
295

ORIGINAL SCIENTIFIC PAPER    ORIGINALNI NAUČNI RAD    ORIGINAL SCIENTIFIC PAPER

Corresponding author: Vladislava Stojić

Department of Medical Statistics and Informatics; Faculty of Medical Sciences; University of Kragujevac

Svetozara Markovica 69, 34000 Kragujevac, Serbia; Telephone: 381-34-306-800; e-mail: vladislavstojic@medf.kg.ac.rs

UDK: 616.62007:577.3 / Ser J Exp Clin Res 2017; 18 4: 295306

DOI: 10.1515/SJECR20160067

ABSTRACT

We fi rst present the results of an experiment in which the 

passive properties of the urinary bladder were investigated us-

ing strips of rabbit bladder. Under the assumption that the uri-

nary bladder had orthopaedic characteristics, the strips were 

taken in the longitudinal and in the circumferential directions. 

Th e material was subjected to uniaxial tension, and stress-

stretch curves were generated for various rates of deformation. 

We found that the rates did not have a signifi cantly eff ect on the 

passive response of the material. Additionally, the stress-stretch 

dependence during relaxation of the material when exposed to 

isometric conditions was determined experimentally. 

Next, we measured nonlinear stress-stretch dependence to 

determine the coeffi  cients for this dependence in analytical form 

using a standard fi tting procedure. Th e same approach was 

used to obtain the coeffi  cients for the relaxation curves from the 

experimental data. Two constitutive laws, the nonlinear model 

for passive response and the creep model, were introduced with-

in the shell fi nite element for geometrically and materially non-

linear analysis. We provide descriptions of the numerical proce-

dures that were performed by considering the urinary bladder 

as a thin-walled shell structure subjected to pressure loading.

Th e developed numerical algorithm for the incremental-

iterative solution was implemented into the fi nite element 

program, PAK. Th e response of the urinary bladder was 

calculated for continuous fi lling, and the numerical and ex-

perimental results were compared through cystometrograms 

(pressure-volume relationships). We also present comparisons 

of the shapes and volumes of the urinary bladder obtained nu-

merically and experimentally. Finally, the numerical results of 

the creep response, when placed under constant internal pres-

sure, are provided for various stages of deformation.

Keywords: Urinary bladder, Passive properties, Creep of 

material, Finite element modelling
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ABBREVIATIONS

FEM - Finite element modelling PAK - Finite element program for linear and nonlinear 

structural analysis, mass and heat transfer and biomechanics

SAŽETAK

Prvo predstavljamo eksperimentalno određivanje oso-

bina mokraćne bešike u pasivnom stanju korišćenjem se-

gmenata bešike. Uzeti su segmenti u uzdužnom i popreč-

nom pravcu pretpostavljajući da bešika ima ortotropne 

karakteristike. Izvršeno je jednoosno izduživanje materi-

jalnih segmenata i dobijene su napon-streč krive za ra-

zličite brzine deformacije. Pronađeno je da brzine nema-

ju značajnog efekta na odgovor materijala u pasivnom 

stanju. Takođe je eksperimentalno određena napon-streč 

zavisnost tokom relaksacije materijala izloženog izome-

trijskim uslovima.

Zatim smo primenili izmerene nelinearne relacije na-

pon-streč da odredimo koefi cijente ove zavisnosti u analitič-

koj formi korišćenjem standardne procedure fi tovanja. Isti 

pristup je korišćen da bi odredili koefi cijente za eksperimen-

talno dobijene krive relaksacije. Uvedena su dva konstitu-

tivna zakona: nelinearni model za pasivni odgovor i model 

puzanja, korišćenjem konačnog elementa ljuske za geome-

trijsku i materijalno nelinearnu analizu. Dajemo opis nu-

meričke procedure, smatrajući mokraćnu bešiku strukturom 

tankozidne ljuske opterećene pritiskom.

Razvijeni algoritam za inkrementalno-iterativno reša-

vanje je implementiran u program za konačne elemente 

PAK. Proračunat je odgovor mokraćne bešike za kontinu-

alno punjenje, i numerički i eksperimentalni rezultati su 

upoređeni preko cistometrograma (krivih pritisak-zapre-

mina). Takođe predstavljamo poređenje oblika i zapremi-

na mokraćne bešike dobijenih numerički i eksperimentalno. 

