s STUDIES IN LOGIC, GRAMMAR
AND RHETORIC 35 (48) 2013

V E R S I TA DOI: 10.2478/slgr-2013-0032

Ruby vs. Perl — the Languages of Bioinformatics

Maciej Golinski!, Agnieszka Kitlas Goliriska®

! Department of Programming and Formal Methods, University of Bialystok, Poland
2 Department of Medical Informatics, University of Bialystok, Poland

Abstract. Ruby and Perl are programming languages used in many fields. In
this paper we would like to present their usefulness with regard to basic bioin-
formatic problems. We concentrate on a comparison of widely used Perl and
relatively rarely used Ruby to show that Ruby can be a very efficient tool in
bioinformatics. Both Perl and Ruby have a built-in regular expressions (or reg-
exp) engine, which is essential in solving many problems in bioinformatics. We
present some selected examples: printing the file content, removing comments
from a FASTA file, using hashes, printing nucleotides included in a sequence,
searching for a specific nucleotide in sequence and translating nucleotide se-
quences into protein sequences obtained in GenBank format. It is our belief
that Ruby’s popularity will rise because of its simple syntax and the richness
of its methods. Programs in Ruby are very easy to read and therefore easier
to maintain and debug, which are the most important characteristics for a pro-
gramming language.

Introduction

It is our intent to show that a relatively rarely scientifically-used pro-
gramming language — Ruby — can be a very efficient tool in the field of
bioinformatics, much more so than widely used Perl, and that applications
written in Ruby are much easier to read or maintain, and — most of all —
easier to write. Ruby, compared to Perl, is a new language, still gaining
popularity, while Perl has a well established position as a general-purpose
programming language.

The Perl Language

Perl is a programming language developed in 1987 by Larry Wall. It
is a dynamic, interpretive, general-purpose language. It incorporates fea-
tures of other languages including AWK, shell scripting (sh), C, and Lisp
(Schwartz et al., 2011).

ISBN 978-83-7431-392-6 ISSN 0860-150X 143

Maciej Golinski and Agnieszka Kitlas Golinska

Perl is sometimes called the hacker language because of its sometimes
not easily readable syntax (Foy, 2007). Here is an example of a short, and
relatively simple, program which finds the documentation on the atan2 func-
tion and then formats it differently for printing, using a complicated regular
expression, a tool which is explained later:

#!usr/bin/perl

@lines = 'perldoc -u -f atan2';
foreach (@lines)
{
s/\w<([">]1+)>/\U$1/g;
print;
}

One of the very important features of Perl languages is the regular
expressions they use. Perl is a widely used tool in the field of bioinformatics,
especially in the study of the structure and function of genes and proteins.

The Ruby Language

Ruby is a programming language developed in Japan in 1995 by Yuk-
ihiro Matsumoto. It is dynamic and reflective, which makes it a very effi-
cient, general-purpose tool. Ruby supports many programming paradigms,
including functional, object-oriented and imperative. It is also excellent for
metaprogramming, an advanced programming concept. The language was
influenced by Perl, Smalltalk, Eiffel and Lisp (Thomas et al., 2009).

One of the most basic ideas for Ruby is that everything is an object,
including numbers, classes, and exceptions (Thomas et al., 2009). Thanks
to that, a programmer can treat all constructs with a certain universality.

Another important feature of Ruby is a built-in regular expressions
handler, which is extremely useful in problems of bioinformatics.

Ruby is very helpful in processing files. It saves the programmer the
trouble of remembering to close opened files (which is a very common prob-
lem) (Thomas et al., 2009). In addition, it’s very easy to manipulate long
text files, like those containing nucleotide sequences in FASTA format.

The Regular Expressions

Both Perl and Ruby have a built-in regular expressions (or regexp)
engine (Foy, 2007; Thomas et al., 2009), which is essential in solving many
problems in bioinformatics. Regexps are an efficient tool in finding parts of

144

Ruby vs. Perl — the Languages of Bioinformatics

a text (or other sequences of characters) that match a given pattern. To
provide a pattern, one should use a special sub-language, created for that
purpose. A regexp consists of a number of characters, as well as a few special
ones. The pattern is usually placed between slashes “/”. Here is a simple
example:

/gene/

This regexp will match a single occurrence of a sequence “gene”. This
is no different from a natural text searching. To make regular expressions
more interesting, we have to introduce a few special symbols.

