. At each point there ap-
pear specific limitations. Inquiry into the furthest regions of the universe
is limited by the finite, though enormous, speed of light. And tracing
the history of the universe in the minutest fractions of a second after its
having been born encounters difficulties concerned with singularity. We
have no cognitive access to singularity since time and space did not ex-
ist then; hence no radiation can come from that stage of evolution to the
present one.9

A controversial issue is that of the complexity of matter. The belief in-
herited after the ancient atomists that atoms are ultimate and indivisible
elements of matter has been abandoned with the discoveries of ever smaller
particles of those elements which previously were regarded as indivisible.
May such a process of finding ever smaller constituents go on to infinity?
Let us consider first the experimental point of view as expressed by an ex-
cellent popularizer of science, and next the opinion of a much renowned
physicist of to-day.

Every new accelerator, with its increase in energy and speed, extends science’s
field of view to tinier particles and briefer time scales, and every extension
seems to bring new information. – J. Gleick, Chaos: Making a New Science,
1991, p. 115.

Particles that were thought to be “elementary” twenty years ago are, in fact,
made up of smaller particles. May these, as we go to still higher energies,
in turn be found to be made from still smaller particles? This is certainly
possible, but we have some theoretical reasons for believing that we do have,
or are very near to, a knowledge of the ultimate building blocks of nature.
– S. W. Hawking, A Brief History of Time, 1992, p. 66.

Gleick sounds optimistic about obtaining ever new information with every
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increase of the power of accelerators. However, we know that the opportuni-
ties for having higher and higher energies are limited on technical grounds.
Should this halt the progress of our inquiries into the structure of matter? It
depends on the fundamental question of whether the divisibility of matter
into ever smaller elements is infinite or is finite.
Which alternative is the case? This has been a hot problem since antiq-

uity, and it has got even hotter in our times. There are two camps among
physicists and philosophers. The infinitist view is represented, e.g., by the
philosopher Nicholas Rescher who, following the physicist David Bohm, pos-
tulates the following principle of unending complexity of nature’s makeup.
At least as a working hypothesis science assumes the infinity of nature; and
this assumption fits the facts much better than any other point of view that
we know.10

If there held the principle of unending complexity, then its exploration
by experimental physics must stop at a stage at which no higher ener-
gies would be technically available. Then, after making a finite number
of steps in exploring the structure of the universe, there would outstretch
infinitely many strata of ever tinier elements unattainable for human cog-
nition. This would be an impassable limit of scientific progress in that re-
spect.
However, there are firm supporters of finitism who defend the point

that the universe is a discrete system and suitably understood as an all-
encompassing digital computer.11

The first to suggest this approach was Konrad Zuse (1967). Presently
Edward Fredkin, a very prolific adherent of this point, provides us with
extensive studies into the subject. John Wheeler, Stephen Wolfram, Set
Lyod, Hector Zenil and quite a number of other physicists and computer
scientists endorse such a cosmological vision that the universe is an enor-
mous digital computer: maybe a quantum computer able to program its
own evolution.
Then, if to suppose that our scientific civilization will enjoy the time

sufficient to decode such cosmic software, we ought to attain a theory of
everything, and this would mean a triumphant end of the history of human
inquiries into the universe. As Stephen Hawking put it in the last paragraph
of A Brief History of Time.

Then we shall all, philosophers, scientists, and just ordinary people, be able
to take part in the discussion of the question of why it is that we and the
universe exist. If we find the answer to that, it would be the ultimate triumph
of human reason – for then we would know the mind of God.
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§5. Fallibilism associated with rationalism:
Peirce and other advocates of this attitude

