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Abstract. In the paper we consider an electricity provider company that makes
decision on allocating resources on electric network maintenance. The invest-
ments decrease malfunction rate of network nodes. An accidental event (explo-
sion, fire, etc.) or a malfunctioning on underground system can have various
consequences and in different perspectives, such as deaths and injuries of pedes-
trians, fires in nearby locations, disturbances in the flow of vehicular traffic,
loss to the company image, operating and financial losses, etc. For this reason
it is necessary to apply an approach of the risk management that considers
the multidimensional view of the consequences. Furthermore an analysis of de-
cision making should consider network dependencies between the nodes of the
electricity distribution system. In the paper we propose the use of the simu-
lation to assess the network effects (such as the increase of the probability of
other accidental event and the occurrence of blackouts of the dependent nodes)
in the multidimensional risk assessment in electricity grid. The analyzed effects
include node overloading due to malfunction of adjacent nodes and blackouts
that take place where there is temporarily no path in the grid between the
power plant and a node. The simulation results show that network effects have
crucial role for decisions in the network maintenance – outcomes of decisions to
repair a particular node in the network can have significant influence on perfor-
mance of other nodes. However, those dependencies are non-linear. The effects
of network connectivity (number of connections between nodes) on its multi-
dimensional performance assessment depend heavily on the overloading effect
level. The simulation results do not depend on network type structure (random
or small world) – however simulation outcomes for random networks have shown
higher variance compared to small-world networks.

Keywords: cascade failure, network decision making, underground electricity
grids.

1. Introduction

The aim of the paper is to propose simulation methods to assess in-
fluence of expenditures of network structures on network malfunctions and
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multidimensional consequences of those malfunctions. In the paper we con-
sider a decision making problem for expenditures on an electricity network.
Garcez and Almeida (2013) developed a multidimensional assessment

tool for measuring the risk in an underground electricity distribution sys-
tem. The tool ranks the alternatives in a risk hierarchy. In the paper, we ex-
panded that approach with the analysis of network dependencies in a power
grid. The need for such analysis arises from the fact that there is a depen-
dency relationship between the vaults (nodes) of an underground electric-
ity distribution system. The large-scale interconnected power grid system
has grown into one of the most complex man-made technological networks
(Han & Cao, 2004). With the increasing number of nodes the interaction
of the components becomes more complex (Wildberger, 1997). According
to Dueñas-Osorio and Vemuru (2009), the infrastructure systems and their
flow demands are growing at a rate that is outpacing the efforts to upgrade
flow capacity and maintain safety margins. In addition, infrastructure sys-
tems are becoming more interdependent and failures within a given system
are more likely to impact the performance of other systems.
The use of underground electricity distribution networks is increasing

worldwide due to several reasons including increased security, protection
from the forces of nature and aesthetic benefits to a city (e.g. see Koch and
Carpentier, 1992; Walsh and Black, 2005). Aging of an underground grid,
lack of appropriate maintenance and interference from other underground
systems have generated many accidental events, thus putting human life
in danger, and generating consequences for society, the local distribution
company and third parties (e.g. see Koch and Carpentier, 1992; Walsh and
Black, 2005). For example, in New York, hundreds of accident events in
vaults occur every year, such as fires, explosions, smoke, etc. (Rudin et al.,
2012). In the city of Rio de Janeiro (Brazil) in the years 2010 and 2011,
there were about 70 events in underground vaults.
These accident events can have various consequences and in different

perspectives, such as pedestrian deaths and injuries as a result of the fall of
a manhole cover or exposure to incident energy; they scare the local popu-
lation; fires in nearby locations; disturbances in the flow of vehicular traffic;
loss to the company image, operating and financial losses; drop in the avail-
ability and reliability rates of the system, etc. (Garcez & Almeida, 2013).
According to Almeida (2001), the competitiveness of an industrial sys-

tem is directly related to decision making in maintenance area. In some
situations, in the business decision analysis it is necessary to allocate addi-
tional or supplementary investments (resources) that the company needs to
make in turn to make its system safer and more reliabile. This is hard and
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complex task to decision maker, because the systems grid has large number
of vaults that should be considered in the analysis, the existence of the great
diversity of hazards that can cause accidents and different consequences.
Furthermore, these resources (money, time, work teams, technology, etc.)
that the electricity distribution company can make available are limited
and scarce, so it is not possible to apply the same amount of resources in
all underground vaults (alternatives) – see Garcez and Almeida (2013).
The research methodology in our paper is simulation of a system model