The most basic symbol is a dot “.”, which means “any single character”.
This means that the regexp:

/.at/

will match both “rat” and “cat”, because they have a single character pre-
ceding “at”. The pattern:

/Ru.y/

matches the word “Ruby”, but not “Rugby”, since there are two characters,
where there should be only one.

The next symbol, a vertical line , indicates an alternative. The fol-
lowing pattern will match both the words “Perl” and “Ruby”:

“l”

/Perl|Ruby/

The characters surrounded by parentheses are grouped together. Group-
ing and any alternatives often appear together:

/(rlc)at/
matches the same words as:
/(rat) | (cat)/

An important note: The following pattern does not mean the same thing
as the previous one:

/rat|cat/
It means the same thing as this one:
/ra(tlc)at/

There are special characters that signal the beginning and the end of
a string. The pattern:

/" Ruby/

145

Maciej Golinski and Agnieszka Kitlas Golinska

matches the word “Ruby” only if it occurs at the beginning of the analyzed
string, and the regexp:

/Perl$/

will match the word “Perl”, only if it is at the end of the string.

Another very important feature of the regular expressions are repeti-
tions. They are a symbol or a set of symbols indicating how many times the
previous expression should be repeated in the text.

The question mark “?” matches the preceding element zero or one time.
For example:

/-715/

matches both “—15" and “15”.
The “*” character matches the preceding pattern zero or more times.
For example:

/10%1/

will match eg. “101”, “11” or “10000001”.
The plus sign “+” denotes one or more repetitions of the preceding
pattern. For example:

/10+1/

will match “101”, “100001”, “1001”, but not “11”.
Regular expressions are a very useful tool in the field of bioinformatics,
especially in parsing files in the FASTA format.

The FASTA Format and GenBank Format

FASTA format is a text-based format for representing peptide or nu-
cleotide sequences (Baxevanis et al., 2004). In FASTA, amino acids or nu-
cleotides are written in single-letter codes, which makes them easy to pro-
cess.

A part of the file in FASTA format is presented below (Campylobacter
jejuni subsp. jejuni NCTC 11168 complete genome) (National Center for
Biotechnology Information, 2006):

>gi]|30407139|emb|AL111168.1| Campylobacter jejuni subsp. jejuni NCTC 11168 complete
genome

ATGAATCCAAGCCAAATACTTGAAAATTTAAAAAAAGAATTAAGTGAAAACGA
ATACGAAAACTATTTATCAAATTTAAAATTCAACGAAAAACAAAGCAAAGCAG

146

Ruby vs. Perl — the Languages of Bioinformatics

ATCTTTTAGTTTTTAATGCTCCAAATGAACTCATGGCTAAATTCATACAAACA
AAATACGGCAAAAAAATCGCGCATTTTTATGAAGTGCAAAGCGGAAATAAAG
CCATCATAAATATACAAGCACAAAGTGCTAAACAAAGCAACAAAAGCACAAAA
ATCGACATAGCTCATATAAAAGCACAAAGCACG

In the first line there is a description (comments) of the file and then
lines of sequence data. Here we present only 5 lines, although there are many
more in this file.

The GenBank (National Center for Biotechnology Information, 2009)
is an open access nucleotide and protein sequence database. Files in Gen-
Ban format contain an extensive description, nucleotide sequence and its
translation to protein sequence (Baxevanis et al., 2004).

