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Abstract. Infertility is a serious social problem. Very often the only treatment
possibility are IVF methods. This study explores the possibility of outcome
prediction in the early stages of treatment. The data, collected from the previ-
ous treatment cycles, were divided into four subsets, which corresponded to the
selected stages of treatment. On each such subset, sophisticated data mining
analysis was carried out, with appropriate imputations and classification proce-
dures. The obtained results indicate that there is a possibility of predicting the
final outcome at the beginning of treatment.

Introduction

Infertility is a problem that affects a growing number of couples that
wish to have a child. Based on current statistics, approximately 18-20%
of the couples in Poland suffer from infertility (Radwan, 2011). Currently,
there are many known causes of infertility, including the crucial age of the
woman (Milewski et al., 2008). In a significant proportion of cases, a direct
cause of infertility cannot be determined, and the results of both women
and men are in the norm, a so-called idiopathic infertility.

Depending on the identified causes, there are many treatments for infer-
tility, but in many cases the only way to obtain offspring is by using In Vitro
Fertilization (IVF) methods. In spite of constant improvement in Assisted
Reproductive Technology (ART) that continues to enhance efficacy of the
treatment, the pregnancy rate is still low and remains in the range of 40%
(Milewski et al., 2013). Hence, there is a continuing need for an in-depth
analysis of the data obtained in the treatment process, to find predictors for
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pregnancy and other factors that contribute to the next stages of treatment
outcomes.

An extensive database was created in the Department of Reproduction
and Gynecological Endocrinology at the Medical University of Bialystok,
using dedicated software. The database covers the 6 year period from 2005
to 2010. Earlier studies analyzing the database focused mainly on a whole
feature set. Those included classification alone (Milewski et al., 2012), select-
ing relevant features (Milewski et al., 2010) and using them to help classifi-
cation (Milewski et al., 2011). This study focuses on classification by using
subsets of features available at three selected phases of treatment. For com-
parison only, the same methodology was applied to the full set of features,
available at the end of treatment. The purpose was to explore the possibility
of successful classification with information available at the end of each se-
lected phase of treatment. Like in the previous work (Milewskiet al., 2012),
final results are shown for data not used in the learning phase, so that the
results are as unbiased as possible.

Material and Methods

The analyzed database contains 1445 observations (single cycle of treat-
ment) and 150 features (which include the outcome — pregnancy or no preg-
nancy), 22% of data is missing. Only about a third of the treatment cycles
ended up inpregnancy. This high rate of missingness and relatively high
outcome imbalance (2:1) can be linked to the nature of IVF ICSI/ET treat-
ment.

Data analysis was carried out using the R environment (R version 3.0.1
(2013-05-16) “Good Sport”). There were used the packages presented in
Table 1.

Table 1. Packages used

Package Name Version URL

€1071 1.6-1 http://CRAN.R-project.org/package=el071

VIM 3.0.3.1 http://CRAN.R-project.org/package=VIM
randomForest 4.6-7 http://CRAN.R-project.org/package=randomForest
missForest 1.3 http://CRAN.R-project.org/package=missForest

On top of classification algorithm a cross-validation procedure was used.
The whole dataset was divided randomly (on observations), at a 7:3 ratio,
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to create a learning and validation part. This division was retained during
further data split according to features. All algorithms were trained on the
learning part only using k-fold cross-validation (k = 10). In almost all cases
learning observations were partitioned into k£ subsamples. One of them was
retained, while the rest were used for the training process for a specific
algorithm and its set of parameters. The result of the training was then
tested against the retained part, producing an error estimate. This process
was repeated k times, and at the end, a single estimate of error was produced
by averaging. This basic k-fold cross-validation procedure, implemented in
package “e1071” (Meyer et al., 2012), was used for analysis.

For classification, a Random Forest (Breiman, 2001) algorithm was
used, which proved to be one of the best in analyzing the database
(Milewski et al., 2012). During the learning process, the algorithm builds
a set of decision trees, based on available data. Each tree chooses, “gives
a vote for”, an observation class. Whole forest chooses the class with the
majority of votes. Given N observations and M features, each tree is grown
on samples of N observations selected with replacement (there are copies
of observations). At each tree node some of the features are randomly se-
lected (their number should be much smaller than M, square root by default
for classification). The tree node splits data after the best possible split is
found, but using previously selected features only as a criterion. By default
each tree is built until the next split would result in an empty node (default
for classification), but a minimum number of observations can be set in the
terminal node.

The following parameters were selected for training random forest:

— number of trees (ntree),
— number of features at each split node (mtry),
— minimum number of observations in terminal node (nodesize).

These parameters were tuned using a grid search and 10-fold cross-
validation. Random Forest algorithm, implemented in package “random-
Forest” (Liaw et al., 2002), which based on the original Fortran 77 imple-
mentation by Breiman, was used.