Konačno, prikazani su numerički rezultati puzanja bešike 

u slučaju konstantnog unutrašnjeg pritiska, za različite 

faze deformacije.

Ključne reči: Mokraćna bešika, Pasivne osobine, Puza-

nje materijala, Modeliranje konačnim elementima.
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INTRODUCTION

The passive and active mechanical properties of the 

urinary bladder wall have been the subject of investigation 

in many studies (1, 3, 5, 7, 11, 12). Based on the experi-

mental findings of these studies, various forms of analytical 

expressions have been proposed to describe the material 

characteristics of the urinary bladder wall and the response 

of the urinary bladder as a whole.

Because of the combination of modern numerical 

methods, such as the finite element method (FEM), and 

contemporary computer development, simulation of the 

complex three-dimensional (3D) behaviour of human or-

gans is possible. Along this line, we analysed the dynamic 

responses of muscle and cartilage to the mechanical loads 

and physiological stimuli that are extremely important for 

understanding the mechano-biochemical processes that 

occur in biological structures (8, 9, 10). Here, we focus on 

the passive mechanical responses of the urinary bladder.

Our numerical analysis of the urinary bladder (under 

passive conditions) is based on the constitutive laws of the 

bladder wall that have been established based on data col-

lected in specifically designed experiments. We defined the 

following two FEM material models: 1) a model for non-

linear material response derived based on the measured 

stress-stretch relationship; and 2) a creep material model 

derived based on experimental relaxation data. We mod-

elled the urinary bladder as a shell structure undergoing 

large displacements and calculated the passive response of 

the urinary bladder. Specifically, we focused on the pres-

sure-volume relationship (cystometrogram) and the rate of 

the volume change due to material creep. The predictions 

generated for whole organ response were compared with 

experimentally obtained cystometrogram data.

2. EXPERIMENTAL PROTOCOL

A total number of 20 rabbits of both sexes that weighed 

approximately 2.5-3 kg was used. All animals were killed by 

cervical dislocation according to Schedule 1 of the Animal 

(Scientific Procedures) Act, 1986, UK. The urinary bladders 

of the rabbits were emptied and dissected out, and strips 

of bladder were placed in an organ chamber perfused with 

Krebs-Ringed solution (in mM, NaCl 117, KCl 4.7, NaHCO
3
 

24.8, MgSO
4
 x 7H

2
O 1.2, CaCl

2
 2.5, KH

2
PO

4
 1.2 and D-glucose 

11.1). The solution was continuously bubbled with a mixture 

of 95% O
2
 and 5% CO

2
 and maintained at 31±1 oC to prevent 

spontaneous contractions. Different initial strip lengths were 

ous initial stretches were performed to measure relaxation 

under isometric conditions. We defined the strip length mea-

sured just before visible changes in tension were recorded on 

the PIC digital recording system as the initial length.

The filling pressure-volume curve of the urinary blad-

der, known as a cystometrogram (CMG), was determined 

by increasing the contained volume and measuring the 

pressure response. We used two experimental protocols 

to generate the cystometrograms for isolated bladders. 

During the first experiment, the bladders were emptied, 

dissected out, transferred to oxygenated Krebs-Ringer so-

lution, and filled continuously at a velocity of 4.8 ml/min 

using a slow drive syringe pump (syringe pump mod 355/

Sage instr.). During the second experiment, the bladders 

were filled with Krebs-Ringer solution in a stepwise man-

ner, with increases of 10 ml occurring at 20-second incre-

ments. Pressure responses were measured using a pressure 

transducer (Ugo Basile, USA) and recorded using a PIC 

digital recording system (ECM, Serbia).

3. FINITE ELEMENT MODELLING

The geometry of the urinary bladder can be closely ap-

proximated using a thin-walled shell type structure. Natu-

rally, shell finite elements are most appropriate when gen-

erating finite element models, as shown in Fig. 1. In this 

article, we also describe the numerical procedures used for 

calculating urinary bladder responses under passive con-

ditions using the results of the experimental investigation 

described in Section 2.