A part of the file in GenBank format is presented below (Homo sapi-
ens 43kDa acetylcholine receptor-associated protein (RAPSN) mRNA) (Na-
tional Center for Biotechnology Information, 2001):

/translation=“MGQDQTKQQIEKGLQLY QSNQTEKALQVWTKVLEKSSDLMGRFR
VLGCLVAHSEMGRYKEMLKFAVVQIDTARELEDADFLLESYLNLARSNEKLCEFH
KTISYCKTCLGLPGTRAGAQLGGQVSLSMGNAFLGLSVFQKALESFEKALRYAHN
NDDAMLECRVCCSLGSFYAQVKDYEKALFFPCKAAELVNNYGKGWSLKYRAMS
QYHMAVAYRLLGRLGSAMECCEESMKIALQHGDRPLQALCLLCFADIHRSRGDLE
TAFPRYDSAMSIMTEIGNRLGQVQALLGVAKCWVARKALDKALDAIERAQDLAE
EVGNKLSQLKLHCLSESIYRSKGLQRELRAHVVRFHECVEETELY CGLCGESIGE
KNSRLQALPCSHIFHLRCLQNNGTRSCPNCRRSSMKPGFV”

ORIGIN
1 cccaactgge agcgacaget gecagacggge tgaaccaget ttgttecccag ggtggegect
61 gctctecate caggecccat teeggeteece accecgacget gettttgtte ccacgttteg
121 gggggcaget ggcactgtga ttectgeeee atgagtgeet agaggeacgg agecaccagg
181 gatcacccca cgtgggacac agggettggg gaggatggeg caggaccaga ccaagcagea
241 gatcgagaag gggctccage tgtaccagtc caaccagaca gagaaggeat tgcaggtgtg
301 gacaaaggtg ctggagaaga gecteggacct catggggcege ttecgegtge tgggetgecet
361 ggtcacagee cactcggaga tgggecgeta caaggagatg ctgaagtteg ctgtggteca
421 gatcgacacg geecgggage tggaggatge cgacttecte ctggagaget acctgaacct
481 ggcacgcage aacgagaagce tgtgegagtt tcacaagace atctectact gecaagaccetg
541 ccttgggetg cctggtacca gggeaggtge ccagetegga ggecaggtea geectgageat
601 gggcaatgee ttcctgggee tcagegtett ccagaaggee ctggagaget tcgagaagge
661 cctgegetac geccacaaca atgatgacge catgetegag tgeegegtgt getgeageet
721 gggcagcette tatgeccagg tcaaggacta cgagaaagee ctgttettee cctgeaagge
781 ggcagagctt gtcaacaact atggcaaagg ctggagectg aagtaccggg ccatgageca
841 gtaccacatg gecegtggeet atcgectget gggeegectg ggeagtgeca tggagtgttg
901 tgaggagtct atgaagatcg cgetgeagea cggggacegg ccactgeagg cgetetgect
961 gctctgette getgacatee accggageeg tggggacctg gagacagecet tececaggta
1021 cgactccgee atgagcatca tgaccgagat cggaaaccge ctggggcagg tgeaggeget
1081 gctgggtgtg gecaagtget gggtggecag gaaggegetg gacaaggete tggatgecat
1141 cgagagagcc caggatctgg ccgaggaggt ggggaacaag ctgagecage tcaagetgea
1201 ctgtctgage gagageattt accgcagcaa agggetgeag cgggaactge gggegeacgt
1261 tgtgaggttc cacgagtgeg tggaggagac ggagetctac tgeggectgt geggegagte

147

Maciej Golinski and Agnieszka Kitlas Golinska

1321 cataggcgag aagaacagcc ggetgeagge cctaccetge teccacatet tecacctecag
1381 gtgcctgeag aacaacggga cccggagetg tcccaactge cgeegeteat ccatgaagece
1441 tggctttgta tgactcctgg cagecaggegt gggettecte ctegecacte ctgetettte
1501 tccactgcac gecagaggece catttactee tggggeaget gecaggtegt cctcaccata
1561 gccaaggect tggggectge ccagggetge teceetggge ccagetecee tecetgecte
1621 tttgtacttt getctttata gaaaaataaa ctgtttgtac ctggteccag g

Selected examples

In this section, we present a few programs very useful in the field of
bioinformatics written both in Perl and in Ruby. The purpose of these ex-
amples is to present an alternative for the commonly used Perl language,
which in our opinion is simpler to write, simpler to read, and simpler to
maintain.

The goal of this program is to open a simple text file, and print its
contents on the console, line by line.

