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Abstract. The figures visualizing single and combined classifiers coming from
decision trees group and Bayesian parametric and nonparametric discriminant
functions show the importance of diversity of bagging or boosting combined
models and confirm some theoretical outcomes suggested by other authors. For
the three medical sets examined, decision trees, as well as linear and quadratic
discriminant functions are useful for bagging and boosting. Classifiers, which do
not show an increasing tendency for resubstitution errors in subsequent boosting
deterministic procedures loops, are not useful for fusion, e.g. kernel discriminant
function. For the success of resampling classifiers’ fusion, the compromise be-
tween accuracy and diversity is needed. Diversity important in the success of
boosting and bagging may be assessed by concordance of base classifiers with
the learning vector.

Introduction

Combining classifiers with very close discriminant properties is not use-

ful in the models’ fusion. Diversity is suspected to be important for the suc-
cess of merging classifiers (Banfield et al., 2005; Bi, 2011; Brown et al., 2010;

Kuncheva et al., 2000; Kuncheva, 2003; Melville et al., 2005), as well for
homogenous combining (with the same kind of constituent classifiers) as

for heterogonous classifiers (Kuncheva et al., 2002; Shipp et al., 2002).
A question arises: how is this diversity realized during the process of re-

sampling datasets according to the most popular fusion procedures: bag-
ging and boosting (Breiman, 1996, 1998; Freund et al., 1997). It is known

that for unstable classifiers resampling methods are useful to decrease gen-
eralization error in comparison to the single classifier. Popular unstable

classifiers are decision trees or neural networks; however, trees are char-
acterized by smaller computational and memory complexity than neural

networks. Thus, for resampling ensemble methods such as boosting or bag-
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ging (bootstrap aggregating), the most common constituent classifiers are

trees. Therefore, most examinations concerning bagging and boosting fusion
are connected with decision trees. Few authors consider linear classifiers

joined with bagging (Skurichina et al., 2002, Vu et al., 2009) and boosting
(Skurichina et al., 2002). Conclusions concerning the usefulness of bagging

linear discriminant classifiers are not concordant in the literature. For large
data sets, much bigger than the number of variables, Breiman (1996) con-

cluded that bagging LDC is not useful. Also, further works were based on
large data sets (Breiman, 1998; Dietterich, 2000). Skurichina et al. (2002)

stated that for critical training sample sizes (when the number of training
objects is comparable with data dimensionality) a bagging ensemble is useful

for LDC, because then LDC is an unstable classifier. Vu et al. (2009) con-
cluded for small sets of microarray data that bagging is useful for unstable

trees and neural networks, but not for LDCs. For boosting, however, fusion
might be useful for large training sample sizes (Skurichina et al., 2002).

The aim of this work is to examine the usefulness of fusion of trees and
other constituent classifiers like Bayesian parametric and nonparametric

discriminant functions in the context of diversity, depending on the number
of loops, the size and character of the set, the type of constituent classifiers

and kind of merging. The visualization of the single and combined Bayesian
classifiers are elaborated to examine the trends of learning curves and to aid

the exploration of the effectiveness of bagging and boosting fusion based on
such base discriminant functions.

Methods

The practical aims of the discriminant analysis pertaining to medical
problems are to find variables with the biggest discriminant power, which is

useful for differentiation, and next to support medical decisions according to
the chosen classification model based on those variables. High performance

of classification models confirms the correctness of the selected set of vari-
ables. For classifiers based on single or merged trees, selection of variables

is incorporated in the modeling step, so is not necessary as the first step,
though it may be beneficial. The theoretical aim is to define which of the

potential discriminant methods has the lowest misclassification rate. An ap-
plication of classification methods to three real medical decision problems

of which, the most essential information, hopefully, was included into the
data sets, was performed (Table 1). Modeling on selected variables sets may

support medical decisions for those problems.
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Table 1. Characterization of applied medical data sets

Medical decision problem, Number of Variables Number of
Data Set

coming from: of cases number groups

WDBC Malignant or
benign tumor
of the breast

University of
Wisconsin
Hospitals

569 30 2

Breast cancer Relapse of
breast cancer

Institute of
Oncology
University
Medical Center
Ljubljana

286 9 2

Schizophrenia Discrimination
between
schizophrenic
and control
group based on
EEG parameters