Since information on treatment outcome is not available before classi-
fication, unsupervised imputation procedures had to be used. This is the
one of the main differences from the previous study (Milewski et al., 2012),
where 2 of 3 used imputation methods were, in fact, supervised. Three,
single-imputation algorithms were used before classification:

— a “standard” one,
— kNN-based,
— Random Forest based — “missForest”.
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A “standard” algorithm imputes missing values based on the mean
(for numerical features), median (ordinal) or mode (categorical) of all other
training observations. The kNN-based algorithm, implemented in the “VIM”
package (Templ et al., 2013), tries to fill in missing data in a similar way to
the standard algorithm, but utilizes only the k nearest observations — “the
neighbors”. Distances are calculated by using a version of Gover metric. The
number of neighbors (k) is a free parameter.

The “missForest” algorithm (Stekhoven et al., 2012a), implemented in
the package with the same name (Stekhoven et al., 2012b), starts with “stan-
dard” imputation. Then features are sorted by amounts of missing values,
starting with the lowest amount. In the next step, an iterative procedure
is used. For each feature, a random forest is trained, treating the selected
feature as the dependent one and observations with filled values in that
feature as the learning set. After training, missing values are imputed using
predictions from the previously trained random forest. Depending on the
type of feature (can be both — categorical or continuous), random forest for
either classification or regression is used. After all features are imputed, the
stopping criterion is evaluated, and depending on it the algorithm stops or
continues to the next iteration. The stopping criterion is met as soon as
the difference between the newly imputed data matrix and the previous one
increases for the first time with respect to both variable types, if present
(Stekhoven et al., 2012a).

A standard imputation procedure was used on the whole dataset, using
the learning part only as a base. This was implemented manually, due to
the lack of such a procedure in R.

For the “missForest” algorithm, the niree and mitry parameters were
chosen to tune. Note, that it is difficult to simply use a cross-validation
on top of “missForest”, due to its iterative nature. Instead, a ten step,
pseudo cross-validation procedure was used to estimate error of impu-
tation for each subset of tuned parameters. In each step, an additional
5% of the learning data were marked as missing, and the algorithm was
trained on such data. After that, imputation error was calculated. For
continuous variables, a normalized mean root square error (NRMSE)
was used to calculate error. For categorical ones, a percent of false clas-
sified (PFC) data was used. Those measures were defined as follows
(Oba et al., 2003):

mean((Xcon,true - Xcon,imp)2)

Var(Xcon,true)

NRMSE =
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Count(Xcat,true 75 Xcat,imp)

PFC = N A (2)

where: Xcon true, Xecat,true are original data with continuous (categorical)
features; Xcon,imp, Xcat,imp are imputed data with continuous features,
#N Acqr equals the number of added missing values

Note, that values originally missing are not counted in those measures
(that is the missing values in the Xcon true; Xcat,true datasets). Those two
values were calculated at each step, and averaged at the end for each pair
of ntree and mitry. To get an optimal pair, each such pair was ranked based
on NRMSE and PF( values separately. The pair that minimized the sum
of ranks was chosen as the final one. If there were more such pairs, the one
with less ntree, and at the end, less mitry (by minimizing those parameters,
the algorithm became more simple, computational and logical) was chosen.
After the best parameters were obtained, the whole dataset was imputed
based on all data (again, this is the result of the iterative nature of this
algorithm). This pseudo cross-validation procedure, and functions used to
calculate NRMSE and PFC (where the original dataset contains missing
values, and we do not want to count them) were implemented manually due
to lack of such procedures in R.

The same pseudo cross-validation procedure was used to tune the num-
ber of neighbors in the kNN imputation algorithm. This time, if there were
two or more k, which minimizes the sum of ranks, the lesser one was chosen
(by minimizing this parameter, the algorithm became more simple, compu-
tational and logical).

Data Preparation and Imputation

In further analysis, only features filled in more than 20% were used. Fea-
tures containing only one value were also removed. After reduction, 108 fea-
tures remained and only 5% of data were missing. The dataset was then
divided into 4 sets corresponding to 4 selected treatment phases:

— medical history (data available before treatment),
— beginning of the treatment,

— gametes selection and moment of fertilization,

— from fertilization to embryo transfer.

Those 4 sets are presented in Figure 1. The first feature is the dependent
one, then the features from the next sets follow. Each set is divided from
the others by a black line. Missing values are marked as black, other values
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observations marked as black (white) are training (validation) data.

Based on those four sets, four new datasets were built by utilizing the
additive rule; that is, each new dataset contained the previous one and
some additional features. Table 2 symbolically presents this (+ means, that
given subset is present in dataset). This way, each new dataset contains
information available at a chosen treatment phase.

Table 2. Datasets creation

New Sets
dataset Number of - - - .

