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Abstract. In this article we present the foundations of a decision support sys-
tem for blockage management in Fire Service. Blockage refers to the situation
when all fire units are out and a new incident occurs. The approach is based on
two phases: off-line data preparation and online blockage estimation. The off-line
phase consists of methods from data mining and natural language processing
and results in semantically coherent information granules. The online phase is
about building the probabilistic models that estimate the blockage probability
based on these granules. Finally, the selected classifier judges whether a block-
age can occur and whether the resources from neighbour fire stations should be
asked for assistance.

Keywords: Knowledge Discovery, Domain Knowledge, Granular Modeling, Lay-
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1. Introduction

In order to adequately respond to emergencies, a sufficient amount of
staff and resources as well as geographic coverage are needed. The placement
of most of the Fire&Rescue (F&R) stations in Poland are accurate for wide
time perspective. Therefore they are difficult to be relocated, even when they
are not ideally situated. To overcome this problem of lack optimally situated
stations, manual allocation of resources to stations is performed. Planning
for resources and manpower coverage, includes a wide variety of factors,
among others: national and European Union regulations, fire threatening
life, frequency and spatial distribution of calls and roads network, etc.
The calculations where to build and how to equip the station are annu-

ally based. Therefore they are accurate for wide time perspective. However,
they are useless in those cases when the number of daily calls increases
significantly above the annual average. In such situations, stations run out
of resources very fast, which can lead to a blockage. Blockage refers to the
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situation when all fire engines (or generally units) are out and a new inci-
dent occurs. Blockages decrease public safety significantly. They lead to the
situation when there are no rescue services to handle the incidents and a
dangerous situation expands.
In this context, the blockage management are organizational and op-

erational activities focused on preventing the blockages. One of the most
popular methods of managing the blockages is temporal movement of en-
gines from the station which has full resources to the one which has a high
probability of blockage at the moment. Real time movement of engines from
one station to another requires making fast decisions based on accurately
predicted future development. The wrong decisions may result not only
in economic losses but also in a large number of casualties. Inappropriate
management of engines deploying could also lead to disorganisation of res-
cue system on higher level and to decrease in the potential of rescue system.
All these factors make the problem of engines movement in real time very
important. Therefore the computer systems which can support the decision
makers are very needed.
This article is focused on the handling of the blockages in the fire sta-

tions. The main contribution of the paper is the description of an effective
solution method that supports decision making in a dynamic deployment
of Fire&Rescue (F&R) engines across stations. The core of our method is
estimating the expected return times of the gone fire brigades which, along
with the distributions of the emergencies against the hours of the day and
the distribution of the emergencies per day, allows the evaluation of the
probability of the blockage. By using this method it is also possible to pre-
dict the return time of the given engine, and through this to evaluate if it
is necessary to move the engine from other stations.
The rest of the paper is organised as follows: section 2 contains a brief

review of the techniques of units deployment to highlight a comparison of
different methods. In section 3 we discuss briefly the impact of the blockages
on public safety. In section 4 we present our method of prediction of the
blockages. In section 5 we describe the experiments which we conducted
to validate our methodology. The last section of the article concludes and
interprets the research results and considers perspectives for the application
of our model.

2. Related Work

The problem of deployment of the units across stations refers to the
number of general problems such as: short-term car rental logistics prob-
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lem (Fink and Reiners, 2006), queuing loss system (Shonick and Jackson,
1973; Ormeci and Burnetas, 2004), determination of the optimal fleet size
and vehicle transfer (Li and Tao, 2010) or patrol force deployment optimiza-
tion (Lee et al., 1979; Lau et al., 2010).
In the fire protection domain the blockage issue was addressed in (Ha-

sofer et al., 2007; Tillander and Keski-Rahkonen, 2008). Those articles seem
to be focused on the strategical level and the conclusions from the works
may benefit the decision makers resolving the problems of equipping the fire
stations with the necessary resources. The probability of the blockage can
be decreased simply by adding more units or more equipment, so that there
are always reasonable reserves. The idea is based on the following approach:
The average number of simultaneous fires C in the area under the study

can be calculated as follows:

C = λτ (1)

where λ is the number of the fires per unit time and τ is the average oper-
ating time per fire.
The probability of the blockage PB can be assessed by formula (2)

originally described in (Beckmann, 1968) in connection with the telephone
exchanges, where blocking also occurs when an incoming telephone call finds
all lines busy.