Department of
Psychiatry
Nicolaus
Copernicus
University

80 36 2

The classification methods applied, single and combined, are presented

in Duda et al. (2001), Kotsiantis et al., 2006, Rokach (2009, 2010a, 2010b),
Webb (2002). For linear discriminant classifiers (LDC) and quadratic dis-

criminant classifiers (QDC) variables were selected by Wilks statistics (mea-
suring variability between groups in relation to total variability). For the

nonparametric kernel classifier, the choice was made according to mini-
mization of the 1-Nearest Neighbor leave-one-out error, because 1-Nearest

Neighbor is not complex, so is a quick classifier. Performance of vari-
ous discriminant methods was assessed using apparent (Resubstitution),

cross-validation (CV) and leaving-one-out method errors (LOOUT). Ex-
ploring performance of classifiers, single and combined, is based on “learn-

ing curves”, where apparent, CV or LOOUT errors are plotted versus the
number of resampling loops. Figures were obtained by use of independent

programs based on the PRTOOLS package for Matlab (Duin et al., 2007).
The classical methodological technique (supplying parametric discrim-

ination functions) assumes a jointly normal distribution of the predictive
variables for optimality. However, in many problems, this assumption (or as-

sumption of equal covariance matrices in differentiated groups for quadratic
discrimination) can be doubtful. Various procedures have been elaborated

as alternatives to classical discriminant analysis. One of them is the Parzen
classifier, based on kernel estimation of density in discriminated popula-

tions. This discriminant Bayesian procedure, in opposite to Bayesian linear
and quadratics discriminant functions is nonparametric, i.e. no assumption

on distribution in discriminated populations is made. Another discriminant
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procedure, coming from quite different methodology, which does not assume

anything of distributions, so is also nonparametric, is the creation of trees
(Rokach et al., 2005; Quinlan, 1987).

Currently, classifier researchers tend to combine procedures, based on
similar type or different base classifier (Kotsiantis et al., 2006; Rokach, 2009,

2010a, 2010b). Especially big attention is focused on families of classifiers
coming from two ideas: bootstrap aggregations and boosting (Breiman,

1996, 1998, Freund et al., 1997). Because these combining procedures are
time consuming, the constituent classifiers with great complexity may cause

computational problems. Combining simple and not optimal classifiers may
to some extent bypass the drawbacks of such classifiers. Additionally, re-

laxed assumptions connected with resampling of the whole training data
set may reduce deficiencies of base classifiers built on training sets.

Datasets

Three data sets, characterized by different difficulties, were examined
(Table 1). The material, used in the discriminant analysis, comes from a few

medical centers. The patients were divided into two groups. Classification
was performed by clinicians. The discriminant problems included in the

data sets are described in Table 1. Besides group classification, each pa-
tient was described, using clinical variables of a number not bigger than

both group sizes. Two first sets from Table 1 come from the UCI Machine
Learning Repository (Bache et al., 2013). Those sets are of various difficul-

ties in making decisions. The biggest Wisconsin Diagnostic Breast Cancer
data set(WDBC) is relatively simple (212 malignant patients from 569), the

Breast Cancer data set is more difficult (85 relapses among 286 patients).
Schizophrenic data sets consist of 50 schizophrenic patients among 80.

The data sets presented in Table 1 do not have strict multidimensional
normal distribution in discriminated groups. However, the Breast Cancer

data set shows the largest deviation from normality. The Schizophrenia
data set has 36 variables that are linear combinations of disjoint subsets

of 96 primary variables coming from computerized EEG equipment. Before
summation, those elementary variables were standardized and transformed

by logarithm to approach to one-dimensional gaussianity. The process of
summing variables was done to reduce the large number of EEG parameters

according to the medical knowledge, i.e. the summation of EEG parameters
was done with six brain regions, three on the left and three on the right side

of the brain.
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Classifiers’ Visualization for WDBC Data Set

At the beginning of the analysis let’s look at the behavior of tree er-

rors during the boosting procedure, because trees are the most common
constituent classifiers applied in this ensemble. On the consecutive fig-

ures, there are overlaid learning curves of apparent (resubstitution), cross-
validation and leave-one-out errors. Each elaborated learning curve repre-

sents the dependence of a chosen kind of errors assessment on the num-
ber of resampling loops. The figure with overlaid learning curves con-

tains errors of individual classification models for increasing the number
of loops (i.e. constituent classifiers number), represented by horizontal axis