– e.g. see Gilbert and Troitzsch (2005) and Law (2007). The system here is
understood in classical system approach as a set of interconnected elements
which was proposed by Ackoff (1971). Hence, in the paper the system is
an electricity grid network with interconnected nodes. Similar approaches
can be found in the literature – e.g. Sun (2005) has simulated a small-world
model of a power grid and measures the network efficiency on both local and
global levels. Dueñas-Osorio and Vemuru (2009) studied the effect of cascad-
ing failures in the risk and reliability assessment of complex infrastructure
systems. We expand the existing approaches by adding a multidimensional
risk measurement and by evaluating the impact of electricity grid structure
on its efficiency.
The simulation approach allows us to present consequences arising from

accidental events in underground system of energy distribution. For this, the
simulation shows to be a useful tool to present to decision maker before they
make the in-depth analysis to ranking of the risk, and defined priorities of
the alternatives.
Law (2007) notes that a simulation process includes modeling the

system, implementation, verification, simulation experiments and meta-
analysis of simulation results. In the paper we follow the proposed process.
Hence the layout of the paper is as follows. After the introduction, in section
2 model assumptions are discussed. Next, in section 3 an implementation
is presented that is followed by description of simulation experiments and
results of those experiments. The fourth section is the conclusion.

2. Network effects for underground electricity distribution

The goal of this section is to present a conceptual model for electricity
distribution grid. The conceptual model presentation is divided into two
parts. Firstly, in the subsection 2.1 multidimensional performance measures
for electricity grid are proposed. Secondly, in the section 2.2 network depen-
dencies in the model are discussed.
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2.1. Measuring electricity grid operation
Considering an electricity grid, specifically an underground system, for

each node an accidental event is adversely affected (hazard scenario θ, for
example, can be represented by fires, explosions, etc.), there will be conse-
quences for the financial loss.
Let us assume that the total accumulated financial dimension on the

time (t) can be estimated by sum of the revenue (Rtotal(t) =
∑q

i=1Ri(t))
from each underground vault (q). When a malfunction occurs a fine of
rate f% is imposed on the grid operator. The actual fine fq is calculated
by multiplying the rate by the node revenue that would be achieved in nor-
mal operation i.e. fq = −(f% ·Rq). Depending on the physical configuration
of the distribution network, and on whether there are alternative ways to
isolate the system affected (the one that has crashed), it is likely that the
financial consequences will be lower due to the lower impact on revenue,
fines and the performance of the system – see Garcez and Almeida (2013).
Garcez and Almeida (2013) note that non-financial consequences of

a power grid malfunction play important role and should be considered
independently of financial ones. Two important non-financial consequences
include a number of people injured (Nt) and operational loss. Let (tdq

) rep-
resent downtime of a particular node in an electricity grid. This is measured
from the moment that the electric power distribution becomes unavailable
to the consumer, until it is restored to the standards required by the reg-
ulatory agencies. The probability density function lognormal can be used
to calculate the result of the function, which represents the maintainability
of the system. However, we can convert this operational loss dimension as
a financial loss because during this time of system inactivity, the company
ceases to accumulate revenue i.e. D(t) = −tdq

· R(t)