PB =
CS

S!
∑S

r=0
Cr

r!

(2)

where C is, as before, the average number of the simultaneous fires and S is
the number of the available fire units. Once the acceptable level of PB is
defined, it is possible to calculate the minimum number of the fire units for
the station.
The second approach proposed by Peace (Peace, 2001) is based on var-

ious types of risk. In order to provide Fire Service Emergency cover for a
given area, the worst case planning scenario (WCPS) is used. This is the
worst case for which cover will be routinely planned. The WCPS is selected
on the basis of professional judgement. For example, for an estate of domes-
tic dwellings it might be: “whole house involved in fire with rescue required”.
The set of WCPSes is then assigned to the area. Next step of the approach
is allocating resources to stations’ turn-out areas. The procedure for allo-
cating resources to the stations is semi-automatic and consists of manual
allocation with support of computer software called pathfinder. The soft-
ware reports the consequences of a given vehicle allocation, while the choice
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which vehicles are required and where they should be allocated is left to the
judgement of the planner.
However, the above methods are focused on ‘designing’ the fire stations

rather than on handling dynamic, everyday situations when the fire engines
go to the incidents and create the blockage probability. Better suited data
and broader analyses are needed for such scenarios, as described further in
this article.
Another approach was invented by Taylor and Huxley (Taylor and Hux-

ley, 1989). The proposed model, called the Police Patrol Scheduling System
(PPSS), was produced in order to provide better manpower personnel de-
ployment in terms of workload demand over the hour of the week. The
model that was developed is an integer programming problem (Nemhauser
and Wolsey, 1988). This model helps calculate the number of officers needed
by hour by day.
Due to long computation time for the realistic problem, the PPSS model

was extended by Church and coworkers (Church et al., 2001). They de-
veloped a heuristic solver for the above model. The solver is based upon
a TABU search process (Clover, 1989, 1990) and involves a technique called
strategic oscillation. The model narrows the time perspective in which we
can predict the number of officers, but it is still not resistant to temporary
growths of demands in some areas. Therefore, the real time models which
can predict the probability of the blockage at any time interval are still
needed.

3. Blockages and their Impact on Public Safety

In this section we present short statistical analysis focused on discover-
ing how dangerous the blockages are for public safety. We try to determine
what types of losses (if any) blockages generate. We define some numerical
values for evaluating the harmfulness of the blockages for the public safety.
We analyse these aspects in two different regions: urban with dense coverage
of fire stations and small towns with one fire station and few volunteer fire
stations located in the surroundings.
It is difficult to evaluate the strict impact of blockage on the public

safety. In our work we try to approximate it by a few numerical measures.
That is: the delay in arrival of fire engines at the fire ground if the blockage
occurs, the number of fatalities and casualties in blockage calls (BC) related
to non-blockage calls (NBC), the number of medium and large fires in BC
in comparison to the NBC. Throughout these parameters we try to evaluate
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the harmfulnes of the blockages. We use information stored in Polish Inci-
dent Safety Reporting System – EWID. Unfortunately, the EWID database
lacks credible information about the financial losses of the fires, therefore
we do not include such data in the analysis. Table 1 summarizes the in-
formation about the blockages within first area – urban region (Warsaw
City).