(L = 1, . . . , 100: “Number of loops in resampling”) with the estimated aver-
ages of apparent errors for first x loops (“Err. in conseq.loops” and “Mean

err. of const.classif”, respectively). Fusion errors after merging results of
L loops (L = 1, . . . , 100): apparent, cross validated with ten folds and leave-

one-out – are also drawn (“Ensemble err”, “Ensemble CV10err”,“Ensemble
LOOUTerr”, respectively).

Two following plots (Figures 1 and 6) represent overlaid learning curves
connected with the diagnosis of breast cancer based on 30 discriminating

variables in the WDBC data set (Table 1).
Because the performance of elaborated learning curves for a number of

loops extending L = 100 was not meaningfully changed, the number of loops
on the horizontal axes with many overlaid lines was cut to 100 in order to

make clear overlaying representation of single classifiers loops possible (if
it is helpful, some results for bigger numbers of combined constituent clas-

sifiers to 200 may be quoted as numerical, not graphical results). In this
way, on one plot we can observe the behavior of individual classifiers con-

structed on subsamples and the combined classifiers built on all numbers of
loops from one till the current at the same time. Namely, on those learning

curves, the gray lines without marks denote apparent classification errors
made by constituent classifiers, a line with diamonds represents the mean

of apparent constituent classification errors. A line marked by triangles rep-
resents ensemble apparent classification errors (bagging or boosting), a line

with stars shows ensemble CV errors for the increasing number of combined
classifiers and, similarly, a line with circles displays leave-one-out ensemble

errors.
The instability of the base classifier is expressed in the diversity of

errors after resampling of the data set (oscillating line). For the decision tree
committee (Figure 1) we can observe useful diversity. The smallest apparent

error is achieved for the first resampling loop. For boosting trees, a very
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Figure 1. Dependence of classification errors on number of tree boosting loops,

for WDBC set recognition based on 30 discriminating variables

high increase for the first 4 loops can be noticed (gray lines severely increas-

ing from 0.09 to 0.2, Figure 1). For decision trees, a boosting aggregation
procedure does not have the constant trend of increasing average apparent

error over the whole range of the examined number of loops, e.g. significant
reduction of mean constituent classifier errors is obtained for 80 resampling

loops. The mean of single trees apparent errors have a general increasing
tendency till 80 loops. For 50 loops, the maximum level of mean appar-

ent individual errors, equal to 0.29, is obtained and for higher numbers
of loops, the levels of individual apparent classifiers are not considerably

increasing. The apparent error average of trees constructed on bootstrap
subsamples with 100 loops is equal to 0.281 (Figure 1) and for a bigger

number of loops, it still generally increases to 0.32 in 200 loops. Accord-
ing to CV and LOOUT assessment of generalization properties, for a rela-

tively easily classified WDBC set, joining thirty loops of boosting trees is
sufficient to minimize generalization errors. The smallest CV and LOOUT

errors for whole training sets are equal to 0.07 and 0.04 (for 30 loops), re-
spectively. For 100 (Figure 1) and 200 loops CV errors are 0.078 and 0.084,

respectively. Similarly, concerning LOOUT errors: for 100 (Figure 1) and
200 loops, LOOUT errors for the whole training set are 0.075 and 0.08,

respectively.
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Figure 2. Dependence of classification errors on number of QDC boosting loops

for WDBC set

Single classical trees are classifiers characterized by identification re-

gions with boundaries consisting of linear parts parallel (perpendicular) to
axes. Constituent decision trees depend strongly on the subset of the train-

ing set drawn by resampling, because of trees’ instability. A single unstable
tree classifier on the whole data set is characterized by a CV error equal

to 0.074 and LOOUT error equal to 0.076. The resampling method improves
the stability of a decision tree. The diversity of classifiers in consecutive loops

is observable in error diversity.
Single quadratic classifier regions have boundaries that are multidimen-

sional quadrics. The kind of quadric depends on the relationship between
covariance matrices within discriminated groups. Each loop results in a dif-

ferent boundary. For boosting fusion of the quadratic discriminant function
(QDC), the smallest apparent error is achieved for the fist resampling loop.