Perl:

open(F, "file.txt");
while($line = <F>)
{
print "$line"
}

close F;

Ruby:

File.open("file.txt") do |f|
while line = f.gets
print line
end
end

The program in Perl is fairly straightforward. First we open the file, than
in a while loop we obtain each line separately, save it in a variable, and print
it. The often forgotten part is closing the file, which is both unprofessional
and potentially dangerous to the file. The Ruby approach takes care of the
last problem automatically by the usage of blocks.

In this program we take a file in a FASTA format, than copy its contents
to a second file, omitting the lines containing the comments.

148

Ruby vs. Perl — the Languages of Bioinformatics

Perl:

open (F, "seq.fa");
open (FF,">seq2.txt");
while (<F>)
{
next if(/">/);
print FF;
}
close F;
close FF;

Ruby:

File.open("seq.fa") do |in]
File.open("seq2.fa", "w+") do |outl|
while line = in.gets
out << line unless line =~ /~>/
end
end
end

Both approaches utilize regular expressions to check if the line begins
with a “>” sign. The program in Ruby is shorter, and there is no problem
with unclosed files. Also, the part concerning copying the lines is much easier
to understand.

The hash is a variation on the table, where instead of just numbers,
anything can serve as an index called a key. This program shows the way
to use hashes in both languages. The key in the hash is a name of a species,
and the value is a gene count. The program prints the names with their
gene counts.

Perl:

%gene_counts = ("Human" => 31000, "Fruit fly" => 13000,
"Mouse" => 30000, "Chickenpox virus" => 69, "Rice" => 40000,
"Tuberculosis bacteria" => 4000);

while (($key, $value) = each Ygene_counts)

{

print "$key has $value genes in its genome.\n";

149

Maciej Golinski and Agnieszka Kitlas Golinska

Ruby

gene_counts = ("Human" => 31000, "Fruit fly" => 13000,
"Mouse" => 30000, "Chickenpox virus" => 69, "Rice" => 40000,
"Tuberculosis bacteria" => 4000)

gene_counts.each_pair {l|key, value| puts "#{key}thas #{value}
genes in its genome."}

Both programs first define the hash. Then, in the Perl approach, we
obtain the key-value pair in a while loop, and print the appropriate sentence.
The Ruby program is again much simpler, and again, thanks to the use of
code blocks.

This example prints the nucleotides that are included in a given se-
quence. It utilizes both a hash and regular expressions.

Perl:

%dict = (A => Adenine, T => Thymine, G => Guanine,
C => Cytosine);

$sequence = 'CTATGCGGTA';

while ($sequence =~ /./g)

{
print "$dict{$&}\n";
Ruby
@dict = {"A" => "Adenine", "T" => "Thymine", "G" => "Guanine",

llCll => ||Cytosine||}
sequence = "CTATGCGGTA"
sequence.scan(/./) .each {|i| puts @dict[i]}

Both programs first define both the hash, which serves as a dictionary
for the nucleotides’ names, and a fragment of a DNA sequence. The Perl
program uses a match operator with an additional “g” modifier, which allows
for the scanning of the entire sequence, in order to match patterns to a string.
Then, it prints the value corresponding to the letter obtained from the
sequence. This method may be a bit difficult to understand. The Ruby
approach is simpler thanks to the scan method, which is easier to use than
the match operator

This program is designed to count the occurrences of a specific nu-
cleotide in a given sequence, in this case Adenine (A).

150

Ruby vs. Perl — the Languages of Bioinformatics

Perl:

$sequence="ATGAATCCAAGCCAAATACTTGAAAATTTAAAAAAAGAATTAAGTGAAAAC
GAATACGAAAACTATTTATCAAATTTAAAATTCAACGAAAAACAAAGCAAAGCAGATCTTTT
AGTTTTTAATGCTCCAAATGAACTCATGGCTAAATTCATACAAACAAAATACGGCAAAAAAA
TCGCGCATTTTTATGAAGTGCAAAGCGGAAATAAAGCCATCATAAATATACAAGCACAAAGT
GCTAAACAAAGCAACAAAAGCACAAAAATCGACATAGCTCATATAAAAGCACAAAGCACG",;
$sum=0;
Q@tab=split('', $sequence);
foreach $i (@tab)
{

$sum++ if $i eq 'A’;
}

print $sum;