2.2. Network effects in electricity grid operation
Li and Lu (2005) propose a method to perform risk assessment of a com-

binative system of transmission network and substation configurations, and,
so, capturing the mutual impacts between the transmission network and
substation arrangements.
Before decision making it is necessary to understand the relationship

between the various underground vaults, i.e., in view of the network of the
system. Several consequences can be influenced by the time and relations
between different consequences of the dimensions considered. For example, if
we look only at one alternative (one specific underground vault) the revenue
will accumulate with the forward of the time (hourly, daily, monthly, etc.),
and in the occurrence of an accidental event, this increase in revenue will be
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broken because there will be losses, with respect to different loss dimensions,
such as, human loss, financial loss or operation loss, previously detailed.
The Figure 1, presents the value of accumulated revenue Rq in relation

to occurrence of the accidental event (explosion of the underground vault,
for example), which occurs in te time. After elapsed tDq

time (called down-
time), in tr time, the system is restored and comes back to work again,
accumulating revenue.

Figure 1. Behavior of the accumulated revenue Rq in relation to occurrence
of the accidental event

We consider each underground vault (q) to represent a network node. If
electricity grid is operating perfectly, there is an accumulation of revenues
for each node. However, if any accidental event occurs, there will be losses
in revenue resulting from the imposition of fines, and the time at which
the system remains inactive (downtime). Also, other nodes that are depen-
dent (they are subsequent to the node where the accidental event occurred)
will not accumulate revenue because they are not powered. Moreover the
market regulator can impose a fine bq on an electricity grid operator. The
fine level bq is the percentage of revenue generated by a node R(t) and
i.e. bq = −b%R(t).
Furthermore, if an accidental event occurs non-financial loss can be

generated. In this specific case, we consider the non-financial loss such as
injuries to people. Other effects may be caused by an accidental event in an
underground vault, that we will call “network effects”, which is the increased
probability of other accidental events, and the occurrence of blackouts. The
malfunction of a highly connected node is likely to result in subsequent
malfunctions. Hence, highly connected nodes require greater care in main-
tenance. Thus, a cascading failure effect can be observed.
Figure 2 represents the relationship between normal operation and the

occurrence of an accidental event in each node and the results generated by
these relations in a network system, as described above.
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Figure 2. Transitions of node states in an underground electricity network
model

The proposed electricity grid management problem has complex, non-
linear dependences between its components. Hence, we apply the simula-
tion approach to analyze it. Applying simulation to complex system anal-
ysis is consistent with the literature – e.g. Holland (1992), Law (2007) and
Mitchell (2009).

3. Simulating network effects

The goal of this chapter is to present the implemented simulation model
and results of simulation experiments. The discussion starts with presen-
tation of the simulation model implementation and model configuration.
The implementation description is illustrated with screenshots from exam-
ple simulation runs. Next, experiment design is discussed. Finally the sim-
ulation results are presented.

3.1. Simulation model implementation
The model has been implemented with the Python programming lan-

guage. For network manipulation and visualization the networkX library
(see Hagberg et al., 2008) has been used. For graphical control of simula-
tion the and WPyCX simulation library has been used. The WPyCX is fork
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modelParameters =
{
’random seed’:0, #the same random seed allows to replicate
simulation
’number of nodes’:24,
#’network graph type’: lambda number of nodes :
nx.connected watts strogatz graph(number of nodes, 4, 0.07),
’network graph type’: lambda number of nodes: connectedGraph(lambda:
nx.dense gnm random graph(number of nodes,
round(number of nodes*6/2))),
’increasedThetaMultiplier’:10, #theta will be increased by this
value for adjacent nodes in case of malfunction
’malfunctionGovFine’:25, #number of daily revenues paid in case
of node malfunction
’blackoutGovFine’:2, #number of daily revenues paid in case of
not providing electricity to a node
’revenuePDF’: lambda nodeDegree : nodeDegree, #PDF for calculating
foxed-in time revenue for nodes - the parameter is nodeDegree
’thetaPDF’:lambda nodeDegree:rd.random()/100, #PDF for calculating
foxed-in time default prob of malfunction for noodes
’negativeNonFinancialImpactPDF’:lambda nodeDegree : np.random.
poisson(nodeDegree), #PDF for number of negativeNonFinancialImpact
in any given malfunction
’downtimePDF’:lambda nodeDegree : 1+np.random.poisson(nodeDegree),
#PDF for periods of downtime in any given malfunction
}