A very high increase for the first 6 loops can be noticed (gray line severely
increasing from 0.09 to 0.53, solid black line without additional marks in Fig-

ure 2). Looking at the lines with diamonds in Figure 2, we can observe that
for QDC, the boosting aggregation procedure does not have the constant

trend of increasing average apparent error over the whole range of the exam-
ined number of loops. In the QDC boosting combiner, the mean apparent

errors of constituent classifiers have a general tendency to increase until
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the first 60 loops (Figure 2), but a significant reduction of mean constituent

classifier errors is obtained for 70 combined classifiers. The average apparent
error follows a strict increasing trend until 40 loops. The mean of appar-

ent errors of trees constructed on subsequent subsamples with 100 loops is
equal to 0.281. The smallest LOOUT and CV errors are equal to 0.065, ob-

tained by CV for 50 loops and by LOOUT on the 20th loop. According to CV
and LOOUT error assessment, the results of boosting trees are comparable

with QDC (Figures 1 and 2).

Classifiers’ Visualization for Breast Cancer Data Set

The analysis for the next set will begin by examining the constituent

Parzen classifier in detail. The approximated value of optimal radius (r)
is chosen with the usage of CV error. In boosting the Parzen classifier,

the mean apparent constituent classifier does not have any tendency (Fig-
ure 3). Average reclassification errors substantially vary across the whole

range of examined loops till 100. In contrast, for linear discriminant func-
tion (LDC) on the same Breast Cancer Data Set (Figure 4) there is an

observable increasing trend, which confirms the intuition that consecutive
loops of boosting procedure work on samples more difficult for classifica-

tion (boosting is focused on objects problematic for identification). For
strong and flexible Parzen classifiers there are fewer difficult patterns to

identify than for other Bayesian classifiers (smaller CV and LOOUT errors
of the constituent Parzen kernel classifier based on the whole data set, equal

to 0.25 and 0.26, respectively). Modeling on a selected set of variables may
support medical decisions for those problems. In the context of Parzen

boosting results for the Breast Cancer data set, it should be noticed that
the Parzen classifier has the beneficial property of tuning the parameter

of smoothing (r) on the basis of CV error, so it has better discriminant
properties than other single examined Bayesian methods and obtains the

smallest generalization error of them – CV 10 equal to 0.21, LOOUT error
level of 0.22.

Quite a different situation concerning Breast Cancer data was observed
for LDC boosting classifier (Figure 4). For LDC boosting, the mean of ap-

parent single classifier errors, which is interpretable by lines with diamonds,
has a tendency to increase till 90 loops and after that to not grow until

the number of 200 loops is reached. The single constituent LDC discrimi-
nant function obtains classification errors close to errors of the ensemble –

about 0.25 – after resampling of the dataset. Few classifiers reach the level
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Figure 3. Dependence of classification errors on the number of Parzen boosting

loops for breast cancer recognition based on 9 variables

Figure 4. Dependence of classification errors on number of LDC boosting loops

for breast cancer recognition based on the 5 best discriminating

variables
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of error of almost 0.5. The mean of reclassification errors after 100 loops

is equal to 0.33, while fusion constructed by 100 loops of bagging obtains
a generalization error level of 0.28.

Single linear classifier regions have boundaries that are multidimen-
sional hyperplanes, which depend on the relationship between covariance

matrices and centroids of populations. Each loop results in a different bound-
ary. The diversity of discriminant functions in consecutive loops is visible

as variability in error levels.

Classifiers’ Visualization for Schizophrenia Data Set

To visualize more exactly classification during resampling methods, the

schizophrenia data set was reduced to two dimensions, according to the
optimization of variables selection criterion. In the data connected with

the problem of recognizing schizophrenia, let’s analyze the visualization of
another resampling method – bootstrap aggregation (bagging).

The QDC classifier base error is 0.24, when estimated by CV, which
means, after comparison with CV fusion errors not exceeding 0.14 after

fourty loops, that the fusion bagging committee in this classification prob-
lem is certainly useful (Figure 5). Assessment of CV errors for bagging

QDC shows the greatest decrease till 20 loops, where the smallest level er-
ror, 0.10, is reached. Increasing the number of loops above 30 is not useful.