The concept of risk is crucial not only in the theory of games, or eco-
nomics, but also in epistemology, methodology, philosophy of science, cogni-
tive science. Fallibility, as a definitional feature of scientific theories, means
facing a risk of error, while reliability means being secure against such a risk.
Why incur risk instead of enjoying security?
The rationale lies in what is obtained for a given price. The return for

a higher risk consists in an increase of informativeness. Let this term be an
abbreviation for the phrase “a considerable amount of information”. In such
a context, “information” is not to mean “true message” but any message
which tells something new, whether true or false. If I estimate the message
as important, and do not see reasons to reject it as false, then the next step
should consist in checking my risky guess against some indubitable facts.
When we make a test, then each result, whether recognizing information

as true or as false, brings a profit. Thus the final return consists in the joint
growth of informativeness and certainty (i.e. safety). At this stage, we are
allowed to employ the term “information” in another sense, equivalent to
that of the phrase “true message”.
However, in what follows I mean “information” in that broader sense

which does not exclude being false. This is the standard meaning introduced
with Claude Shannon’s theory of information. His famous formula states
exactly the inverse relation between the amount of such broadly conceived
information and the message’s degree of probability.
The informativeness/risk-of-failure tradeoff is what provides a concep-

tual basis to develop the doctrine of fallibilism suggested by Charles Peirce
– as discussed above in §3. Independently, similar views were later predi-
cated by other eminent thinkers: Russell, Carnap, von Neurath, Quine, von
Neumann, Popper, etc.
Fallibilism claims that any of one’s current beliefs, including scientific

theorems, might be mistaken for the lack of justification within the knowl-
edge hitherto. The greater such a leap beyond what is known, the greater
the risk of mistake, and at the same time the greater the novelty and infor-
mativeness of a given assertion, theory, etc. Taking such a risk is an essential
prerequisite to the progress of knowledge. This moves forward the frontiers
of knowledge through guessing and conjecturing about regions of reality
unrecognized heretofore.
This point can be highlighted with the example of mechanized theo-

rem proving. A machine makes random combinatorial guesses as to what
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possible chains of inferences form a proof providing a conclusion looked
for, and eliminates those which do not turn conclusive. On the other hand,
a machine’s human adviser does not proceed randomly. He is able to give
the machine heuristic hints which make the process much shorter, hence
more economical. Such hints are due to sophisticated ideas which the ma-
chine cannot achieve by itself. This complies with Peirce’s view that guesses,
when guided by some ideas entertained by a human mind, are more often
correct than there might be by random guessing.
Such intelligent guessing – steered both by knowledge formerly acquired

and by creative inventive imagination – is what philosophers call intellectual
intuition. Such non-random guesses derive from implicit information with
the help of implicit rules of information processing. They act likewise from
behind the scene, without one’s being aware of their activity. Or, to use
another analogy, like hidden programs which in the idiom of Unix are called
“demons”.
The process of non-random guessing with clues is nicely exemplified

by the quest for new axioms. When a mathematician realizes, as did An-
dre Wiles who proved Fermat’s Theorem, that no set of existing axioms,
as known to him, is relevant to the purpose, he looks for theories likely
to provide desired premises. After a difficult search Wiles found them in
some of the most sophisticated fields of modern mathematics. This enabled
him to transfer a problem of arithmetic to the more powerful framework of
geometry and analysis (elliptic curves, modular forms).12

A fascinating story about clues to guide Wiles’ guess that these theories would
supply the quested premises is told by Simon Singh in the book The Epic Quest
to Solve the World’s Greatest Mathematical Problem (Anchor Books, 1997).

The fallibilism which acknowledges the role of knowledge and perceptions
due to our reason, and not available with senses – as discussed below in §6
– deserves to be called rationalism. This is a new kind of rationalism, much
different from the classical kind, archetypally represented in antiquity by
Plato and Aristotle, and centuries later by Descartes, Leibniz, and the rest
of the 17th century rationalists. That classical version is fundamentalistic.
That is to say, it holds that there exist ultimate and unshakable intellectual
perceptions of reason to become foundations for the entire rest of human
knowledge. Cartesian Cogito, the Leibnizian principle of sufficient reason,
as well as the Euclidean principle – axiom 8 in Elements, that any whole is
always greater that its proper part – can serve as classical illustrations of
such fundamentalism.
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The case of that Euclidean axiom can be convincingly used as an argument
against fundamentalism in mathematics, and thereby an argument for fallibil-
ism. Its fallibility gets nicely displayed in the case of infinite sets of numbers
where it ceases to hold.