Figure 3. Model parameterization includes the base random seed, number of
nodes, network structure, malfunction and downtime probability
density function

of the PyCX simulation library. The PyCX was designed by Sayama (2013)
while the WPyCX fork has been co-developed by one of the authors.
The main simulation model consists of the three routines: init(), step()

and draw(). The init() routine is called once per simulation to assign the
initial values and generate initial network structure. The step() routing is
executed once per each simulation tick in the model. We assume that one
time unit (one simulation tick) in the model represents one day in the real-
world system. The draw() routine is executed only when simulation is run
in graphical mode.
The model parameterization has been presented on Figure 3 and in-

cludes the base random seed, number of nodes, network structure, malfunc-
tion and downtime probability density function. The random seed value
allows to replicate simulation results. The simulated network size (24) in-
cludes the power plant factory. The network graph type is configurable as
a function – here an anonymous lambda function is being used. In the simu-
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lation setup process we only consider connected networks – a path between
the factory and each node must exist (however, during a simulation process
this part can be temporarily broken due to node malfunction). The fines
are defined as multiplier of daily revenues. For the negative nonfinancial
impact N(t) and out-of-service days in case of malfunction d(t) probability
density functions can be defined.
In the model we use Poisson distribution with parameter dependent

on node degree in the network. For each node a malfunction probability
is generated. It is assumed that this value is θq ∼ U(0, 0.01). Hence θq is
uniformly distributed random number from the range (0, 0.01).
The simulation model source code can be found in the Appendix. In the

next subsection the experiment scenario and parameter sweep will be dis-
cussed for the presented set of model parameters.

3.2. Simulation experiments

The simulation experiments have been carried out for 24-node networks.
In the experiments two different network structure types are considered:
small world (see Watts and Strogatz, 2008) and random network (see Erdös
and Rényi, 1960). For each network type 3 connectivity levels will be ana-
lyzed: 24, 48 and 72 edges – see Table 1.
The key parameter of the model is the impact of overloading on the per-

formance of adjacent nodes. The overloading influence describes how many
times the malfunction probability increases due to overloading. This param-
eter is further multiplied by the level of node overloading. The experiment
factorial design includes 4 different levels of overloading influence levels –
1, 4, 7 and 10.
Hence we have 24 possible simulation model configurations. For each

of those 24 parameter settings network structure is randomly generated
and electricity grid simulation is being run. For each parameterization sim-
ulations are replicated 50 times – with 50 different randomly generated
networks (however, these networks follow the requested type from table 1).
Finally 3·2·4·50 = 1200 simulations of electricity grid performance dynamics
have been run with each lasting for 1000 periods (days).
Law (2007) points out that using the common random numbers (CRN)

technique can improve comparability of simulation outcomes for various sce-
narios. In the experiments the CRN was introduced through a common ran-
dom seed for each of 24 scenarios for a particular run out of 50 repetitions.
Hence, the same starting operational parameters (e.g. the base malfunction
probability) of nodes are being compared but in different network layouts.
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Table 1

Two network types with 3 different connectivity levels will be analyzed
in simulation experiments

Network structure type Nodes Edges Example network structure

Small world (SW) with switching 24 24

path probability=0.07 24 48

Watts and Strogatz (2008) 24 72

Random (RD) 24 24

24 48

Erdös and Rényi (1960) 24 72

3.3. Dynamics of electricity grid performance
The goal of this subsection is to present simulation results. The presen-

tation of results is divided into two parts. Firstly, results of the simulation
experiments will be presented. Next, some aspects of the achieved results
will be discussed in more detail and will be illustrated with conclusions
drawn from single simulation.
The simulation experiments were designed along instructions presented

in the subsection 3.2. According to assumption made in the section 2.2, two
performance measures of the electricity network are being analyzed: revenue
and negative impact (nonfinancial loss). Figure 4 represents an example
performance trajectories for all nodes in a network. The simulation has
lasted for 1000 periods (see section 3.2) – it can be seen that the node
performance varies strongly in the network. Values of node performance
factors are being calculated for single nodes in the network and next they
are being aggregated for the entire network. The nodes operate for several
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Figure 4. Dynamics of node performance – two outcomes are measured:
aggregated revenue and aggregated nonfinancial loss