In contrast to boosting (e.g. Figure 2), the mean apparent errors of individ-
ual classifiers does not have any clear tendency. Because bagging is based

on trials that are nondeterministic (as opposed to boosting, in which the
draw in subsequent loops is associated with assigning higher weights for

the observation poorly classified in the previous step), the average error
base classifiers vary and no clear trends are established (line with diamonds

on Figure 6). CV errors of the single LDC on the whole data set is equal
to 0.216, thus it appears that CV error estimate (not bigger than 0.201)

shows substantial reduction in CV error after the LDCs combining. Thus,
according to CV error, LDC bagging gives improvement of the generaliza-

tion properties, though CV errors are very diverse along increasing numbers
of loops (Figure 6). For numbers of loops between 100 and 200, the CV is

about 0.22, so adding more constituent classifiers is not beneficial (not in-
cluded in the figure).

Boosting LDC for the schizophrenia dataset with 2 selected variables
is not beneficial in comparison to bagging, because CV and LOOUT errors

for all numbers of loops till 200 exceed 0.2 (not presented in graphical way).
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Figure 5. Dependence of classification errors on number of QDC bagging

loops for schizophrenia recognition based on 2 best discriminating

variables

Figure 6. Dependence of classification errors on number of LDC bagging

loops for schizophrenia recognition based on 2 best discriminating

variables

81



Małgorzata M. Ćwiklińska-Jurkowska

Bagging is known as appropriate for smaller data sets, while boosting is

elaborated for rather bigger data sets (Skurichina, 2001). The Schizophre-
nia data set is the smallest of the examined sets, though, when this set is

considered with the number of chosen two best discriminating variables, it
is not very small in comparison to dimensionality.

Discussion

According to all learning curves, apparent constituent error averages are
substantially higher and considerably more diverse than ensemble errors.

Assessment of misclassification rates for ensemble methods may also be re-
garded in the context of the diversity of a set of constituent classifiers. From

learning curves we can observe that the average apparent error of individual
loops is much higher than the error of the weighted voting for boosting loops

(Figures 1–4). This corresponds to a linear formula for combining individ-
ual models, where the committee error is the sum of individual model error

averages and of components related to the measure of the heterogeneity of
a set of models. For example, error-ambiguity decomposition was proposed

by Krogh et al. (1995) for regression tasks. Krogh et al. (1995) proved that
for a single observation (x), the squared error of the combined estimator,

obtained by weighing the base linear classifiers results, is expressed as the
difference of weighted average base classifiers’ squared error and component

specifying ambiguity (indicating the diversity of base classifiers). If, instead
of considering the arithmetic mean, the geometric mean is chosen as the

fusion procedure, then as s a measure of the accuracy of the combined clas-
sifier, the mean squared error can no longer be applied, but the Kulback-

Leibler (DKL) directed divergence for two distributions can. On the base of
Heskes (1998) work, Brown et al. (2010) gave the formula for DKL:

DKL = (y‖f̄) =
1

L

L∑
l=1

DKL(y‖fl) −
1

L

L∑
l=1

(f̄‖fl)

where fl is the l-th discriminant function (l = 1, . . . , L) and y is the learning

vector.
Thus the results coming from figures representing the learning curves

that the ensemble errors benefit mean apparent errors can be explained by
attached theoretical reasons.

From attached theoretical background we can see that in order to
achieve a small error classifier fusion, a compromise is needed between di-

versity and the average error of the base classifiers. However, those decom-
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position models take into account the estimated mean square error of the

linear combination function or Kullback-Leibler divergence, while in bag-
ging and boosting methods we are dealing with a merger constructed by

a vote, weighted or unweighted. Brown et al. (2010) presented an analogous
decomposition of errors in the case of classifiers combined by voting. De-

composition for the majority vote error and “0–1” loss function for L base
classifiers with labels {−1, 1} is the following:

eMV =

∫
eAvgInd −

∫

x+

1

L

L∑
l=1

dl(x) +

∫

x−

1

L

L∑
l=1

dl(x)

where
– eMV is Majority Vote (MV) error

– eAvgInd is individual classifiers error average
– dl – binary variable denoting the mismatch of l-th base classifier (l =

1, . . . , L) with the vote, subspaces of the data set:
– x+ where the vote fusion is correct

– x
−
where the vote fusion incorrect.