The term “intellectual”, when predicated on reason’s understandings, is to
mean that they do not reduce to sense perceptions but are prior to them,
which is expressed by the Latin philosophical phrase a priori. E.g., in order
to see with eyes that some configuration of physical objects forms a pair,
a triple, etc., one should first possess a notion of number.
Fallibilistic rationalism shares with its classical ancestor the belief in

the existence of intellectual perceptions, and their priority with respect to
sensory perceptions. However, it does not share the fundamentalist belief in
their ultimate infallibility. This is the issue examined in more detail in the
next section.

§6. On aprioristic propositions whose fallibility does not make
them arbitrary and untenable

A convincing argument for such reformed rationalism is found in a study
by Barry Smith, an excellent historian of science, especially of logic, also
a historian of philosophy. His contribution bears the title “In Defense of Ex-
treme (Fallibilistic) Apriorism”.13 The term “apriorism” in the title implies
the aforementioned priority of reason, hence it consitutes a basic element of
rationalism.
The argument, which culminates in items 3 and 4 below, starts from

the following question:

1. Do the empirical theories with the help of which we seek to approximate
a good or true picture of reality rest on any non-empirical presupposi-
tions?

Smith answers “YES”, while “no” is answered by extreme empiricists. If SO,
then appears the next question.

2. Are the propositions which express these pre-empirical assumptions in
every case analytic (tautological, lacking in content)?

Smith answers “NO”, while “yes” is answered by logical empiricists. If NO,
then appears the next question.
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3. Do we have an infallible knowledge of all the synthetic pre-empirical
propositions which are presupposed by the various sciences in the dif-
ferent phases of their development?

Smith answers “NO”, while “yes” is answered by extreme Cartesians. If NO,
then appears the next question.

4. Could these pre-empirical assumptions, which are presupposed by the
empirical sciences, be arbitrary?

Smith answers “NO”, while “yes” is answered by Feyerband. If NO, then ap-
pears the next question.

5. The propositions in question must therefore be characterized by a cer-
tain plausibility. Is this plausibility always a contextual affair?

Smith answers “NO”, while “yes” is answered by hermeneutic relativists. If
NO, then appears the next question.

6. There is therefore something like an intrinsic tenability (plausibility).
Are the intrinsically tenable pre-empirical synthetic propositions which
play an indispensable role in the sciences given only individually, so
that we have only a few isolated examples thereof between which no
systematic relations would obtain?

Smith answers “NO”, and then appears the next question.

7. Is it really true that the intrinsically plausible or intelligible preempirical
synthetic propositions here at issue are read into or imposed upon the
world by us?

Smith answers “NO”, while “yes” is answered by Kantians. If NO, then arises
the last question.

8. Might the intrinsically plausible pre-empirical synthetic propositions all
be false?

Smith answers “NO”, and this is equivalent to the following conclusion.

9. Certain pre-empirical synthetic intrinsically plausible propositions re-
quire ontological correlates which are their truth-makers. Hence, there
are intelligible structures in the world, which we could also call “a pri-
ori structures”.
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To sum up: the intelligible structures in the world are the truth-makers
of judgements which are both a priori and fallible, but less fallible than
random guesses.
The above course of reasoning is to the effect that by attaining ever

more abstract and sophisticated theories our subjective picture of reality
will approximate more and more closely the objective reality. This is ex-
actly what Kurt Gödel thought, at a later stage of his investigations, about
mathematical cognition. Following his own results concerning undecidabil-
ity in mathematics, Gödel believed in the power of mathematical intuition
which can guess solutions being beyond algorithmic decidability, but this
involves the risk of false guesses.
Gödel cherished some thought-provoking ideas about how to reduce

such risk and so increase the certainty of mathematical intuitions. His point
can be called “fallibilistic rationalism”. This is another name for fallibilistic
apriorism, as defended in Smith’s paper. The replacement is justified by
the fact that from Plato to Descartes, Leibniz, etc. “apriorism” denotes the
epistemological part of rationalistic doctrine, which is what Gödel meant
and endorsed. This point is discussed in the next section.