Table 1

The parameters describing the difference between non-blockage calls (NBC)
and the blockage calls (BC) – Warsaw City

C1 C2 C3 C4 C5 C6 C7 C8 C9

FS 1 −2.11 0 3.45% 3.00% 29 65 1.28% 0.00%
FS 2 −2.17 0 0.00% 3.03% 3 236 0.28% 0.00%
FS 3 0.82 0 0.00% 2.13% 2 72 0.21% 0.00%
FS 4 −0.26 0 0.00% 1.75% 3 62 0.40% 0.00%
FS 5 — — — 1.17% 0 0 0.18% —
FS 6 −3.68 0 0.00% 1.26% 1 27 0.70% 0.00%
FS 7 — — — 1.92% 0 0 1.02% —
FS 8 −1.21 0 0.00% 1.22% 1 70 0.72% 0.00%

Symbols used in the table: C1 – Fire Station, C2 – the delay between arrival time in NBC
and BC [min], C3 – the number of fatalities in BC, C4 – the average number of casualties
for one BC, C5 – the average number of casualties for one NBC, C6 – the number of fires
for BC, C7 – the number of local threats for BC, C8 – the average number of medium
fires for one NBC, C9 – the average number of medium fires for BC.

Table 1 shows that within the urban regions blockages do not decrease
the public safety in general. There is no significant delay in arrival time
at the fire ground, they do not generate greater number of casualties or
fatalities and the fires in blockages do not expand to medium fires. There-
fore, statistically in the urban regions with dense coverage of fire stations
the blockages are not an issue. However, table 1 also shows that in most
cases for the analysed region, blockages are generated throughout the local
threats. After deeper investigation it turned out that these are the incidents
generated by local storms, in the form of broken trees, flooded basements or
icicles. There is also an exception. The fire station FS1 had 29 fires served
in a blockage mode. In this case, we observe the growth of the number of
casualties in comparison to average in non-blockage calls. However, due to
the small number of casualties in general this indicator cannot be treated
as a strong measure of impact of blockages on public safety.
In the second case we present the same parameters of blockages evalu-

ations for small towns. Table 2 summarises the information.
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Table 2

The parameters describing the difference between non-blockage calls
and the blockages calls – small towns

C1 C2 C3 C4 C5 C6 C7 C8

FS 1 0.79 0 0 11 34 5.1% 0.0%
FS 2 −3.27 0 0 6 26 8.4% 0.0%
FS 3 6.80 0 0 8 60 3.6% 33.3%
FS 4 3.34 0 0 12 17 7.7% 20.0%
FS 5 −1.24 0 0 24 53 7.5% 26.3%
FS 6 −0.73 0 0 9 31 6.0% 0.0%
FS 7 −1.74 0 0 17 42 7.5% 6.3%
FS 8 2.27 0 0 12 41 6.3% 20.0%
FS 9 −0.28 0 0 27 30 7.3% 17.4%
FS 10 −0.11 0 0 59 92 4.1% 3.5%
FS 11 0.00 0 0 11 67 4.5% 0.0%
FS 12 9.47 0 0 10 54 8.7% 25.0%
FS 13 3.22 0 0 7 34 3.1% 0.0%
FS 14 1.32 0 0 11 62 5.3% 22.2%
FS 15 −1.90 0 0 8 17 6.1% 14.3%
FS 16 −0.07 0 0 55 38 18.6% 35.0%
FS 17 2.52 0 0 210 110 7.5% 11.1%

Symbols used in the table: C1 – Fire Station, C2 – the delay between arrival time in
NBC and BC [min], C3 – the number of fatalities in BC, C4 – the average number of
casualties for one BC, C5 – the number of fires for BC, C6 – the number of local threats
for BC, C7 – the average number of medium fires for one NBC, C8 – the average number
of medium fires for BC

Table 2 shows that for the regions with small density of fire stations
blockages do have an impact on public safety. This is not visible in the form
of number of casualties or fatalities (the reason is probably the small number
of such cases in general) but we can observe cases with significant increase in
the number of medium fires in blockages in comparison to the non-blockage
calls. Moreover, contrary to the Warsaw region, there are many fires served
in blockage mode and the analysis is statistically significant. In most cases
the greater number of medium fires is correlated with the delay in arrival at
fire ground. It means that fire engines come too late and fires are then fully
developed. The financial losses resulting from the fires could confirm and
evaluate the cost of blockages, unfortunately there is no such information
in EWID system, as we mentioned before. However, the difference between
small and medium fires can illustrate the scale of the problem. This assures
us that the problem of the detection of blockages is an important link in
ensuring the safety of citizens. Therefore we endeavor to build models to
predict the blockages.
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4. Description of the Method

