The Effect of Tigecycline on the Binding of Fluoroquinolones to Human Serum Albumin

Open access


The co-administration of several drugs in multidrug therapy may alter the binding of each drug to human serum albumin (HSA) and, thus, their pharmacology effect. Therefore, in this study, the interaction mechanism between HSA and two fluoroquinolones (FQs), sparfloxacin (SPF) and levofloxacin (LVF), was investigated using fluorescence and absorption methods in the absence and presence of the competing drugtigecycline (TGC). The the UV-Vis and fluorescence spectroscopy results showed that the fluorescence quenching of HSA was a result of the formation of the HSA-SPF and HSA-LVF complexes. The fluorescence quenching of HSA-TGC revealed that tigecycline can regulate the binding sites, binding mode and binding affinity of fluoroquinolones. The binding constants (KA) and binding sites (n) of the interaction systems were calculated. The results confirmed that the KA values of the HSA-FQ system decreased in the presence of TGC, indicating that TGC can affect the binding ability of FQ for HSA. This interaction may increase the free plasma concentration of unbound FQ and enhance their pharmacology effect.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kragh-Hansen U Chuang VT Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 2002; 25: 695-704.

  • 2. Bertucci C Domenici E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr Med Chem 2002; 9: 1463-1481.

  • 3. Kandagal PB Ashoka S Seetharamappa J Shaikh S Jadegoud Y Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal 2006; 41: 393-399.

  • 4. Sudlow G Birkett DJ Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 1975; 11: 824-832.

  • 5. Sudlow G Birkett DJ Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 1976; 12: 1052-1061.

  • 6. Zhang LW Wang K Zhang XX. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Anal Chim Acta 2007; 603: 101-110.

  • 7. Zhanel GG Homenuik K Nichol K et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004; 64: 63-88.

  • 8. Fey G Reiss M Kersten H. Interaction of tetracylines with ribosomal subunits from Escherichia coli. A fluorometric investigation. Biochemistry 1973; 12: 1160-1164.

  • 9. Townsend ML Pound MW Drew RH. Tigecycline in the treatment of complicated intra-abdominal and complicated skin and skin structure infections. Ther Clin Risk Manag 2007; 3: 1059-1070.

  • 10. MacManus-Spencer LA Tse ML Hebert PC Bischel HN Luthy RG. Binding of perfluorocarboxylates to serum albumin: a comparison of analytical methods. Anal Chem 2010; 82: 974-981.

  • 11. Bi S Song D Tian Y Zhou X Liu Z Zhang H. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta A Mol Biomol Spectrosc 2005; 61: 629-636.

  • 12. Stojanović SD Janković SM Matović ZD Jakovljević IŽ Jelić R.M. Interaction between tigecycline and human serum albumin in aqueous solution. Monatsh Chem 2015; 146: 399-409.

  • 13. Carter DC Ho JX. Structure of serum albumin. Adv Protein Chem 1994; 45: 153-203.

  • 14. Sudhamalla B Gokara M Ahalawat N Amooru DG Subramanyam R. Molecular dynamics simulation and binding studies of beta-sitosterol with human serum albumin and its biological relevance. J Phys Chem B 2010; 114: 9054-9062.

  • 15. Chen T Cao H Zhu S et al. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim. Acta A Mol Biomol Spectrosc 2011; 81: 645-652.

  • 16. Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed New York Plenum Press 2006.

  • 17. Eftink M R. Fluorescence Quenching: Theory and Applications. Top Fluoresc Spectrosc 2002; 2: 53−126.

  • 18. Zhang HM Fei ZH Tang BP Chen J Tao WH Wang Y.Q. The interaction of blood proteins with brucine. Mol Biol Rep 2012; 39: 4937-4947.

  • 19. Liu B Zhao F Xue C Wang J Lu Y. Studies on the antagonistic action between chloramphenicol and quinolones with presence of bovine serum albumin by fluorescence spectroscopy. J Lumin 2010; 130: 859-864.

  • 20. Sandhya B Hedge AH Ramesh KC Seetharamappa J. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach. Spectrochim Acta A Mol Biomol Spectrosc 2012; 86: 410-416.

  • 21. Cao H Liu Q. Effects of temperature and common ions on binding of puerarin to BSA. J Solution Chem 2009; 38: 1071-1077.

  • 22. Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet 2005; 20: 309–323.

  • 23. Tesseromatis C Alevizou A. The role of the proteinbinding on the mode of drug action as well the interactions with other drugs. Eur J Drug Metab Pharmacokinet 2008; 33: 225–230.

  • 24. Bi S Song D Tian Y Zhou X Liu Z Zhang H. Molecular spectroscopic study on the interaction of tetracy clines with serum albumins. Spectrochim. Acta A Mol Biomol Spectrosc 2005; 61: 629-636.

  • 25. Peterson FC Anderson PJ Berliner LJ Brooks CL. Expression folding and characterization of small proteins with increasing disulfide complexity by a pT7-7-derived phagemid. Protein Expr Purif 1999; 15: 16-23.

  • 26. Wen MG Zhang XB Tian JN et al. Binding interaction of xanthoxylin with bovine serum albumin. J Solution Chem 2009; 38: 391-401.

  • 27. Wang N Ye L Zhao BQ Yu JX. Spectroscopic studies on the interaction of efonidipine with bovine serum albumin. Braz J Med Biol Res 2008; 41: 589-595.

  • 28. Seetharamappa J Kamat BP. Study of the interaction between fluoroquinolones and bovine serum albumin. J Pharm Biomed Anal 2005; 39: 1046-1050.

  • 29. Tarushi A Polatoglou E Kljun J Turel I Psomas G Kessissoglou DP. Interaction of Zn(II) with quinolone drugs: structure and biological evaluation. Dalton Trans 2011; 40: 9461-9473.

  • 30. Hu YJ Yang YO Bai AM Li W Liu Y. Investigation of the interaction between ofloxacin and bovine serum albumin: spectroscopic approach. J Solution Chem 2010; 39; 709-717.

  • 31. Živec P Perdih F Turel I Giester G Psomas G. Different types of copper complexes with the quinolone antimicrobial drugs ofloxacin and norfloxacin: structure DNA- and albumin-binding. J Inorg Biochem 2012; 117: 35-47.

  • 32. Donovan JW Changes in ultraviolet absorption produced by alteration of protein conformation. J Biol Chem 1969; 244: 1961-1967.

  • 33. Wang YQ Tang BP Zhang HM Zhou QH Zhang GC. Studies on the interaction between imidacloprid and human serum albumin: spectroscopic approach. J Photochem Photobiol B 2009; 94: 183-190.

  • 34. Seedher N Agarwal P. Competitive binding of fluoroquinolone antibiotics and some other drugs to human serum albumin: a luminescence spectroscopic study. Luminescence 2013; 28: 562-568.

  • 35. Seedher N Agarwal P. Complexation of fluoroquinolone antibiotics with human serum albumin: a fluorescence quenching study. J Lumin 2010; 130: 1841-1848.

  • 36. Xiao J Chen L Yang F Liu C Bai Y. Green yellow and red emitting CdTe QDs decreased the affinities of apigenin and luteolin for human serum albumin in vitro. J Hazard Mater 2010; 182: 696-703.

  • 37. Brunton L Lazo J Parker K. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 11th ed. New York McGraw-Hill 2005.

Journal information
Impact Factor

CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 180 7
PDF Downloads 164 96 3