Therapeutic Potential of “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling: Exosomes D-Mapps” is Based on the Effects of Exosomes, Immunosuppressive and Trophic Factors

Open access

Abstract

Due to their diff erentiation capacity and potent immunosuppressive and pro-angiogenic properties, mesenchymal stem cells (MSCs) have been considered as new therapeutic agents in regenerative medicine. Since most of MSC-mediated benefi cent eff ects are a consequence of their paracrine action, we designed MSC-based product “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exosomes d-MAPPS), which activity is based on MSCs-derived growth factors and immunomodulatory cytokines capable to attenuate infl ammation and to promote regeneration of injured tissues. Interleukin 1 receptor antagonist (IL-1Ra) and IL-27 were found in high concentrations in Exosomes d-MAPPS samples indicating strong anti-infl ammatory and immunosuppressive potential of Exosomes d-MAPPS. Additionally, high concentrations of vascular endothelial growth factor receptor (VEGFR1) and chemokines (CXCL16, CCL21, CXCL14) were noticed at Exosomes d-MAPPS samples suggesting their potential to promote generation of new blood vessels and migration of CXCR6, CCR7 and CXCR4 expressing cells. Since all proteins which were found in high concentration in Exosomes d-MAPPS samples (IL-1Ra, CXCL16, CXCL14, CCL21, IL-27 and VEGFR1) are involved in modulation of lung, eye, and synovial infl ammation, Exosomes d-MAPPS samples were prepared as inhalation and ophthalmic solutions in addition to injection formulations; their application in several patients suff ering from chronic obstructive pulmonary disease, osteoarthritis, and dry eye syndrome resulted with signifi cant improvement of biochemical and functional parameters. In conclusion, Exosomes d- MAPPS, due to the presence of important anti-infl ammatory, immunomodulatory, and pro-angiogenic factors, represents potentially new therapeutic agent in regenerative medicine that should be further tested in large clinical studies.

1. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immunemediated diseases. Stem Cell Rev 2015;11:280-287.

2. Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M. Human stem cell research and regenerative medicine-present and future. Br Med Bull 2011;99:155-168.

3. Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N. Mesenchymal stem cellderived factors: Immunomodulatory effects and therapeutic potential. Biofactors 2017;43:633-644.

4. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010;43:255-263.

5. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe SP, Driscoll B, Bellusci S, Minoo P, Atala A, De Filippo RE, Warburton D. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008;26:2902-2911.

6. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, Furth ME, Bishop CE. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One 2011;6:e26535.

7. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006; 24:1054-1064.

8. Yan ZJ, Hu YQ, Zhang HT, Zhang P, Xiao ZY, Sun XL, Cai YQ, Hu CC, Xu RX. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol 2013;33:465-475.

9. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 2018 Aug 21. doi:

10. Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: A comparative study. Cell Biol Int 2008;32:143-1448.

11. Wu Q, Tang J, Li Y, Li L, Wang Y, Bao J, Bu H. Hepatic differentiation of mouse bone marrow-derived mesenchymal stem cells using a novel 3D culture system. Mol Med Rep 2017;16:9473-9479.

12. Huang K, Kang X, Wang X, Wu S, Xiao J, Li Z, Wu X, Zhang W. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol Med Rep 2015;11:1685-1692.

13. Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, Qian W, Han X. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int 2014;38:405-411.

14. Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 2009;77:483-491.

15. Li YW, Zhang C, Sheng QJ, Bai H, Ding Y, Dou XG. Mesenchymal stem cells rescue acute hepatic failure by polarizing M2 macrophages. World J Gastroenterol 2017;23:7978-7988.

16. Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, Xu WG. Mesenchymal stem cells protect cigarette smokedamaged lung and pulmonary function partly via VEGFVEGF receptors. J Cell Biochem 2013;114:323-335.

17. Pandey AC, Lancaster JJ, Harris DT, Goldman S, Juneman E. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells. Stem Cells Int 2017;2017:9640108.

18. Di Trapani M, Bassi G, Ricciardi M, Fontana E, Bifari F, Pacelli L, Giacomello L, Pozzobon M, Feron F, De Coppi P, Anversa P, Fumagalli G, Decimo I, Menard C, Tarte K, Krampera M. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells Dev 2013;22:2990e3002.

19. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009;11:377e91.

20. Tao H, Han Z, Han ZC, Li Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int 2016;2016:1314709.

21. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases. Adv Exp Med Biol 2018 May 18. doi:

22. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff- Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol 2015;211:27-37.

23. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011;9:12.

24. Kil K, Choi MY, Kong JS, Kim WJ, Park KH. Regenerative efficacy of mesenchymal stromal cells from human placenta in sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2016;91:72-81.

25. Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods. Yonsei Med J 2018;59:406-415.

26. Jiang H, Zhang Y, Tian K, Wang B, Han S. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep 2017;7:41837.

27. Moore MC, Van De Walle A, Chang J, Juran C, McFetridge PS. Human Perinatal-Derived Biomaterials. Adv Healthc Mater 2017;6(18).