Basically, our approach to the problem of blockage in the fire units is
as follows: a large collection of detailed data from Incident Data Reporting
System (IDRS) is selected. Then the attributes describing the incidents
are quantized, combined or generalized creating different views of the data.
These views allow to create granules of similar incidents which is technically
done by clustering.
A respective operating time distribution is attached to each of the gran-

ules. The aim is to obtain the probability distribution of time needed to
handle each distinct (in granule sense) emergency situation. Once the prob-
ability distribution is found, it becomes possible to estimate in real time
when the gone engines are expected to return to the fire station. This can
be further extended to monitor the blockage probability when the fire sta-
tion gets short on the engines’ reserves.
In most countries all incidents involving Fire Service are collected in

some sort of Incident Data Reporting System (IDRS). The following are
examples of IDRS in various countries: ONTIKA in Finland (Rahikainen
and Keski-Rahkonen, 2004), IMS in the UK (Department, 2008), NFIRS in
the USA (Administration, 2002) or EWID in Poland (Abacus, 2001). For
years those IDRS collected large amounts of data. Polish IDRS – EWID is
a collection of approximately 7 million incidents. This research is based on
0.26 million reports (Masovia province), as only this amount of data was
available to the authors.
Basically, the approach is following: large collection of data in EWID

is first split into clusters of similar accidents. For each of the clusters the
distribution of operating times is calculated. The aim is to obtain the prob-
ability distribution of time needed to handle each distinct (in clustering
sense) emergency situation. Once the probability distribution is found, it
becomes possible to estimate in real time when the gone engines are ex-
pected to return to the fire station. This can be further extended to moni-
tor the blockage probability when the fire station gets short on the engines’
reserves.

4.1. Granule Generation
EWID is composed of two distinct parts: a) the structured part of

predefined database attributes (information table) and b) the natural lan-
guage (NL) part. The approach was to have both parts clustered separately
and then have logical AND applied to the clusters in order to increase the
clustering quality.
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The data from the IDRS were first cleaned and preprocessed using the
standard and dedicated methods as described in (Krasuski et al., 2013). The
number of attributes that described the incidents was reduced on the basis
of expert judgement.
The attributes values were quantized, combined or generalized. For ex-

ample, different time windows are useful for observing how different threats,
which Fire Service tries to deal with, are distributed for the given area. This
particular problem may be examined on hourly basis as well as season basis
and provides both useful and distinct results.
The structured part was standardized. In order to improve the quality

of the clustering, the NL part was lemmatized. In computational linguistics,
lemmatization is a process of determining the lemma for a given word, i.e. all
the inflexed forms are flattened to their basic forms. This is particularly the
issue in the Polish language, which is very rich in inflexed forms. Lemma-
tization was performed in Morfologik, an open source Polish morphological
analyzer based on ispell dictionary (Morfologik, 2013). The dataset was then
divided into three groups: fire incidents, local threats and false alarms. Then
clustering was performed only on the fire and local threats incidents and the
false alarms were excluded.
We chose clustering method which requires that the target number of

resulting clusters is defined in advance and the initial clustering was fo-
cused at finding this target number. PAM (Van der Laan et al., 2003) was
chosen as the clustering algorithm and a sample of 10000 incidents was
evaluated. The accuracy of the resulting clusters was determined using Sil-
houette width S(i) (Rousseeuw, 1987) and Calinski Harabasz index CH(k)