We assessed the large strain and large displacement for-

mulation of the shell finite elements (2). Since our material 

model was based on stress-stretch curves, we first provide 

some necessary equations that describe the kinematics of 

deformation and then describe the implementation of the 

material models.

In nonlinear finite element analysis, the equilibrium 

equation is formulated as follows:

 
 (1)

where is the incremental nodal displacement vec-

tor  1 itt K  is the element stiffness matrix 
exttt F

 and 
 1
int
 itt F  are the external and internal nodal forces, respec-

tively; the t+Dt index denotes the end of time (load) step; 

and “i” represents the equilibrium iteration number for the 

current time step. The stiffness matrix and nodal forces 

were expressed as follows:

       (2)

  (3)

where LB and  are the linear and nonlinear strain-dis-

placement transformation matrices, C  is the constitutive 

taken in the longitudinal and circumferential directions and 

strained continuously using various strain rates. Developed 

force was measured using an isotonic transducer (Elunit, Yu-

goslavia) and recorded using a PIC digital recording system 

(ECM, Yugoslavia). We allowed the strips to relax after vari-
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matrix (stress-strain matrix); and   and   are the matrix 

and vector of the stress components for the indicated time 

step and iteration, respectively. LB and  were calcu-

lated using a standard procedure (2) and the formulation 

of the shell finite elements.

For the shell finite element analysis, the local coordi-

nate system (x-y) was defined in the shell tangential plane, 

as shown in Fig. 1. The x-axis was taken as the direction of 

the (first) r-axis along the natural coordinate line, while “y” 

was orthogonal to the x-axis. For the current configuration 

(we omitted the index for iteration number to simplify the 

notation), we determined the rate of stretch ( x
tt 
0 ) in 

the x direction using the following equations. The lengths 

of a material element on the r-line at time t+Dt and t=0 

(Fig. 1(b)) are as follows:

  (4)

  (5)

where r
tt g

 and r
0g  were the base vectors of the 

r-curve at the current and initial configurations, respec-

tively; and 1
tt J

 and 1
0J  were the first rows in the Ja-

cobian matrix of the following coordinate transformation: 

rxJ  / . The rate of stretch x
tt
o


was determined 

using the following equation:

  (6)

The rate of stretch ( x
tt
o


) can also be calculated as 

follows:

  (7)

where ij
tt
0C

 is the right Cauchy-Green deformation 

tensor

( )   (8)

and
xn0  is the normal vector in the x direc-

tion within the reference configuration. Additionally, 

xxF 0tttt
0 / 

 is the deformation gradient. The 

stretch in the orthogonal “y”-direction is determined by 

using definition vectors y
tt ds

and y
0 ds in the y direc-

tion as follows:

 

 (9)

  (10)

as    (11)

where 
1tt

0
0
tt


  FF  is the inverse deformation gradient 

and

     (12)

is the base vector in the “y” direction;  tt n
is the shell 

normal. Additionally, the following equation may be de-

rived based on equation (7):

   (13)

The numerical results for the stretches calculated us-

ing the base vectors and the Cauchy-Green deformation 

tensor were the same, but the first approach was more 

computationally efficient. The stretch ( z ) occurring in 

the shell normal direction was determined based on the 

incompressibility condition of the material as follows:

1
y

1
xz        (14)

Using the z  calculated using the previous equation, 

we calculated the current shell thickness ( htt 
) using the 

following equation:

z
tt
o

0tt  hh  
    (15)

where h0
 is the initial thickness.

Fig. 1 Urinary bladder model

 (a) Urinary bladder as a thin-walled structure

 (b) Shell fi nite element with the principal material axes
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3.1 THE STRESS-STRETCH MATERIAL MODEL

The stress calculated herein represents the Cauchy 

stress (force per unit current area). In accordance with the 

literature data and results of our experimental investiga-

tion, we introduced several basic assumptions to be used 

when formulating the material model. The assumptions 

were as follows:

a) The material was orthotropic;

b) The material was incompressible, as indicated by the 

identification of a Poisson’s ratio of 5.0 in all di-

rections; and

c) The normal stresses were dominant in the material.

