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ABSTRACT

Galectin-3, a unique chimaera-type member of the lec-
tin family, displays a wide range of activities. � is versatile 
molecule is involved in fundamental biological processes, 
including cell proliferation, cell-cell adhesion, apoptosis and 
immune responses. 

� is review is aimed at providing a general overview of the 
biological actions and diverse eff ects of Galectin-3 in many 
pathological conditions, with a specifi c focus on autoimmu-
nity, infl ammation and tumour progression. We report here-
in that Galectin-3 exerts deleterious functions determined 
by promotion of tumour progression and liver infl ammation 
or aggravation of T cell-mediated autoimmune diseases. On 
the other hand, Galectin-3 exhibits a protective role in meta-
bolic abnormalities and primary biliary cirrhosis. 

� e paradoxical “yin and yang” functions of Galectin-3 
depend not only on its tissue and cellular localization but 
also on its availability, glycosylation status and the expres-
sion level of its ligands.

Keywords: galectin-3, tumour, infl ammation, autoim-
mune disease

SAŽETAK

Galektin-3 je jedinstveni himerični član familije lektina 
i ostvaruje širok spektar aktivnosti. Ovaj svestrani mole-
kul je uključen u fundamentalne biološke procese kao što 
su ćelijska proliferacija, međućelijska adhezija, apoptoza i 
imunski odgovor.

Pregledni članak ima za cilj opšti pregled bioloških efekata 
Galektina-3, kao i njegovih različitih uticaja na mnoga pato-
loška stanja sa specifi čnim fokusom na autoimunost, infl ama-
ciju i progresiju tumoura. U ovom radu razmatrani su štetni 
efekti Galektina-3 koje ostvaruje u određenim patološkim sta-
njima: promoviše progresiju tumoura i infl amaciju u jetri ili 
pogoršava neka autoimunska oboljenja izazvana T limfociti-
ma. Suprotno, Galektin-3 igra protektivnu ulogu u patogenezi 
metaboličkih poremećaja i primarne bilijarne ciroze.  

Paradoksne “Jin-Jang” funkcije Galektina-3 zavise od 
tkivne i ćelijske lokalizacije ovog molekula, a takođe i od do-
stupnosti,  glikozilacionog statusa  nivoa ekspresije njegovih 
liganada. 

Ključne reči: galektin-3, tumour, infl amacija, autoi-
munske bolesti

INTRODUCTION

Galectin-3 is one of the best-studied galectins. Like 
all members of the lectin family, Galectin-3 has a high 
affinity for binding β-galactoside and shares a conserved 
carbohydrate recognition domain (CRD) (1). As a chimeric 
protein with unique structure, Galectin-3 contains three 
distinct structural regions: 1) an NH2 terminus containing 
a serine phosphorylation site that is important for regu-
lation of intracellular signalling; 2) a repetitive, proline-
rich, collagen-α-like sequence cleavable by matrix metal-
loproteases (e.g., MMP-2 and MMP-9); and 3) a globular 
COOH-terminus containing a carbohydrate recognition 
domain and the anti-death motif NWGR. Upon binding 

to multivalent carbohydrates, Galectin-3 can oligomerize 
through its NH2-terminus or form a pentameric lattice 
structure on the cell surface (Figure 1A) (1). Тhus, it is in-
volved in modulation of intracellular signalling pathways.

As a small molecular weight protein (approximately 
30 kDa), Galectin-3 has multiple cellular localizations in 
many types of cells, in particular, epithelial and immune 
cells. In general, Galectin-3 serves as a regulator of funda-
mental biological processes, such as cell proliferation and 
differentiation, adhesion, migration, survival, apoptosis 
and immune responses (2). Intracellularly, Galectin-3 oc-
curs mainly in the cytosol, but is also found in the nucleus 
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(3) and mitochondria (4, 5). Finally, it can be transported 
to the cell surface or secreted to the outside of cells. Galec-
tin-3 interacts and co-operates with numerous intra- and 
extracellular ligands, thus participating in processes that 
are essential for basic cellular functions. For example, nu-
clear Galectin-3 acts as an mRNA splicing promoter and 
modulator of cell growth and proliferation (1, 6, 7). How-

ever, depending on its cellular localization, Galectin-3 may 
display dual effects, acting as both a negative and positive 
regulator of apoptosis. Cytoplasmic Galectin-3 functions 
as an apoptosis inhibitor by maintaining the membrane 
integrity of mitochondria. In contrast to cytoplasmic Ga-
lectin-3, it has been demonstrated that nuclear and extra-
cellular Galectin-3 promote apoptosis (8-10). After bind-

Figure 1. (A) Schematic representation of Galectin-3 monomer (left panel) and Galectin-3 oligomerization through its N-terminus in the presence of 
its binding ligands (right panel). (B) At the cell surface, Galectin-3 forms a pentameric lattice structure upon binding glycoproteins, thus participating 
in modulation of intracellular signalling pathways (left panel) as well as cell-cell and extracellular matrix (ECM)-cell interactions. 
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ing to cell surface molecules (e.g., CD29, CD7, CD95 and 
the T-cell receptor), extracellular Galectin-3 may mediate 
apoptosis, induced by cytochrome-c release and caspase-3 
activation (11-13).