§7. How to face complexity and reduce uncertainty?
Gödel’s speedup strategy

On June 19, 1934, at a seminar run by Karl Menger in Vienna, Kurt
Gödel held the paper entitled “Über die Länge von Beweisen” – on the
length of proofs, published in 1936. It was one of the most memorable days
in the history of logic and of laying the logical foundations for computer
science and cognitive science. Before we enter the heart of the matter, some
introductory remarks are in order.
The size of a formalized proof is a measure of its complexity and this,

in turn, provides a measure of how hard the problem is to be solved with
a proof. For instance, Andrew Wiles’ famous demonstration of Fermat’s
Theorem, an extremely hard task, took about 200 pages of manuscript, its
presentation to an audience several days, and its working out cost Wiles
many years of intense effort.
The more complex a proof or computation, the bigger the costs (of time,

memory size, etc.) of its production, the more dangerous the risk of error,
and hence the greater uncertainty as to the reliability of the result. In the
first version of Wiles’ proof, its reviewers found a mistake, and it took close
to a year to find a way to circumvent it.
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There are two ways of facing proof complexity, greatly differring as to
the domain of discourse, one belonging to computer technology, the other
one close to mathematics and its philosophy. It is the latter to be discussed
in this context. An excellent account of the issue can be found in the paper
by Jeremy Avigad and John Harrison “Formally Verified Mathematics”.14

When discussing sources of uncertainty of mathematical results, the au-
thors give numerous examples of “inferential gaps, misstatements, missing
hypotheses, unstated background assumptions, imprecise definitions, mis-
applied results, and the like.”

E.g., in the text of an eminent author a plus sign got omitted, becoming
in effect a multiplication sign. The resulting false formula got accepted as
a premise for the ensuing erroneous argument.

Even a process of thorough reviewing does not ensure correctness, since
there appear such intricate proofs that very long and effortful review work
must be done. E.g., once, a proof was scrutinized over four years by three
independent groups of reviewers; such mobilization is no unusual case. An
editor reported about the hopeless situation in which “the referees have
not been able to certify the correctness of the proof, and will not be able
to certify it in the future, because they have run out of energy to de-
vote to the problem.” In such a strain, reviewers’ inaccuracies are not un-
likely, and in fact they turn out to be frequent. This is one of the rea-
sons why there arises in mathematics a vast region of fallibility and uncer-
tainty.
The main problem of Avigad’s and Harrison’s paper is concerned with

those remedies which are offered with automated procedures, when both
provers and checkers take advantage of very sophisticated software. But
even then, as the authors conclude, and even when using the most pow-
erful computers, there remain cases which are practically intractable for
computation, too hard to bring to solution in a reasonable time. Hence
there exists a region of intractability not to be conquered even by advanced
technology.

∗
∗ ∗

After having reached this conclusion, it is necessary to turn to the strat-
egy devised by Kurt Gödel. The remedy is sought neither in software nor
in hardware but in increasing the deductive power of a theory. This strat-
egy is based on the fact demonstrated by Gödel in 1931 (the famous in-
completeness theorem) that there must exist unprovable sentences in the
first-order arithmetic of natural numbers, but if we suitably enlarge the
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set of axioms, we obtain a system enjoying a greater deductive power in
which some sentences that at the former stage could not be proved become
provable.
In the paper of 1936, “Über die Länge von Beweisen”, Gödel assumed

a system of arithmetic with axioms containing variables of higher orders.
Such reinforcing makes it possible to prove sentences hitherto unprovable.
And even more: this new system allows much shorter proofs for many of
the previously obtainable sentences. Within this new system it is possi-
ble to construct a new undecidable sentence. However, due to introducing
a system of still higher order, we obtain new opportunities to prove sen-
tences unprovable in the previous system. And those proofs which were
previously available but so perplexingly long that in practice untractable,
become enormously shortened by giving a new idea. Such a process can be
repeated ad infinitum. To sum up this groundbreaking idea, let me repeat
it by translating into English the original statement by Gödel (numbering
added by WM).