The axially symmetric structure under axially symmet-

ric loading conditions was evaluated by establishing the 

x-axis in the circumferential direction and “y” in the axial 

direction. Additionally, in accordance with assumption a), 

we used the experimental curves (Fig. 2) generated in these 

two orthogonal directions. The observations we made dur-

ing the experiments suggested that the lateral strain placed 

on the strips during uniaxial straining was practically the 

same, so the model met assumption b).

The normal stresses xx
tt 

 and yy
tt 

 were de-

termined according to the following procedure. First, we 

write notated the strains corresponding to the stress incre-

ments as follows:

 

   (16)

    (17)

where Ex and Ey are the tangent moduli that can be ex-

pressed as

 

  (18)

   (19)

Here, ETx and ETy were the tangent moduli to the 

stress-stretch curves shown in Fig. 2. We employed the 

following equation to derive the aforementioned relation-

ships:

     (20)

based on the definitions for stretch (l) and small strain €. 

The stress-stretch curves were approximated using the 

constitutive laws as follows:

 (21)

 (22)

where yyxx b,a,b,a  are the coefficients identified by fit-

ting the analytical expressions to the experimental curves. 

We noted that the functions for )(g  satisfied the defined 

conditions necessary for reducing the stretch applied to 

small strain tensors in cases of small stretch as follows:

 

    (23)

 

   (24)

Based on equations (16) and (17), we solved for the stress 

increments as follows:
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The stress increments in time step were defined as follows:
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Fig. 2 Schematic representation of the material characteristics curves
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Using the expressions for stress-stretch curves (equations 

(21) and (22)), we obtained the following equations:

 

    (28)

 

   (29)

in which we have employed the following approximations:

    (30)

   (31)

Therefore, the following stresses were identified at the 

end of time (load) step:

    (32)

 yyyy
t

yy
tt 

   (33)

When 1 , we used the constitutive relations de-

fined for 1 .

In accordance with assumption c), we calculate the 

shear modulus (G) as follows:

     (34)

which reduced the isotropic value when yx EE  . The 

shear stresses were determined using the Green-Lagrange 

shear strains, which were calculated in the standard man-

ner (2).

3.2 CREEP MODEL

As previously described in Section 2, the creep behav-

iour of the material was determined via relaxation tests. 

We obtained a family of relaxation curves via the relax-

ation tests, which are shown schematically in Fig. 3. These 

curves can be approximated by the following expression:

  
tc

10
2e cc     (35)

where )(c c 00  , )(c c 11  , and )(c c 22   were 

the material parameters that were obtained by fitting of 

this equation to the experimental results.

After taking into account the creep effect at time step 

Dt, we proceeded as follows. The total normal stress  tt

(in direction x or y) was expressed as follows:

    (36)

where 
ttt 

 is the level of stress corresponding to the 

transient response, and 
c  represents the contribution 

of the creep effect. The creep stress 
c  was determined 

using the following equation:

    (37)

where TE  is the slope on the relaxation curve given 

stretch l. The modulus TE  was interpolated based on the 

two measured curves (with  1kk  and ) as fol-

lows:

   (38)

where 2T1T E and E were the moduli on the curves with 

1kk   and ,

   (39)

   (40)

in which coefficients 22122111 cccc  , and  ,  corresponded 

to the curves with 1kk   and , respectively.

We used the current stretch l at a given material point 

as the mean value identified in the current time step, as 

follows:

    (41)

In the proposed creep model, we did not take into con-

sideration the creep effects on the shear modulus since 

normal stress/strain components are the main contribu-

tors to urinary bladder response.

4. EXPERIMENTAL RESULTS

In this section, we present the results of the experiments 

described in Section 2 that used the rabbit urinary bladder 

Fig. 3 Relaxation curves for various stretches 
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strips. First, we provide four typical stress-stretch curves from 

which the important conclusions regarding the mechanical 

characteristics of the material were drawn and then we present 

two relaxation curves. Additionally, we illustrate the mechan-

ical behaviour of the urinary bladder using cystometrograms 

for continuous and stepwise loading. Based on the range of 

the experimentally derived strain rates ) 8 5.0( 11   ss , we 

found that the strain rate effects could be neglected.