(Cali/nski and Harabasz, 1974). The number of the clusters in the experi-
ment was varied from 50 to 700 and the S(i) and CH(k) were calculated.
Figure 1 depicts the scores of Average Silhouette width.
The Silhouette width grows with the increase of the number of the clus-

ters. Around the number of 300 clusters, the S(i) stabilizes at the level 0.1.
The reason is that one-object-clusters start to appear (S(i) for this case is
equal 0). Therefore, it was reasonable to set the target number of the clusters
at the value of 300, which is the minimum value where S(i) reaches 0.1.
Silhouette width can vary from−1, which means very poor quality of the

clusters, to 1 denoting very good quality. Therefore, the value 0.1 achieved in
the experiment is considerably low. In the next step, full Silhouette analysis
for k = 300 clusters was performed to find the clusters with a better quality
than just average 0.1. According to this analysis there is a set of the clusters
which have a fairly high value of S(i) and a set of the clusters for which the
value of s(i) is below 0. The negative values represent the incidents which
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Figure 1. Silhouette width against the number of the clusters (high values are
better)

rarely occur and are significantly different from other cases. They weaken
the S(i) because there are no similar incidents inside the cluster. Our further
analyses were performed on quality clusters only, where s(i) > 0.3 with the
cardinality of at least 40 (based on an arbitrary judgement).
After determining the target number of the clusters, the full database

was clustered. In order to handle large size of the database, CLARA (Kauf-
man et al., 1990) was used as the clustering method, as this method is
designed to overcome memory management issues.
The next stage was the clustering of the NL part of EWID using Latent

Semantic Analysis (LSA) (Deerwester et al., 1990; Landauer et al., 1998).
The basic idea of LSA is to create the concepts for the given text corpus
and then assign each single word from a document to a concept. The re-
sult is that documents can be expressed in Latent Semantic Space which:
a) is considerably compact and b) allows for finding indirect similarities
between documents. Unfortunately, the available resources didn’t meet the
demands for LSA and this task was not completed on the whole corpora.
Therefore LSA was only used within each cluster to check the cohesion of
the clusters and if it was needed to divide the clusters into subclusters.
Each of the description of the incidents within the given cluster was rep-
resented as a vector in LSA space. Next the angles among vectors were
compared.
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4.2. Name Generation for the Obtained Clusters
Assigning the names to the resulting clusters is a well known issue. An

easy approach was taken – three most representative terms were chosen
for each cluster (from lemmatized NL part of saved emergencies) and they
were joined together by an underscore producing the label. The represen-
tativeness of the terms was estimated by the TF-IDF index (Jones, 1993).
TF-IDF index is calculated as follows:

tf-idfi,j = tfi,j × idfi (3)

where tfi,j is a term frequency and idfi is an inverse document frequency.
Term frequency is calculated according to the formula (4)

tfi,j =
ni,j

∑

k nk,j
(4)

where ni,j is the number of occurrences of the considered term (ti) in the
description of the incident dj , and the denominator is the size of the de-
scription of the incident |dj |.
Inverse document frequency is calculated according to the formula (5)

idfi = log
|D|

|{j : ti ∈ dj}|
(5)

where |D| – the cardinality of D, or the total number of incidents in the
given cluster, |{j : ti ∈ dj}| – the number of description of the incidents
where the term ti appears.
Names of the clusters generated in this manner may not be an exact

indication of what the clusters really contain. However, the names were
meant to be used as replacement for just numbering the clusters in order to
provide some hints about the data. Names of the clusters are very important
for the visualisation of the engines deployment and interaction between
computer system and Control Room Staff (domain experts).

4.3. Regressions of Operating Time Distributions
Having defined the sets of incidents, it becomes possible to fit the

distribution of the operating time for each single set. The methodology
was as follows: skewness and kurtosis were first calculated for each of
the clusters. Skewness and kurtosis are the means of features extraction
from the data density/histogram in order to define the family of adequate
functions. By inspecting all the results, the group of potential functions
was defined: log-normal, gamma, weibull, chi-squared, beta, f. For each
of the clusters an iteration of the above six functions was started which
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was aimed at finding the best-fitted function. Maximum-Likelihood Esti-
mation (MLE) was used as the criterion of how well the functions are
fitted. As a result the distribution of the operating time of each cluster
was obtained. Table 3 illustrates the results of the distribution fitting of
16 sampled clusters. Any single result turned out to always favor one of
just three functions: log-normal, gamma, weibull, so only these are recorded
in the table.