Passing to the logic of the next higher order has the effect, not
only of (1) making provable certain propositions that were hitherto
unprovable, but also of (2) making it possible to shorten, by an ex-
traordinary amount, infinitely many of the proofs already available.

Thus we attain what one may call the Gödelian speedup in problem-
solving. The term “speedup” renders the acceleration of the processes of
proving due to reducing the number of steps. The concept of speedup reveals
the relevance of item 2 – in the above framed text – to the issues discussed
by Avigad’s and Harrison’s contribution on formally verified mathematics.
Owing to the Gödelian speedup, many setbacks issuing from complex-

ity, having been insurmountable because of the unattainably long time of
proof verification, get successfully removed with the dramatic shortening of
a proof. That is, owing to the dramatic reduction of complexity.
There were important steps to continue the idea of speedup. The role

of a milestone in this chain of contributions belongs to George Boolos’ sem-
inal paper “A Curious Inference” (Journal of Philosophical Logic 16, 1987).
Boolos considered an arithmetical theorem whose intuitive proof, plausible
for the mathematical community, can be put down in a dozen or so lines.
Boolos has formalized this proof in the second-order logic, and obtained
ca. two pages of print, which may account for no more than ten thousands
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of symbols. At the same time, Boolos computed that the derivation of this
theorem in the first-order logic would require the number of symbols rep-
resented by an exponential stack of as many 2’s as 64536. It is larger than
any integer that might appear in science.15

Instead of going more into details, I refer to the paper of mine “The Gödelian
Speedup and Other Strategies to Address Decidability and Tractability Issues”
in vol. 22, 2006, of Studies in Logic, Grammar and Rhetoric, where the signifi-
cance of the issue and contributions to it by various authors, including Boolos
and experts in automated proving, are extensively discussed.16

Thus, going along the way shown by Gödel, we benefit from accelerated
progress both in mathematics and in the many sciences for which mathe-
matics is a locomotive. The progress consists in a very significant reduction
of the complexity of proofs in a great class of cases which grows ever greater
as we employ ever more powerful devices of deduction.
As a rule, to obtain a benefit one should be ready to bear some costs,

and the tradeoff is profitable only if costs get surpassed by gains. Is there
a price to be paid for so much significant reduction of the complexity of
proofs or calculations?
Let us consider the Gödelian case of using higher-order logics. Apply-

ing them, we reduce the complexity of proofs, but at the cost of a more
controversial ontological commitment, to wit the belief in the existence of
sets, then sets of sets, etc. Should we regard such a tradeoff as profitable,
or rather dubious with respect to outmatching cost by profit?
This depends on one’s philosophical position. For a mathematical Pla-

tonist, the cost is near to zero, since the existence of abstract entities is for
him like a basic evidence at the bottom of his inquiries. However, a nomi-
nalist sees the expense as too great, and resigns from diminishing the com-
plexity size at such a cost. Other philosophers prefer to abstain from taking
a stand.
As another example, we can take the axiom of choice. Some important

theorems cannot be proved if one does not assume this axiom. However, is it
legitimate to use it in order to prove statements involving infinite structures?
Mathematical constructivism answers in the negative; other philosophies of
mathematics are more permissive.
Even more debatable is the continuum hypothesis. Neither it nor its

negation can be derived from the axioms of standard set theory. So, what
reasons can we have to accept or to reject it? To accept it as a premise may
carry the cost of risking a fallacious proof. This is why some mathematicians
do not endorse this conjecture.
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These examples demonstrate, contrary to the approach of Descartes,
Leibniz, and other fundamentalists, that there are degrees of certainty and
clarity in mathematics. The spectrum extends from small integers, most
concrete and closest to our sensory experience, up to very abstract axioms
of set theory.
A penetrative insight into that difference of degree is characteristic of