The nonhomogeneous and orthotropous character of 

the urinary bladder wall material is shown in Fig. 4. Ma-

terial segments in the longitudinal and circumferential 

directions were taken from various positions in the uri-

nary bladder, as shown in Fig. 4a. Based on Figs. 4b and 

c, one can observe that the segments in the lower part of 

the bladder demonstrated stiffness in both directions. Ad-

ditionally, the stiffness identified in the circumferential 

direction was higher than the stiffness identified in the 

longitudinal direction. The continuous curves in these fig-

ures correspond to the equations (21) and (22), while the 

discrete points represent the experimental values. Table 1 

provides the values of material constants “a” and “b”, which 

were obtained using a standard curve fitting procedure.

As described in Sections 2 and 3, the creep behaviour 

of the material was represented via the relaxation curves. 

These curves were obtained by stretching the specimens to 

stretch l and then holding the strain constant and measur-

ing the forces during relaxation time. Figs. 5a and 5b illus-

trate the relaxation curves for the longitudinal and circum-

ferential directions, wherein the solid lines correspond to 

the analytical expression (36), and the experimental results 

are represented by the discrete points. Based on these fig-

ures, we observed that the amount of the stress relaxation 

Fig. 4 Stress-stretch curves for various segments

 (a) Schematic view of the urinary bladder with segments

 (b) Stress-stretch dependence in the longitudinal direction

 (c) Stress-stretch dependence in the circumferential direction

Longitudinal Circumferential

Segment ay by Segment ax bx

I 0.0008 5.2818 1 0.0011 5.2818

II 0.0006 5.2818 2 0.0013 5.2818

III 0.0005 5.2818 3 0.0009 5.2818

4 0.0012 5.2818

5 0.0015 5.2818

6 0.0013 5.3759

7 0.0020 5.2818

8 0.0016 5.2818

9 0.0034 4.5690

Table 1 Constitutive coeffi  cients for the longitudinal and circumferential 

directions
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was within approximately 40% of the initial stress levels. 

The material coefficients for the relaxation curves are pro-

vided in Table 2.

Finally, Fig. 6 shows the pressure-volume curves (cys-

tometrograms) that were derived for the continuous and 

stepwise fillings using the procedures described in Section 

2. The recorded pressure-volume curves had the same gen-

eral nonlinear character as the uniaxial stress-stretch rela-

tionships observed for the bladder strips. Additionally, no 

significant difference was observed between the responses 

observed during the continuous and stepwise fillings, indi-

cating that the creep contribution to the intervals of con-

stant pressure was not high.

5. NUMERICAL SIMULATIONS

During the numerical simulations, we demonstrated 

the accuracy of the numerical models when compared 

with experimental results by considering the whole uri-

nary bladder as a structure and via a simple creep problem.

Uniaxial Stretch.

This example serves to demonstrate the accuracy of the 

numerical procedure and the calculated material response 

when compared with the experimental observations. The 

following two extreme cases are considered:

a) the material was free to contract laterally; and

b) the material was restrained in the lateral direction.

Fig. 7a shows the one four-node shell finite element 

with dimensions, boundary conditions and loading in-

cluded in the analysis. The element was loaded with stress 

xx
tt 

 that increased over time, as shown in Fig. 7b. 

The constitutive curves generated under the assumption 

that the material was orthopaedic are shown in Fig. 7c. 

The solutions were obtained using (1) one-step solution 

(Dt=1s, Dt=2s,..., Dt=6s) from the zero-stress to the cur-

rent stress, and (2) multistep solution, with Dt=1 ranging 

from time t=0 to the current time (t=,1 s, t=2s, ..., t=6s). 