periods. Hence, the aggregated negative impact can change only with time,
while aggregated revenue of a node can change depending on the number of
malfunctions the node undergoes.
The simulation experiments results presented on Figure 5 show the

important role of impact of network nodes overloading vulnerability and
network connectivity (number of edges) on network performance. Each box
on the graph has been plotted by calculating results of 50 simulation runs
for a given randomized network structure. It can be seen that for networks
with small overloading effects connectivity leads to increase in profit and
this relationship is independent of the network structure type. In networks
with strong overloading the increase in connectivity first leads to increase
of performance while later it leads to decrease of profit.
Figure 6 presents dependencies between network connectivity and nega-

tive impact (nonfinancial loss). It can be seen that with higher connectivity
the negative impact increases. However the increase is much faster in net-
works with higher overloading effect. Hence, the simulation results show
that overloading effect is important factor for network performance and
dependence between the performance and the structure.
The overloading effect has very strong effect on performance because of

possibility of cascade failure. A node malfunction increases the probability
of malfunction for other nodes due to overloading (see the section 2.2).
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Figure 5. Changes in effect level for node overloading influence the shape of
dependence between connectivity of the network and aggregated
profit. This dependence is independent of network type
[RD = Random, SW = Small world]
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Figure 6. Network connectivity increases the average negative impact of the
network (i.e. number of malfunctions) – this increase is higher with
higher overloading effect

Figure 7. An example cascade failure with a blackout in a small world network.
The gray color represents the electricity power plant (F) and
a powered node, the white color represents node malfunction while
the light gray represents power shortage (blackout)

In high-connectivity networks this situation can lead to a cascade failure in
electricity grid. A sample cascade failure for a network has been presented
in figure 7.
The electricity grid operator can make decisions to repair a particular

node. The repair leads to a decrease of malfunction rate for that node. It
has also been remarked that due to the overloading effect, repairing a node
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has also a significant impact on other adjacent nodes. Let’s consider a dam-
aged electricity network bringing loss with every time period presented on
Figure 8. The figure presents dynamic path for profit and negative impact
for each node for the period of 1000 days. The graph a) presents perfor-
mance of network nodes with no budget allocated for repairs. The highest
performance is of nodes 6, 12 and 17 while nodes 4, 7, 9, 10, 18 and 20
create excessive volume of negative impact and probably a decision to re-
pair those nodes should be made. For the network we consider a decision
to repair nodes 7, 9 and 18. It can be seen that such decision leads to
structural changes in performance of several other nodes in the network
– e.g. the performance of node 4 sharply increases. This effect is caused
by the fact that malfunction of a node leads to decreased performance of
adjacent nodes.

Figure 8. The network effect on of repairing nodes – performance of other
nodes (e.g. 4 has increase)

The presented simulation results lead to the following four conclusions.
Firstly, the interference level between nodes strongly influences performance
of the nodes – especially for networks with high connectivity. This effect
can be observed regardless of the network structure type (random or small
world). Secondly, the independence between network structure type and
network performance means that computer simulation of artificial networks
can be applied to real world networks having different structures. Thirdly,
maintenance decisions on the network should depend not only on perfor-
mance of a single node but the effect on entire network performance should
be simulated. Finally, the variance of network efficiency is much higher for
random networks than for small world networks.
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4. Conclusions