Gödel’s advanced reflection. We learn it from his talks with Hao Wang
reported in Wang’s book A Logical Journey: From Gödel to Philosophy
(The MIT Press, 1997). Gödel emphasizes the fallibility of our knowl-
edge, including mathematics, and the primary importance of number theory
(i.e., the arithmetic of integers) rather than set theory.
This view of Gödel’s is of special significance for discussing fallibility in

the case of mathematics. It is to the effect that the degrees of clarity and
certainty of different parts of mathematics tend to decrease as we move from
concepts close to sense perceptions towards ever higher levels of abstraction;
that is, from simple numerical computations to constructive and classical
number theory, then to classical analysis, then full set theory. For example,
the continuum is not seen as clearly as the physical world and the integers
(op. cit., p. 212). Owing to the greater clarity and certainty of natural
numbers theory, we can become more convinced about the certainty of set
theory, provided that Gödel is right about the following conjecture:

[A] “If set theory is inconsistent, then elementary number theory is
already inconsistent.” (p. 216, sec. 7.1.8)

This becomes elucidated with the following comment.

[B] “Strictly speaking, we only have clear propositions about physically
given sets and then only about simple examples of them.” (p. 217,
sec. 7.1.10).

From such statements there emerges a method for reducing uncertainty
in mathematics, which is somewhat like checking hypotheses in natural sci-
ence. It amounts to having some empirical evidence E, and some assump-
tion A (maybe a hypothetical one) such that A entails logically E. Let A be
the set of Peano axioms, and let E be visual perceptions of sets as consisting
of physical objects, say a pair of fingers (P), three fingers (T), four (F), etc.
One sees with eyes that T is greater than P, etc. This perception of being
greater is entailed by the abstract theory of numbers, and so corroborates
this theory, i.e., makes it more understandable and more certain. Next, when
we succeed in deducing number theory from set theory, then the empirically
based certainty of the former augments the certainty of the latter.
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This does not mean that the certainty of set theory – owing to such
indirect derivation – may match the certainty of the departure point: the
perceiving of physically given sets. There arise new uncertainties with each
successive step of abstraction. In other words, we are dealing with a de-
crease of reliability, hence we are dealing with growing fallibility. The in-
crease of the fallibility of a theory, that is, the decrease of its certainty,
involves the growth of informativeness, i.e., cognitive content. Set theory
is more informative than arithmetic, and the whole of arithmetic more in-
formative that its empirical part concerning small numbers. Thus, there is
a tradeoff between informativeness and security, as discussed in previous
sections.
This view of the fallibility of mathematics does not oppose the attitude

called by Gödel rationalistic optimism. Gödel maintained that propositions
being uncertain at a stage of evolution are likely to be either denied or af-
firmed due to creative insights; these would lead to new, more powerful, de-
vices of deduction. For instance, he hoped that, in future, new set-theoretical
axioms will be found to decide about the continuum hypothesis.
Hence, there is a perspective of a nonending and accelerating progress

of mathematics. An ontological justification of that belief has been proposed
by Barry Smith in the essay referred to above in §6. Thus we attain the idea
which deserves to be called fallibilistic rationalism.
This idea throws light also on the question of whether is it possible to

incessantly move forward the frontiers of natural science. In the face of the
infinite complexity of the physical universe, as presumed by David Bohm
and his followers, there must arise impassable limits of experimental physics.
However, the question of the limits of theoretical physics seems to remain
open, if we take into account an infinite progress of mathematics to provide
physics with ever new devices for modeling physical reality. And this may
result in new perspectives for natural science. Will this actually do? To learn
the answer, we must wait for the future evolution of natural science based
on the accelerating progress of mathematics.
Thus Seneca’s famous maxim errare humanum est will be ever valid.

However, we utter it not in the tone of resignation as our ancestors did, but
being aware of its relevance to the accelerated progress of human cognition.

References are inserted into the text since most of them function as links to
those pages in the Web which are relevant to the issue being discussed. In
this way, the text gets incorporated into a big hypertext of relevant websites,
hopefully, with a gain for those readers who take advantage of the electronic
format of Studies in Logic, Grammar and Rhetoric. For instance, note 1 not
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only provides the bibliographic description of the item being recommended,
but also directly links with the electronic version of that item (the reader
should just mark with a mouse, and click, the URL address).