The last decomposition indicates that the mean of individual errors and
the diversity both have an impact on the classifier committee error. The

second component is beneficial diversity and the third component is unben-
eficial diversity. By considering the third component, we can explain the

phenomenon that combining diverse but inaccurate classifiers is not benefi-
cial and that the compromise between diversity and accuracy of component

classifiers is needed.
The success of boosting and bagging is connected with the diversity of

the ensemble. Different sets in resampling cause different classifiers (with
different classification regions) and they have different performance. Diver-

sity of classifiers reflects diversity of classification errors. However, they are
not the same, because constituent classifiers with the same errors may be

different, e.g. may have quite dissimilar boundaries, and therefore differ-
ent sensitivity and specificity. The component classifiers’ diversity, visual-

ized in the presented learning curves, reflects the concordance of the con-
stituent classifier with the learning vector. Another, though to some ex-

tent analogous, measure of diversity used for the active enforcement of base
classifiers differentiation, to build the accurate ensembles, was applied by

Melville et al. (2005); this is the average binary incompatibility of individual
classifiers’ results with the aggregated classifier.

The tendency of increase of the average resubstitution errors was found
for boosting methods. For bagging, such a clear trend cannot be seen. In par-

ticular, the fastest increase in apparent errors, compared with fusion meth-
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ods of Bayesian classification, was found in the trees. They are known as

unstable classifiers. Although in applications of bagging and boosting meth-
ods usually the number of loops used is at least 100, for the data sets which

do not have the problem of small size relative to the size, exceeding the
number of a few tens of loops is not necessary. It may be an essential ob-

servation in the context of the complexity of the ensemble procedure. Con-
trary to the opinions of some authors, linear discriminant functions may also

be useful in resampling combining. This is concordant with the results of
Skurichina (2001). Additionally, for quadratic discrimination, combining by

bagging or boosting committee may also be beneficial. Constituent learners,
which do not hold an increasing trend for resubstitution errors in subsequent

boosting procedures loops, are not useful for the ensemble. This fact may
mean that they little correct errors for patterns close to the classification

boundaries. An example of such a classifier is the Parzen classifier. The ker-
nel classifier is known as strong and flexible discriminant procedure. Thus,

boosting is beneficial for nonparametric decision tree classifiers, but may
not be useful for nonparametric Bayesian classifiers.

Some diversity measures based on oracle outputs, examined by Kunche-
va et al. (2001, 2003), use only the information about concordance of pairs

for constituent classifier decisions. Additional methods of diversity valuation
may be the changes in constituent classifier error assessment, presented in

the current work, connected with elaborated learning curves. We can ob-
serve the relationships between such differentiation and classification errors.

Further development may be the assessment of the correlations between the
new measure of diversity suggested by the current examination, variance or

standard errors of consecutive constituent classification errors, and ensem-
ble errors. It would also be interesting to study how this diversity correlates

with the stability of constituent and combined classifiers.

Conclusions

The usefulness of bagging and boosting methods comes from diversity.

Discriminant functions, which do not have an increasing trend for base re-
substitution errors in subsequent boosting deterministic procedure loops,

are not advantageous for the fusion, like the kernel Parzen discriminant
function is. For the resampling success of classifier fusion, a compromise

between accuracy and diversity is necessary. Diversity important in the suc-
cess of boosting and bagging may be evaluated by concordance of component

classifier with the learning vector.

84



Performance of Resampling Methods Based on Decision Trees, Parametric...

Acknowledgments

The author is grateful to Prof. Wiktor Dróżdż from Department of

Psychiatry at Nicolaus Copernicus University for the schizophrenic patients
data set.

R E F E R E N C E S

Bache, K., & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA:
University of California, School of Information and Computer Science. Re-
trieved from http://archive.ics.uci.edu/ml.

Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2005). Ensemble
diversity measures and their application to thinning. Information Fusion,
6(1), 49–62.