Ruby:

Osequence="ATGAATCCAAGCCAAATACTTGAAAATTTAAAAAAAGAATTAAGTGAAAAC
GAATACGAAAACTATTTATCAAATTTAAAATTCAACGAAAAACAAAGCAAAGCAGATCTTTT
AGTTTTTAATGCTCCAAATGAACTCATGGCTAAATTCATACAAACAAAATACGGCAAAAAAA
TCGCGCATTTTTATGAAGTGCAAAGCGGAAATAAAGCCATCATAAATATACAAGCACAAAGT
GCTAAACAAAGCAACAAAAGCACAAAAATCGACATAGCTCATATAAAAGCACAAAGCACG";
@sum=0

@sequence.each_char {|i| @sum+=1 if i == 'A'}

puts Qsum

The program in Ruby is quite simple. It passes each character of the
string into the block, where it is compared with the letter A. The Perl
approach is more complicated, since Perl treats strings as a singular value.
Therefore, it is impossible to iterate the string. It is necessary to split the
string into a table with single characters as elements. This allows for an
iteration, and counting of the letter A.

Files in GenBan format contain an extensive description, nucleotide
sequence and its translation to protein sequence. How can we obtain this
translation? First, we need a genetic code for translation and then we imple-
ment programs in Perl and Ruby as one can see below. For this analysis we
selected the GenBank: AF111785.1 file (Homo sapiens myosin heavy chain
IIx/d mRNA) (National Center for Biotechnology Information, 1998):

Perl:

%dict = (IITTTII => IIFII , IITTCII => IIFII , IITTAII => IILII , IITTGII =>
IILII , IICTTII => IILII s IICTCII => IILII s IICTAII => IILII s IICTGII => IILII s

151

Maciej Goliniski and Agnieszka Kitlas Goliniska

"ATT" => "I", "ATC" => "I", "ATA" => "I", "ATG" => "M", "GTT"
=> "y" "GTC" => "Vy", "GTA" => "y", "GTG" => "Vy", "TCT" =>
IISII , IITCCII => IISII s IITCAII => IISII s IITCGII => IISII s IICCTII => IIPII s
IICCCII => IIPII , IICCAII => IIPII , IICCGII => IIPII , IIACTII => IITII s IIACCII
=> "T" WACA" => "T", "ACG" => "T", "GCT" => "A", "GCC" =>
"AM, "GCA"™ => "A", "GCG" => "A", "TAT" => "Y", "TAC" => "y",
IITAAII => IISTDPII , IITAGII => IISTOPII s IICATII => IIHII s IICACII => IIHII s
IICAAII => IIQII, IICAGII => IIQII, IIAATII => IINII, IIAACII => IINII’ IIAAAII
=> "K", "AAG" => "K", "GAT" => "D", "GAC" => "D", "GAA" =>
"E", "GAG" => "E", "TGT" => "C", "TGC" => "C", "TGA" =>
IISTDPII , IITGGII => llwll , IICGTII => IIRII , IICGCII => IIRII , IICGAII =>
IIRII , IICGGII => IIRII s IIAGTII => IISII s IIAGCII => IISII s IIAGAII => IIRII s
"AGG" => "R", "GGT" => "G", "GGC" => "G", "GGA" => "G", "GGG"
=> "G");

$sequence=uc("atgagttctgactctgagatggccatttttggggaggctgetecttt
cctccgaaagtctgaaagggagcgaattgaagecccagaacaagecttttgatgecaagaca
tcagtctttgtggtggaccctaaggagtectttgtgaaagcaacagtgecagagecagggaag
geggggaaggtgacagctaagaccgaagetggagectactgtaacagtgaaagatgaccaagt
cttccccatgaaccctcccaaatatgacaagatcgaggacatggecatgatgactcateta
cacgagcctgetgtgetgtacaacctcaaagagegetacgeagectggatgatctacacct
actcaggc");
$goal="MSSDSEMAIFGEAAPFLRKSERERIEAQNKPFDAKTSVFVVDPKESFVKATVQS
REGGKVTAKTEAGATVTVKDDQVFPMNPPKYDKIEDMAMMTHLHEPAVLYNLKERYAAWMI
YTYSG";