Table 3

Calculated operating time distributions for the clusters

Cluster name DT P1 P2 N si

1 forest(adj.) forest(sub.) brushwood L 4.50 0.54 550 0.74
2 grass railway embankment L 3.53 0.61 767 0.43
3 embankment railway grass L 3.84 0.66 61 0.45
4 grass gazebo railway L 4.10 0.70 501 0.59
5 basement cellar chamber W 1.85 80.77 178 0.48
6 forest(sub.) brushwood forest(adj.) L 4.29 0.78 122 0.74
7 gazebo roof way W 6.53 129.14 118 0.51
8 flat iron local G 2.55 0.06 448 0.46
9 elevator chute flat L 3.51 0.50 63 0.49
10 grass wasteland dry G 3.29 0.04 308 0.84
11 newsstand shop pavilion L 3.82 0.54 284 0.46
12 lavatory water-closet toi-toi L 3.17 0.78 465 0.44
13 cowshed barn straw W 2.95 218.15 110 0.45
14 coaldust hydrogen auto-ignition G 2.25 0.03 41 0.60
15 trailer gazebo tunnel G 3.01 0.03 74 0.41
16 hall palisade mezzanine L 3.89 0.59 45 0.42

Symbols used in the table: DT – distribution type (L – log-normal, G – gamma, W –
weibull), P1 – first parameter for the distribution (µ – for log-normal, k for gamma and
weibull), P2 – second parameter for the distribution (σ for log-normal, θ for gamma and
λ for weibull), N – number of incidents inside given cluster, si – Silhouette width for given
cluster.

4.4. The Blockage
The blockage occurs when all engines are out and a new emergency

arises. It is possible to estimate the probability of such risk in real time and
perhaps counteract by requesting engines from other fire stations. The pro-
posed model is the composition of three independent elements: a) probability
that none of the engines return within critical time interval, b) probability
that a new emergency will occur in a given time of the day, c) probability
that a given number of emergencies for a day will occur.
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4.4 a) Probability that None of the Engines ReturnWithin Time Interval
The best description of the approach will be an imaginary example

scenario: There are three fire engines in the fire station. At 00:00 engine-
A is destined to handle emergency-A. Then at 00:20 engine-B is sent to
emergency-B and finally engine-C is allocated to emergency-C at 01:40 leav-
ing the fire station without any reserves. The question arises whether it is
likely for any of the engines to return before a new emergency arises, com-
mencing the blockage.
By providing the characteristics of A, B, C emergencies (which can

be done right away or by gradual collection of facts from the field given
by the officer in charge) it is possible to relate A, B, C to the respective
clusters by similarity of the features. All clusters have their operating time
distribution probabilities defined and by choosing the right clusters, the
expected A, B, C distributions can be obtained. As a result engines A, B, C
should be returning according to the distributions depicted on Figure 2.

Figure 2. All engines gone creating blockage

The blockage probability commences when the last of the engines,
engine-C leaves the fire station. The other end of the blockage interval needs
to be calculated by taking into account the decreasing probability that none
of the engines return in any next moment in time. Formula (6) was used
and the resulting curve is depicted by Figure 3(a). The plot starts from the
value 100, as it relates to the time 01:40, at which the last engine left the
fire station.

PN (t) = (1− FA(t))(1 − FB(t))(1− FC(t)) (6)

where PN (t) is the probability that none of the engines returns before time t
and the F (t) are the Cumulative Distribution Functions for the events that
the respective engines return.
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4.4 b) Probability that a New Emergency Within a Given Time
of the Day Will Occur

Based on EWID data, the histogram of how often emergencies occur in
a 24-hours period was obtained (Figure 3(b)). The sine function FD(t) =

I − Asin(ωt + ψ) was chosen for the model. The regression resulted in
obtaining the following function:

FD(t) = 0.042 − 0.031sin(0.273t − 1.56) (7)

The probability PD(t) that a new emergency will occur in a given time
of the day can be calculated as follows:

PD(t) =

∫ t

t0

FD(t) (8)

4.4 c) Probability that a Number of Emergencies Per Day Will Occur
Another factor to be taken into account is the number of emergencies

per day for a given station. The log-normal distribution fitted best (ac-
cording to MLE) to EWID data (Figure 3(c)). This probability should be
regarded as a chance for occurring n or more emergencies rather than a fixed
number of n emergencies and is expressed by formula (9). It is n that al-
lows to judge how likely it is to have a new emergency for the given fire
station/area: for provincial fire stations the threat of the blockage is consid-
erably less likely than for a high traffic, big city fire stations, because the
first ones typically deal with fewer emergencies per day.