28. Farmer D. Placental stem cells: The promise of curing diseases before birth. Placenta 2017;59:113-115.

29. Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 2017;59:87-95.

30. Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2016;2:e1501254.

31. Xu F, Yi J, Wang Z, Hu Y, Han C, Xue Q, Zhang X, Luan X. IL-27 regulates the adherence, proliferation, and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations. Immunol Res 2017;65:903-912.

32. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005;106:419-427.

33. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 1998;273:7118-71122.

34. Hocking AM. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds. Adv Wound Care (New Rochelle) 2015;4:623-630.

35. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008;180:2581.

36. Xu B, Aoyama K, Kusumoto M, Matsuzawa A, Butcher EC, Michie SA, Matsuyama T, Takeuchi T. Lack of lymphoid chemokines CCL19 and CCL21 enhances allergic airway inflammation in mice. Int Immunol 2007;19:775-84.

37. Liu J, Wei Y, Luo Q, Xu F, Zhao Z, Zhang H, Lu L, Sun J, Liu F, Du X, Li M, Wei K, Dong J. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-κB and suppressing CCR7/CCL19/CCL21. Int J Mol Med 2016;38:1541-1548.

38. Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, Dana MR. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 2007;13:626-34.

39. De Pascale MR, Sommese L, Casamassimi A, Napoli C. Platelet derivatives in regenerative medicine: an update. Transfus Med Rev 2015;29:52-61.

40. Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M. CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther 2015;6:111.

41. Kuhn EN, Wu SM. Origin of cardiac progenitor cells in the developing and postnatal heart. J Cell Physiol 2010;225:321-325.

42. Chen HW, Chen HY, Wang LT, Wang FH, Fang LW, Lai HY, Chen HH, Lu J, Hung MS, Cheng Y, Chen MY, Liu SJ, Chong P, Lee OK, Hsu SC. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol 2013;190:5065-77.

43. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL. Expression of vascular endothelial growth factor receptor 1 in bone marrowderived mesenchymal cells is dependent on hypoxiainducible factor 1. J Biol Chem 2006;281:15554-15563.

44. Hercus TR, Thomas D, Guthridge MA, Ekert PG, King- Scott J, Parker MW, Lopez AF. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 2009;114:1289-1298.

45. Srivastava M, Ahlawat N, Srivastava A. Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. J Obstet Gynaecol India 2018;68:15-19.

46. Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid--Potential for regenerative medicine. Best Pract Res Clin Obstet Gynaecol 2016;31:45-57.

47. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Ethical and Safety Issues of Stem Cell- Based Therapy. Int J Med Sci 2018;15:36-45.

48. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007;110:1362-1369.

49. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004;109:3154-157.

50. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007; 104:11002-11007.

51. Day C, Patel R, Guillen C, Wardlaw AJ. The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res 2009; 35:272-283.

52. Morgan AJ, Guillen C, Symon FA, Huynh TT, Berry MA, Entwisle JJ, Briskin M, Pavord ID, Wardlaw AJ. Expression of CXCR6 and its ligand CXCL16 in the lung in health and disease. Clin Exp Allergy 2005; 35:1572-1580.

53. Huang L, Zhang L, Ju H, Li Q, Pan JS, Al-Lawati Z, Sheikh-Hamad D. Stanniocalcin-1 inhibits thrombininduced signaling and protects from bleomycin-induced lung injury. Sci Rep 2015;5:18117.

54. Nanki T, Shimaoka T, Hayashida K, Taniguchi K, Yonehara S, Miyasaka N. Pathogenic role of the CXCL16- CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum 2005;52:3004-3014.

55. Rump L, Mattey DL, Kehoe O, Middleton J. An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium. Cytokine 2017;97:133-140.

56. Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, Dana MR. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 2007;13:626-634.

57. Shaykhiev R, Sackrowitz R, Fukui T, Zuo WL, Chao IW, Strulovici-Barel Y, Downey RJ, Crystal RG. Smokinginduced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am J Respir Cell Mol Biol 2013;49:418-425.

58. Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 2007;1117:62-72.

59. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016;91:30-38.

60. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 2013;31:1-11.

61. Huang H, Shen J, Vinores SA. Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS One 2011; 6:e21411.

62. Hasegawa E, Oshima Y, Takeda A, Saeki K, Yoshida H, Sonoda KH, Ishibashi T. IL-27 inhibits pathophysiolog ical intraocular neovascularization due to laser burn. J Leukoc Biol 2012;91:267-273.

63. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007;13:711-718.

64. Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, Kowalska MA, Poncz M, Fowell DJ, Morrell CN. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014;124:543-552.

65. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014;15:4142-4157.

66. Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017;4:78.

67. Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res 2003;76:161-167.

Serbian Journal of Experimental and Clinical Research

The Journal of Faculty of Medical Sciences, University of Kragujevac

Journal Information


CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 169 13
PDF Downloads 113 113 9