$translation="";
while ($sequence =~ /.../g)
{

$translation .= $dict{$&};
}
print "Success!" if ($translation eq $goal);
Ruby:
@dlCt = {llTTTll => llFll s llTTCll => llFll s llTTAll => llLll s ||TTG|| =>
llLll s ||CTT|| => ||L|| s ||CTC|| => ||L|| s ||CTA|| => ||L|| s llCTGll => ||L|| s
"ATT" => n I n , ||ATC|| => n I n , ||ATA|| => n I n , ||ATG|| => ||M|| s ||GTT||
=> "Vll , "GTC" => "Vll , "GTA" => "Vll , ||GTG|| => "Vll , ||TCT|| =>
llSll s ||TCC|| => ||S|| s ||TCA|| => ||S|| s ||TCG|| => ||S|| s llCCTll => ||P|| s
llCCCll => llPll s ||CCA|| => llPll s ||CCG|| => llPll s ||ACT|| => ||T|| s ||ACC||
=> "Tll , "ACA" => "Tll , "ACG" => "Tll , ||GCT|| => "A" , ||GCC|| =>
"A" , ||GCA|| => ||A|| s ||GCG|| => ||A|| s ||TAT|| => ||Y|| s "TAC" => ||Y|| s

152

Ruby vs. Perl — the Languages of Bioinformatics

"TAA" => "STOP", "TAG" => "STOP", "CAT" => "H", "CAC" => "H",
"CAA" => "Q", "CAG" => "Q", "AAT" => "N", "AAC" => "N", "AAA"
=> "K", "AAG" => "K", "GAT" => "D", "GAC" => "D", "GAA" =>
"E", "GAG" => "E", "TGT" => "C", "TGC" => "C", "TGA" =>
"STOP", "TGG" => "W", "CGT" => "R", "CGC" => "R", "CGA" =>
"R", "CGG" => "R", "AGT" => "S", "AGC" => "S", "AGA" => "R",
"AGG" => "R", "GGT" => "G", "GGC" => "G", "GGA" => "G", "GGG"
=> "G}
Osequence="atgagttctgactctgagatggccatttttggggaggctgetcctttcct
ccgaaagtctgaaagggagcgaattgaagcccagaacaagecttttgatgeccaagacatca
gtctttgtggtggaccctaaggagtcctttgtgaaagcaacagtgecagagcagggaaggeg
ggaaggtgacagctaagaccgaagctggagetactgtaacagtgaaagatgaccaagtctt
ccccatgaaccctcccaaatatgacaagatcgaggacatggecatgatgactcatctacac
gagcctgetgtgectgtacaacctcaaagagecgectacgecagectggatgatctacacctact
caggc";
@goal="MSSDSEMAIFGEAAPFLRKSERERIEAQNKPFDAKTSVFVVDPKESFVKATVQS
REGGKVTAKTEAGATVTVKDDQVFPMNPPKYDKIEDMAMMTHLHEPAVLYNLKERYAAWMI
YTYSG";
@translation=""
@sequence.upcase.scan(/.../) .each
{

|i| @translation << @dict[i]
¥

puts "Success!" if Q@translation == Qgoal

Both approaches begin by defining a few variables. The first one is
a hash serving as a dictionary for the translation. The second one is the
given sequence in a GenBank format. The next variable contains the same
sequence, but as a natural protein sequence, which is later used to check if
the program is valid. The solution in Perl is far more difficult to comprehend
than the one in Ruby. The uc function in Perl transforms the string into
upper case.

A Quick Overview of Literature

There are many books or papers on the application of Perl in bioin-
formatics (Moorhouse et al., 2004; Tisdall, 2001), but not so many on the
application of Ruby (Aerts et al., 2009). However, this is changing every
day because Ruby is becoming more and more popular. We couldn’t find

153

Maciej Golinski and Agnieszka Kitlas Golinska

papers in which Perl and Ruby were compared for simple and basic use in
the field of bioinformatics.