PE(n) = 1− FE(n) (9)

where PE(n) is the probability that n or more emergencies per day will
occur and the FE(n) is the respective Cumulative Distribution Function.

Figure 3. Blockage probability as the composition of three elements

By combining the three independent elements, the final formula for the
blockage can be obtained Formula (10).

PB = PN (t)× PD(t)× PE(n) (10)
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5. Experimental Verification

In this section we evaluate the model of blockages prediction empirically.
The data for the experiment were selected from IDRS and they represent
the real situations, which occurred in the Warsaw Fire Station No. 1. We
analysed only those cases when all fire engines were away from the station,
involved in F&R operations. Out of the 615 selected cases, 122 finished with
blockages and 493 were non-blockage cases. The main goal of the experiment
was to predict the actual blockage.
The incidents in the set were labeled “B” for blockage and “N” for non-

blockage. The set was divided into two subsets: the training set included
95 blockages and 368 non-blockages, and the test set included 27 blockages
and 125 non-blockages.
The first step of the experiment was to determine which value of PB

(formula (10)) separates best between blockages and non-blockages.
The calibration was performed on the training set. Figure 4a) outlines

the density distributions functions of PB for blockages and non-blockages.
According to the picture, there is no evident point which separates the
two curves. Therefore ROC curve is used to determine the border value
(Figure 4b). Based on the AUC function we looked for the point which is
characterised by the greatest growth of True Positives (TP) with small-
est growth of True Negatives (TN). As the result of this analysis we
chose the value of PB = 0, 0138 which is a trade-off between the benefit
and the cost.

Figure 4. The density distributions of (B)blockage and (N)non-blockage and
ROC curve for the training set

Following are the results of validating the model against the test set.
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Table 4

Confusion matrix of the prediction model

Real Positive Real Negative

Classified Positive 22 (TP) 52 (TN)

Classified Negative 5 (FP) 73 (FN)

Calculated measures:

Accuracy =
tp+ fn

tp+ tn+ fp+ fn
= 0.625 (11)

Recall =
tp

tp+ fp
= 0.814 (12)

First measure (Accuracy) evaluates how robust model is in predicting
both the situation where there was a real blockage as well as where there
was not. However, for us (due to potential losses) more important are the
situations where there was a blockage and the model did not predict it.
The second measure (recall) reflects the second case. In this case 81% of
blockages were accurately predicted.

6. Conclusions

The foundations of decision support system for the blockage probabil-
ity was presented in the article. The evaluation was done in the probability
domain, by combining three elements: a) the probability that none of the
engine will return within the given time interval (when all engines are out),
b) the probability that at the given part of the day a new emergency will
occur and c) the probability that a number of emergencies will occur on
a given day. As it is usually the case with such models, there is a possibility
to extend the model by including additional parameters (e.g. weather con-
ditions, commanders experience (Krasuski et al., 2012)), but chosen three
factors seem reasonable in authors’ opinion and were considerably easily
available from EWID database.
The proposed method is considerably easy to implement on computer

systems. Although the clustering needs to be periodically renewed and this
is a computation intensive task, this needs to be done just occasionally, per-
haps once a month. However, the actual calculating of the blockage prob-
ability (the supposed everyday usage) is trivial and can be done within
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seconds. It means that the algorithm can be implemented on workstations
at the control room to support decision making when it comes to managing
the blockage or relocating the engines. It might be more purposeful to have
such a system running at the district level, where the operators are capable
of complementing the missing resources from other stations. Additionally,
the probability of the blockage can be calculated for the time of the travel of
such a complementing engine – perhaps this probability will be low enough
for the complementation to be unnecessary.
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