The network structures of power distribution systems are critical to
society. Furthermore, these structures are large and complex, with large
amounts of connections (nodes) and it requires more dedication from the
company concerning proper maintenance and risk management, in order
to maintain the reliability and safety of the system at levels acceptable to
society. Thus, decision making to prioritize resources to apply in the system
become a complex and arduous task for the decision maker.
As noted, it is so important to perform multidimensional risk assess-

ment, as evidenced by Garcez & Almeida (2013), as well as assessing influ-
ence of network effects on electricity system. Therefore, the use of simulation
is an appropriate tool that allows managers to understand the interactions
between various nodes in the system and to verify the system’s behavior
over time, and, thus, allowing the decision maker to have more information
to take the right steps.
The simulation results show that network effects have crucial role for

decisions in the network maintenance – outcomes of decisions to repair
a particular node in the network can have significant influence on perfor-
mance of other nodes. However, those dependencies are non-linear. The
effects of network connectivity (number of connections between nodes) on
its multidimensional performance assessment depend heavily on the over-
loading effect level. The simulation results do not depend on network type
structure (random or small world) – however simulation outcomes for ran-
dom networks have shown higher variance compared to small-world net-
works.
The proposed approach was illustrated with an electricity grid network.

However it can also be applied to analysis of different distribution systems
(natural gas, oil and water). Moreover it can be applied to dynamic analysis
of other complex systems where a malfunction of a single node can increase
probability of malfunction of adjacent nodes. This includes financial sys-
tems (including bank networks) and transportation systems (airborne and
ground).
The further research in the presented area includes applying multi-

criteria decision making methods that incorporates structure preference of
the decision maker and it treats the uncertainties inherent of the context.
Another area of research is expanding the simulation scenarios into different
network structures and network parameterizations.

64



Multidimensional Risk Management for Underground Electricity Networks

Appendix – the power grid simulation model

The model has been programmed with the Python programming lan-
guage with the PyCX simulation library proposed by Sayama (2013). Below
only the computational part of the model is presented – the visualization
and the parameter sweep parts of the source have been excluded due to
space limits.

# electricity grid.py
# Simulating perforamnce dynamics for electricity grids
# (c) Przemyslaw Szufel & Thalles Garcez 2013

import random as rd
import numpy as np
import pylab as pl
import networkx as nx

modelParameters = {} #see Figure 3 for an example parameter set
mh = None
t = 0
CURRENT SEED = 0
def setSeed ():
global CURRENT SEED
CURRENT SEED = modelParameters[’random seed’]

setSeed ()

def init():
global mh, labels,t,CURRENT SEED
rd.seed(CURRENT SEED)
np.random.seed(CURRENT SEED)
mh = modelParameters[’network graph type’]

(modelParameters[’number of nodes’])
#seeding again to ensure experiment replicability
rd.seed(CURRENT SEED+10000)
np.random.seed(CURRENT SEED+10000)

for n in range(0,mh.number of nodes()):
mh.node[n][’thetaProbDefault’] =
modelParameters[’thetaPDF’](mh.degree(n))

mh.node[n][’thetaProbCurrent’] =
mh.node[n][’thetaProbDefault’]

mh.node[n][’negativeNonFinancialImpactPDF’] = lambda
time:modelParameters[’negativeNonFinancialImpactPDF’]
(mh.degree(n))

mh.node[n][’downtimePDF’] = lambda
time:modelParameters[’downtimePDF’](mh.degree(n))

mh.node[n][’Type’] = ’V’ if n > 0 else ’F’
# NODE 0 is an electricity factory
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mh.node[n][’Revenue’] =
modelParameters[’revenuePDF’](mh.degree(n))

mh.node[n][’Broken’] = 0
mh.node[n][’OverloadLevel’] = 0
# a node is overloaded when adjacent nodes brake
mh.node[n][’WillBeRepairedAtPeriod’] = None
#Aggregetes
mh.node[n][’RevenueAggregated’] = 0
mh.node[n][’NegativeNonFinancialImpactAggregated’] = 0
#histories of aggregates
mh.node[n][’RevenueAggHistory’] = []
mh.node[n][’NegativeNonFinancialImpactAggHistory’] = []
try:
mh.node[n][’Powered’] = 1
if nx.shortest path length(mh,0,n)>0 else 0

except nx.NetworkXNoPath:
mh.node[n][’Powered’] = 0

t=0
CURRENT SEED += 1 #Increase the seed for subsequent runs

def draw():
pass
# The visualistion code has been excluded due to space limits

def step():
global t
graphChange = False
if ’repairNodesTime’ in modelParameters
and modelParameters[’repairNodesTime’][1]==t:
for n in modelParameters[’repairNodesTime’][0]:
mh.node[n][’Broken’]=0
mh.node[n][’thetaProbDefault’]=0
mh.node[n][’thetaProbCurrent’]=0