: features | medical | begin of the | gametes selection and | from fertilization
id history | treatment | fertilization moment | to embryo transfer
1 66 +
2 68 + +
3 7 + + +
4 108 + + + +

After creation of the four subsets, they were imputed by three previ-
ously described procedures. During the pseudo cross-validation phase, the
following ranges of parameters were tuned:

— kNN imputation: k (number of neighbors) in 1-100 range,
— missForest imputation: ntree in 30-240 by 30 range, miry in 3—
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Ranges for missForest were chosen partially according to recommenda-
tions (Stekhoven et al., 2012a). Results for kNN imputation are presented
in Figure 2 (dataset 1 and 2) and Figure 3 (dataset 3 and 4). The gray lines
present k optimizing specified measures. The black lines present k, which
optimizes the sum of ranks — the final ones. Results for missForest impu-
tation are presented in Figure 4 (dataset 1 and 2) and Figure 5 (dataset 3
and 4). Similar to earlier pictures, a gray ‘4’ sign presents coordinates (pair
ntree and miry) optimizing specified measures (which are printed also). The
black ‘+’ presents a pair that optimizes the sum of ranks. If a gray mark
(either for KNN or missForest) is not present, then it is the same as the black
one (the set of parameters optimizing a particular measure is the same as
the set optimizing the sum of ranks).
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Figure 2. Results from pseudo cross-validation imputation for kNN method;
datasets 1 and 2
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Figure 3. Results from pseudo cross-validation imputation for kNN method;
datasets 3 and 4
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Figure 4. Results from pseudo cross-validation imputation for missForest
method; datasets 1 and 2
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Figure 5. Results from pseudo cross-validation imputation for missForest
method; datasets 3 and 4
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Classification Results

After imputation, 12 datasets were created (the result of using 3 im-
putation methods on 4 datasets). Those datasets were classified using the
Random Forest algorithm. During the cross-validation phase, the following
ranges of parameters were tuned:

— number of trees: from 200 to 3000 by 200,
— number of features per node: from 2 to 20,
— minimum number of observations in node: form 1 to 10.

The specified range of parameters is based on recommendations (Brei-
man, 2001). The best classifier was tested on the validation dataset to pro-
duce an unbiased estimate of classification performance. Because it is diffi-
cult to visualize a 3-dimensional parameter set, results for best nodesize only
are presented. Figure 6 presents results for datasets 1 and 2, which are also
presented in Table 3 and Table 4 as full contingency tables for validation
datasets and best mix of algorithms for those datasets. Figure 7 presents
results for datasets 3 and 4, which are also presented in Table 5 and Table 6
as full contingency tables for validation datasets and best mix of algorithms
for those datasets.
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Figure 6. Results from cross-validation classification; datasets 1 and 2 imputed
in 3 ways

Table 3. RF accuracy on kNN-imp validation dataset 1

Outcome prediction on kNN-imp Predicted outcome
validation observations dataset 1 Accuracy
no yes
no 274 7 0.975
Observed outcome
yes 145 8 0.052
Accuracy 0.654 0.533 0.650
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Table 4. RF accuracy on kINN-imp validation dataset 2

Outcome prediction on kNN-imp Predicted outcome
validation observations dataset 2 Accuracy
no yes
no 275 6 0.979
Observed outcome
yes 142 11 0.072
Accuracy 0.658 0.647 0.659
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Figure 7. Results from cross-validation classification;

in 3 ways

Table 5. RF accuracy on RF-imp validation dataset 3

datasets 3 and 4 imputed

Outcome prediction on RF-imp Predicted outcome
validation observations dataset 3 Accuracy
no yes
no 267 14 0.950
Observed outcome
yes 137 16 0.104
Accuracy 0.661 0.533 0.652
Table 6. RF accuracy on RF-imp validation dataset 4
Outcome prediction on RF-imp Predicted outcome
validation observations dataset 4 Accuracy
no yes
no 268 13 0.954
Observed outcome
yes 127 26 0.170
Accuracy 0.678 0.667 0.677
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Conclusions

Classification results in validation datasets differ from those obtained
in k-fold cross-validation by 3—4 percent, which is a very good achievement.
Since validation datasets were not used in the training of the classifier, this
small difference guarantees error rate stability on future, unknown data. In
the second selected phase of the treatment, accuracies for both possible out-
comes are almost the same (about 2/3), with is also a very rare result. They
are also comparable to results obtained from a full feature set. Treatment re-
sults can then be successfully predicted at the beginning of the actual treat-
ment process, which is very important. Pregnancy prediction from medical
history alone is far worse for the “yes” response, very near to 50% (the result
ofa coin toss). Datasets 1 and 2 differ by only two features, so they should
be very relevant to a successful outcome. The 3rd dataset contains a few
new features compared to the 2nd, but they actually worse the “yes” re-
sponse accuracy. The overall accuracies for the four datasets are almost the
same, and worse by 12% than in the previous study (Milewski et al., 2012).
This should be attributed to the previously mentioned change of imputation
algorithms.

The analyzed database again proved to be resistive to successful clas-
sification even using state-of-the-art algorithms. However, this study shows
that outcomes can be predicted in earlier phases of treatment and that
predictions can be consistent in terms of success or failure. When compar-
ing obtained results to previous, the focus should be on imputation algo-
rithms. Since unsupervised and supervised methods are somewhat extreme
paradigms, maybe some semi-supervised methods may improve classifica-
tion results without compromising limited information availability at the
beginning of treatment.
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