Bi, Y. (2011). Analyzing the Relationship between Diversity and Evidential Fu-
sion Accuracy. In C. Sansone, J. Kittler, F. Roli (Eds.), Multiple Classifier
Systems, LNCS 6713, 249–258.

Breiman, L. (1996). Bagging predictions. Machine Learning, 24(2), 123–140.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.

Brown, G., & Kuncheva, L. I. (2010). Good and Bad Diversity in majority vote
ensembles. In N. El Gayar, J. Kittler, & F. Roli (Eds.), Multiple Classifiers
Systems, LNCS 5997, 124–133.

Dietterich, T. (2000). An Experimental Comparison of Three Methods for Con-
structing Ensembles of Decision Trees: Bagging, Boosting, and Randomiza-
tion. Machine Learning, 40(2), 139–157.

Duin, R. P. W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D. M. J.,
& Verzakov, S. (2007). PRTools4.1, A Matlab Toolbox for Pattern Recogni-
tion. Delft University of Technology.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1),119–139.

Heskes, T. (1998). Bias/variance decomposition for likelihood-based estimators.
Neural Computations, 10(6), 1425–1433.

Kotsiantis, S. B, Zaharakis, I. D., & Pintelas, P. E. (2006). Supervised machine
learning. A review of classification and combining techniques, 26(3), 159–
190.

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation and
active learning. Advances in Neural Information Processing Systems, 7, 231–
238.

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of Diversity in Classifier
Ensembles and Their Relationship with the Ensemble Accuracy. Machine
Learning, 51(2), 181–207.

85



Małgorzata M. Ćwiklińska-Jurkowska

Kuncheva, L. I., Skurichina, M., & Duin, R. P. W. (2002). An Experimental Study
on Diversity for Bagging and Boosting with Linear Classifiers. Information
Fusion, 3(4), 245–258.

Kuncheva, L. I., & Whitaker, C. J. (2001). Ten Measures of Diversity in Classi-
fier Ensembles: Limits for Two Classifiers. Proceeding IEEE Workshop on
Intelligent Sensor Processing, 14 February 2001.

Kuncheva, L. I., Whitaker, C. J., Ship, C. A., & Duin, R. P. W. (2000). Is in-
dependence good for combining classifiers? In International Conference on
Pattern Recognition (ICPR’00), 3–8 September 2000 (Volume 2, 168–171).
Barcelona, Spain.

Kuncheva, L. I. (2003). That elusive diversity in classifier ensembles. In F. J. Perales,
A. J. C. Campilho, N. P. de la Blanca, & A. Sanfeliu (Eds.), Pattern Recog-
nition and Image Analysis, LNCS 2652, 1126–1138.

Melville, P., & Mooney, R. J. (2005). Creating diversity in ensembles using artificial
data. Diversity in Multiple Classifier Systems. Information Fusion, 6(1), 99–
111.

Quinlan, J. R. (1987). Simplifying Decision Trees. Int. J. Man – Machine Studies,
27(3), 221–234.

Rokach, L. (2010a). Pattern Classification Using Ensemble Methods. Series in Ma-
chine Perception and Artificial Intelligence, World Scientific Publishing.

Rokach, L. (2010b). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–
2), 1–39.

Rokach, L. (2009). Taxonomy for characterizing ensemble methods in classification
tasks: A review and annotated bibliography. Computational Statistics and
Data Analysis, 53(12), 4046–4072.

Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers
– a survey. IEEE Transactions on Systems, Man and Cybernetics, Part C,
35(4), 476–487.

Shipp, C. A., & Kuncheva, L. I. (2002). Relationships between combination meth-
ods and measures of diversity in combining classifiers. Information Fusion,
3(2), 135–148.

Skurichina, M. (2001). Stabilizing weak classifiers (Doctoral dissertation). Delft
University of Technology.

Skurichina, M., & Duin, R. P. W. (2002). Bagging, boosting and the random sub-
space method for linear classifiers. Pattern Analysis and Applications, 5(2),
121–135.

Vu, T. T., Braga-Neto, U., & Dougherty, E. R. (2009). Bagging degrades the per-
formance of linear discriminant classifiers. In IEEE International Workshop
on Genomic Signal Processing and Statistics, GENSiPS, 17–21 May 2009.
Minneapolis, MN, USA.

86