It is worth mentioning that in recent years some scientists and pro-
grammers have developed libraries and tools for bioinformatics, molecular
biology, genomics and life sciences, namely BioPerl (BioPerl, 2012; Stajich
et al., 2002) and BioRuby (BioRuby, 2013; Goto et al., 2009). In our paper,
we showed that one can perform basic bioinformatics analyses in Perl and
Ruby without downloading and using these special libraries. We also com-
pared programs written in both languages, in our opinion in favor of the
Ruby language.

Conclusions

Perl and Ruby are useful tools in the field of bioinformatics. Both lan-
guages are general purpose, free to use, and popular. While Perl has a stable
position in medical computer science, Ruby is still working its way into the
field. It is our belief that Ruby’s popularity will rise because of its simple
syntax and the richness of its methods. The programs in Ruby are very
easy to read and, therefore, easier to maintain, which are the most impor-
tant characteristics for a programming language.

REFERENCES

Aerts, J., & Law, A. (2009). An introduction to scripting in Ruby for biologists.
BMC Bioinformatics, 10(221), Retrieved July 30, 2013, from BioMed Cen-
tral: http: //www.biomedcentral.com/1471-2105/10/221. DOI: 10.1186/1471-
2105-10-221.

Baxevanis, A. D., & Ouellette, B. F. F. (2004). Bioinformatics: a practical guide
to the analysis of genes and proteins. USA: Wiley-Interscience.

BioPerl (2012). Retrieved July 30, 2013 from http: //www.bioperl.org/.
BioRuby (2013). Retrieved July 30, 2013 from http: //www.bioruby.org/.
Foy, B. (2007). Mastering Perl (2nd ed.). USA: O'Reilly Media.

Goto, N., Prins, P., Nakao, M., Bonnal, R., Aerts, J., & Katayama, T. (2009).
BioRuby: Bioinformatics software for the Ruby programming language. Bio-
informatics, 26(20), 2617-2619. DOI: 10.1093 /bioinformatics/btq475.

Moorhouse, M., & Barry, P. (2004). Bioinformatics, Biocomputing and Perl: an
introduction to bioinformatics computing skills and practice, USA: Wiley.

154

Ruby vs. Perl — the Languages of Bioinformatics

National Center for Biotechnology Information, U.S. National Library of Medicine.
(1998). Homo sapiens myosin heavy chain Ilx/d mRNA, complete cds. Re-
trieved July 30, 2013, from http: //www.ncbi.nlm.nih.gov /nuccore/48088147
report=genbank#sequence_4808814.

National Center for Biotechnology Information, U.S. National Library of Medicine.
(2001). Homo sapiens 43kDa acetylcholine receptor-associated protein
(RAPSN) mRNA, complete cds. Retrieved July 30, 2013, from http: //www.
ncbi.nlm.nih.gov/nuccore/193102127report=genbank.

National Center for Biotechnology Information, U.S. National Library of Medicine.
(2006). Campylobacter jejuni subsp. jejuni NCTC 11168 complete genome.
Retrieved July 30, 2013, from http: //www.ncbi.nlm.nih.gov/nuccore,/304071
397report=fasta.

National Center for Biotechnology Information, U.S. National Library of Medicine.
(2009). Retrieved July 30, 2013, from http://www.ncbi.nlm.nih.gov/gen
bank/.

Schwartz, R., & Phoenix, T. (2011). Learning Perl. USA: O’Reilly Media.

Stajich, J. E.; Block, D., Boulez, K., Brenner, S., Chervitz, S., Dagdigian, C.,
Fuellen, G., Gilbert, J. Korf, 1., Lapp, H., Lehvaslaiho, H., Matsalla, C.,
Mungall, C. J., Osborne, B. 1., Pocock, M. R., Schattner, P., Senger, M.,
Stein, L. D., Stupka, E., Wilkinson, M. D., & Birney, E. (2002). The BioPerl
Toolkit: Perl modules for the life sciences. Genome Research, 12(10), 1611-
1618. DOI: 10.1101/gr.361602.

Thomas, D., Fowler, Ch., & Hunt, A. (2009). Programming Ruby 1.9: the pragmatic
programmers’ guide. USA: Pragmatic Bookshelf.

Tisdall, J. (2001). Beginning Perl for bioinformatics. USA: O’Reilly Media.

155