#track status change of nodes
for n in range(1,mh.number of nodes()):
if (mh.node[n][’Broken’]==0):
#Only a powered node can break
if (mh.node[n][’Powered’]==1
and rd.random() < mh.node[n][’thetaProbCurrent’]):
#transformator has exploded
mh.node[n][’Broken’]=1
mh.node[n][’WillBeRepairedAtPeriod’]=
t+mh.node[n][’downtimePDF’](t);

#need to pay fine
mh.node[n][’RevenueAggregated’]-=
mh.node[n][’Revenue’]*
modelParameters[’malfunctionGovFine’]

#some people are negativeNonFinancialImpact
mh.node[n][’NegativeNonFinancialImpactAggregated’]+=
mh.node[n][’negativeNonFinancialImpactPDF’](t)

graphChange = True
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else :
if (t>=mh.node[n][’WillBeRepairedAtPeriod’]):
mh.node[n][’WillBeRepairedAtPeriod’]=None
mh.node[n][’Broken’]=0
graphChange = True

#check network effects when there was status change
if graphChange:
#network effect - blackouts
paths = nx.edges(mh,
[n for n in range(1,mh.number of nodes())
if mh.node[n][’Broken’]==1])

mh.remove edges from(paths)
for n in range(1,mh.number of nodes()):
try:
mh.node[n][’Powered’] = 1
if nx.shortest path length(mh,0,n)>0 else 0

except nx.NetworkXNoPath:
mh.node[n][’Powered’] = 0

if mh.node[n][’Powered’] == 0:
mh.node[n][’RevenueAggregated’]-=
mh.node[n][’Revenue’]*
modelParameters[’blackoutGovFine’]

mh.add edges from(paths)
for n in range(1,mh.number of nodes()):
mh.node[n][’thetaProbCurrent’] =
mh.node[n][’thetaProbDefault’]

#network effect - increased probability to break
for n in range(1,mh.number of nodes()):
mh.node[n][’OverloadLevel’] = 0
if mh.node[n][’Broken’]==0 and mh.node[n][’Powered’]==1:
for nn in mh.neighbors(n):
if nn>0 and mh.node[nn][’Broken’] ==1:
mh.node[n][’OverloadLevel’] +=1

for n in range(1,mh.number of nodes()):
if mh.node[n][’OverloadLevel’] > 0:
mh.node[n][’thetaProbCurrent’] =
mh.node[n][’thetaProbDefault’]*
modelParameters[’increasedThetaMultiplier’]*
mh.node[n][’OverloadLevel’]

#calcualate revenue
for n in range(1,mh.number of nodes()):
if mh.node[n][’Broken’] == 0 and mh.node[n][’Powered’]==1:
mh.node[n][’RevenueAggregated’]+=mh.node[n][’Revenue’]

#The factory node stores statistics for the entire network
mh.node[0][’RevenueAggregated’] =
sum([mh.node[n][’RevenueAggregated’]
for n in range(1,mh.number of nodes())])

mh.node[0][’NegativeNonFinancialImpactAggregated’] =
sum([mh.node[n][’NegativeNonFinancialImpactAggregated’]
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for n in range(1,mh.number of nodes())])
#Append history to all nodes
for n in range(0,mh.number of nodes()):
mh.node[n][’RevenueAggHistory’].
append(mh.node[n][’RevenueAggregated’])

mh.node[n][ SD’NegativeNonFinancialImpactAggHistory’].
append(mh.node[n][’NegativeNonFinancialImpactAggregated’])

t+=1

#run the simulation...
import pycxsimulator
pycxsimulator.GUI().start(func=[model.init,model.draw,model.step])
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