N O T E S

1 I regret that the obvious size limitations of this paper do not allow me to tell about
hypercomputation as a fascinating case of information processing which is not utm-
computational. To give the taste of the problem, let me refer to Hector Zenil’s blog
“Anima ex Machina”, the post: http://www.mathrix.org/liquid/category/recreation enti-
tled “Hypercomputation in A Computable Universe”.

2 See: Alan Turing, “Systems of Logic Based on Ordinals”, Proc. London Math. Soc.,
ser. 2, 45 (1939).

3 See: G. J. Chaitin, Algorithmic Information Theory, Cambridge University Press, 1990
(2nd ed.), p. 62.

4 An extensive account of Chatin’s theory and its applications to the progress of sciences
can be found in the book by Douglas S. Robertson Phase Change: The Computer Revo-
lution in Science and Mathematics, Oxford University Press 2003. As for G. J. Chaitin’s
original texts, for present purposes his Information, Randomness & Incompleteness: Pa-
pers on Algorithmic Information Theory (World Scientific, Singapore 1990) would be very
useful.

5 This term appears in most recent discussions to take advantage of the explanatory
merits of the idea of information with respect to the nature of the universe. See, e.g.,
Hector Zenil’s polemics with Seth Lloyd in the former’s blog “Anima ex Machina”:
http://www.mathrix.org/liquid/archives/tag/quantum-computer.

6 A recent approach to the exponential growth of information is found in discussions
inspired by Ray Kurzweil’s bold predictions. See, e.g., the blog discussion entitled “Why
so slow” at the page http://sciencehouse.wordpress.com/2008/06/10/why-so-slow/. Also
“Big and Small” by R. D. Ekers at http://arxiv.org/pdf/1004.4279.pdf.

7 Still in the first decades of the 20th century it was projected in the Vienna Circle to
establish a logic of induction, able to grant such certainty to the natural sciences, as the
logic of deduction does with respect to mathematics.

8 See http://pl.wikipedia.org/wiki/Max Planck, and http://en.wikipedia.org/wiki/
Special relativity.

9 See http://en.wikipedia.org/wiki/Initial singularity.

10 Nicholas Rescher, Satisfying Reason: Studies in the Theory of Knowledge (Kluwer,
Dordrecht 1995). See chapter 3. Reason and Reality, section 6. The Burdens of Complexity,
p. 38.

11 See the paper by Gordana Dodig-Crnkovic “Significance of Models of Computation,
from Turing Model to Natural Computation”,Minds and Machines, May 2011, volume 21,
issue 2, pp. 301-32. Available with Springer if addressed: http://link.springer.com/article/
10.1007/s11023-011-9235-1.

12 Cp. http://www.mathrix.org/liquid/category/recreation – H. Zenil’s post: “Meaning-
ful Math Proofs and ‘Math is not Calculation’”.

13 Available at https://mises.org/journals/jls/12 1/12 1 9.pdf. Published in: Journal for
Libertarian Studies, 12(1) (Spring 1996), pp. 179-192. Center for Libertarian Studies.
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14 See http://dl.acm.org/citation.cfm?doid=2580723.2591012. Published in Communica-
tions of the ACM, April 2014, volume 57, issue 4, pp. 66-75. John Harrison belongs among
the most renowned computer scientists in the field of automated theorem proving. Jeremy
Avigad is a professor in the departments of philosophy and of mathematics at Carnegie
Mellon University.
15 More on this subject, see chapter 25 in George Boolos’ book Logic, Logic, and Logic,

Harvard University Press 1998. The proof of Gödel’s 1936 theorem is given in: Samuel
R. Buss, “On Gödel’s Theorems on Lengths of Proofs I: Number of Lines and Speedups
for Arithmetic”, Journal of Symbolic Logic, 39, 1994, pp. 737-756.
16 See http://logika.uwb.edu.pl/studies/index.php?page=search&vol=22, sections 1.1-

1.5.
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