We observed that the one-step and multistep solutions 

displayed good accuracy. Additionally, the numerical so-

lutions )( xxx
tt 

 laid approximately on the analytical 

curves for both isotropic and orthotropic material, while 

Fig. 5 Stress relaxation

(a) Longitudinal segments (solid symbols)

(b) Circumferential segments (open symbols)

Longitudinal Circumferential

Stretch c0 c1 c2 Stretch c0 c1 c2

1.641 0.0042 0.0030 -0.0220 2.111 0.0141 0.0048 -0.0063

1.536 0.0021 0.0030 -0.0253 1.684 0.0063 0.0030 -0.0198

1.296 0.0013 0.0012 -0.1297 1.556 0.0043 0.0023 -0.0111

Table 2 Coeffi  cients derived for the longitudinal and circumferential directions using the creep model

Fig. 6 Pressure-volume dependence (cystometrogram) for 
the continuous and stepwise fi llings
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Fig. 7 Uniaxial stretch

(a) Shell fi nite element

(b) Stress-time relationship (prescribed)

(c) Stress-stretch relationships (prescribed)

(d) Stress-stretch numerical solution

(e) Stretch-time dependence in the y direction (computed)

(f ) Stress-time dependence in the x and y directions (computed)

(g) Error- stretch dependence in the x direction (computed)
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(a)

(b)

(c) (d)

 

 

Fig. 8 Filling of the urinary bladder

 (a) Pressure-time relationship

 (b) Original and fi nal confi gurations (computed and experimentally observed)

 (c) Stress fi eld in the urinary bladder (fi nal confi guration)

 (d) Experimental and numerical cystometrograms
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the lateral stretches were different for these two cases (Fig. 

7d). The lateral )( y  and axial )( x  stretch values were 

higher under the same level of stress ( xx
tt 

) when or-

thotropic material was used because the )( yyy
tt 

curve was considered to lie below the )( xxx
tt 

curve, 

as seen in Fig. 7e.

In case b), stretching in the x direction produced ten-

sional stress yy
tt 

 in the y direction. Fig. 7f shows the 

multistep solutions for both the isotropic and the ortho-

tropic material. In the both cases, we assumed that the 

following condition was satisfied according to the incom-

pressibility assumption b):

      (42)

Fig. 7 g shows the departure (error) of the calculated 

stress from analytical value for the isotropic material, 

which was calculated using the following equation

 .

Filling of Urinary Bladder

We analysed urinary bladder response to the filling 

process. The cystometrogram shown in Fig. 6 was used to 

(a)

(b)

Fig. 9 Uniaxial creep

(a) Experimental relaxation curves

(b) Computed stretch-time relationship

calculate the dependence of fluid pressure on time neces-

sary for determination of structural load. In the numerical 

analysis, we considered continuous filling in addition to 

pressure loading, as shown in Fig. 8a. A schematic repre-

sentation of the segment positions used in the experimen-

tal investigations is shown in Fig. 4a. The stress-stretch 

relationships that were employed in the material models 

are shown in Figs. 4b and 4c, and the coefficients of the 

models are provided in Table 1. Due to the observed axial 

symmetry, only one quarter of the structure is modelled, 

and 162 shell finite elements were included.

Urinary bladder response was calculated using 30 steps, 

with time step Dt=30s lying in the domain corresponding 

to the flat parts of the stress-stretch curves and Dt=5s lying 

in the following domain. The initial configurationwhich 

used the initial experimentally determined volume value 

(V0=9.6 ml (numerical V0=5.4 ml)), and the final structure 

used the final experimentally determined volume value 

(V0=54.16 ml (numerical V0=43.7 ml)), as shown in Fig. 

8b. We noted that the problem was highly nonlinear, both 

in the geometrical and in the material sense, with stretches 

of approximately 2.4 λ identified in some regions. The real 

shapes of the urinary bladder at the initial stage and end of 

loading that were registered on camera are shown in the 

same figure. We observed that similar results were iden-

tified in the shape and magnitude of the urinary bladder 
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(a)

(b)

Fig. 10 Creep of urinary bladder

 (a) Relaxation curves

 (b) Change in volume due to creep at various initial volumes

in the numerical model and the experimental results. The 

von Mises stress distribution in the wall at the final con-

figuration is presented in Fig. 8c. We noted that the zone 

of maximum stress was the middle section of the urinary 

bladder.

Finally, the cystometrograms obtained numerically 

and experimentally are provided in Fig. 8d. Agreement be-

tween numerical and experimental results can be observed 

based on this figure, verifying the numerical simulation.

Uniaxial Creep.

In this example, we investigated the accuracy of mate-

rial response prediction using our creep model. In the nu-

merical analysis, we employed the plane stress finite element 

under constant uniaxial loading conditions. The relaxation 

curves shown in Fig. 9a were obtained experimentally.

The calculated creep curve, represented as the stretch-

time relationship, is shown in Fig. 9b. The figure demonstrates 

that creep of the material diminished with time, which was 

also observed experimentally. We observed that the stretch 

increase that occurred due to creep was relatively small.

Creep of Urinary Bladder.

We calculate the creep of the urinary bladder as a struc-

ture, considering, for simplicity, that the material was ortho-

tropic and homogenous with respect to transient loading and 

creep. In the longitudinal direction, we employed the nonlin-

ear stress-stretch relationship provided by the curve corre-

sponding to segment 9 in Fig. 4b, while for the circumferential 

direction we used the curve for segment II in Fig. 4c.

The relaxation curves used in the analysis are shown 

in Fig. 10a, where stress (presented as a percentage of the 

initial stress observed) is provided as a function of time. 

The curves for the longitudinal and circumferential direc-

tions are the same shape but correspond to different initial 

stresses, as indicated in the figure.

The internal pressure changed when stepwise filling 

was employed, as can be seen in the diagram in Fig. 10b. 

The creep deformation was dominant during the constant 

pressure-time intervals. The increase in volume that was 

observed in association with time during creep at various 

initial bladder volumes corresponded to constant pressures 

1,2,...5, as shown in Fig. 10b. We observed that the volume 

increase was more pronounced under higher stretch con-

ditions (higher initial volumes).
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Journal of Biomechanics. 1995; 28(6): 725-732.

 6. Fung, Y. C., Biomechanics-Mechanical Properties of 

Living Tissues. Springer-Verlag, New York, 1981. pp. 

355-381.

 7. Griffiths, D. J., Van Mastright, R., Van Duyl, W. A., 

and Coolsaet, B. L. R. A. Active mechanical prop-

erties of the smooth muscle of the urinary bladder. 

Medical & Biological Engineering & Computing. 

1979; 17: 281-290.

 8. Kojic, M., Mijailovic, S., Zdravkovic, N. A numerical 

algorithm for stress integration of a fiber-fiber kinet-

ics model with Coulomb friction for connective tissue. 

Computational Mechanics, 1998; 21(2): 189-198.

 9. Kojic, M., Mijailovic, S., Zdravkovic, N. Modeling of 

muscle behavior by the finite element method using 

Hill’s three-element model.  Int. J. Num. Meth. Engng. 

1998; 43: 941-953.

10. Kojic, M., Zdravkovic, N., Mijailovic, S. A numerical 

stress calculation procedure for a fiber-fiber kinetics 

model with Coulomb and viscous friction of connective 

tissue. Computational Mechanics. 2003; 30(3):185-195.

11. Van Mastright, R., Coolsaet, B. L. R. A. and Van Duyl, 

W. A. Passive properties of the urinary bladder in the 

collection phase. Medical & Biological Engineering & 

Computing. 1978; 16: 471-481.

12. Uvelius, B. Isometric and isotonic length-tension re-

lations and variations in cell length in longitudinal 

smooth muscle from rabbit urinary bladder. Acta 

Physiol. Scand. 1976; 97: 1-12.

CONCLUSIONS

We have presented the procedures used for experimental 

determination of the passive mechanical properties of the uri-

nary bladder wall and the results of the numerical analysis per-

formed using state-of-the art modern approaches and ain non-

linear finite element methodology. The stress-stretch curves 

and the relaxation curves obtained during the experiments 

were used to formulate the two material models using the 

analytical form: a) nonlinear model for passive response, and 

b) creep model. The models were incorporated into the shell 

finite elements to numerically simulate the transient responses 

of the urinary bladder under passive and creep conditions.

The results of the numerical simulations demonstrate 

the possibilities of modelling the complex mechanical be-

haviour of urinary bladder, which was treated as a thin-

walled structure. The proposed methodology provides a 

solid basis for generating a deeper understanding of the 

urinary bladder response. This approach may be further 

generalized to assess the active phase as well, which is the 

subject of our current research.
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