Many reports suggest that extracellular Galectin-3 can 
act as a modulator of cellular adhesion. The multivalent 
characteristic of Galectin-3 enables it to act as a bridge be-
tween adjacent cells, as well as between cells and a plethora 
of extracellular matrix components (1, 14, 15), by simulta-
neously binding to carbohydrates on two adhesion ligands 
(Figure 1B). These adhesive interactions between cells of 
the same and different types that occur by binding extra-
cellular Galectin-3 allow Galectin-3 to promote homotypic 
and heterotypic aggregation, in particular in metastatic 
processes (15-17). 

Galectin-3 is expressed on numerous immune cells 
and possesses several immunomodulating activities, such 
as promoting chemotaxis (18), inducing cell-cell adhe-
sion (for instance, dendritic cell-T cell) and cell-matrix 
glycoprotein adhesion (19), regulating cell proliferation 
and survival (8, 20), and favouring superoxide production 
and phagocytosis by macrophages. It has been suggested 
that Galectin-3 also influences the strength of antigen ac-
tivation in dendritic cells (21, 22) and controls acquired 
immunity, including both T-helper cell 1 (Th1) (23, 24) 
and T-helper cell 2 (Th2) responses (21, 25) depending 
on the context of the host immune response. Along with 
its role in inflammation and immune responses in nonin-
fectious conditions, Galectin-3 can detect certain micro-
organisms by binding specific carbohydrate structures of 
glycoproteins and glycolipids from many pathogens (26). 
Recently, it has been reported that Galectin-3 acts as a 
novel alarmin by augmenting the inflammatory response 
in sepsis development during bacterial pneumonia fol-
lowing Francisella novicida infection (27). The alarmin 
properties of Galectin-3 include stimulation of an oxida-
tive burst in neutrophils and inflammatory cytokine pro-
duction in macrophages (27).

Taken together, these studies show that Galectin-3 is a 
versatile molecule that binds a plethora of intra- and ex-
tracellular ligands, thus activating different physiological 
processes inside and outside the cells. Further, Galectin-3 
exerts diverse and sometimes opposing functions under 
various pathological conditions, depending on the spe-
cific tissue and cellular milieu. We will discuss how this 
molecule contributes to the immunopathology of differ-
ent diseases, with a specific focus on autoimmunity, in-
flammation and tumour progression. 

GALECTIN3 IN INFLAMMATION
AND AUTOIMMUNITY

Inflammation is generally protective and serves to 
maintain tissue homeostasis and repair. However, unbal-
anced inflammation becomes deleterious to the host and 
can lead to a variety of pathological conditions. For exam-
ple, metabolic inflammation, referred to as metaflamma-

tion, is a chronic inflammation generated from expanding 
adipose tissue and is induced by metabolic danger signals 
during obesity. Metaflammation precedes the develop-
ment of metabolic abnormalities such as insulin resis-
tance, type 2 diabetes and nonalcoholic fatty liver disease. 
Despite the fact that Galectin-3 exhibits deleterious effects 
under inflammatory conditions, various studies have dem-
onstrated its protective role in the pathogenesis of obe-
sity-induced inflammation triggered by accumulation of 
different metabolic stressors, such as advanced glycation 
end products (AGEs) (28). Namely, AGEs and the receptor 
for AGEs (RAGE) have been linked to enhanced apoptosis 
and dysfunction of pancreatic β cells and also to the patho-
genesis of diabetic complications (29). Galectin-3 has been 
identified as an AGE receptor (30) that binds AGEs with 
high affinity, thus acting as a scavenger receptor for these 
glucose adducts that are elevated in animals on a lipid-rich 
diet (29). Galectin-3 protects β cells in rats from the cyto-
toxic effect of IL-1β (31). The expression levels of Galec-
tin-3 in adipocytes and macrophages of adipose tissue and 
in serum are elevated during obesity in both humans and 
experimental animals (29).

To examine the role of Galectin-3 in obesity and type 
2 diabetes, we used the model of high fat diet (HFD)-
induced obesity in Galectin-3-deficient mice (32). We 
showed that lack of Galectin-3 accelerates HFD–induced 
obesity and type 2 diabetes by increasing visceral adipos-
ity, hyperglycaemia and insulin resistance and by upregu-
lation of inflammatory pathways at both local (metabolic 
tissue) and systemic levels. Visceral adipose tissue of obese 
Galectin-3-deficient mice was infiltrated with type 1 CD3+ 
T lymphocytes, CD3+NK1.1+ NKT lymphocytes express-
ing IFN-γ and proinflammatory M1 macrophages, as well 
as F4/80+CD11b+CD11c+ bone marrow-derived cells. In 
addition, regulatory T cells and, in particular, alternatively 
activated M2 macrophages were markedly reduced. These 
findings are complementary to a previous study demon-
strating that Galectin-3 promotes M2-polarized macro-
phages (33). In addition to visceral adipose tissue, we found 
that a lack of Galectin-3 is also associated with inflamma-
tion in pancreatic islets, which is reflected by the presence 
of severe insulitis (32). This finding supports the concept 
that Galectin-3 has protective functions in metaflamma-
tion during obesity (29). 

Principal mechanisms of obesity-induced inflamma-
tion include nuclear factor-κB (NF-κB)–dependent pro-
duction of proinflammatory cytokines and increased ac-
tivation of the NLRP3 (NOD-like receptor family, pyrin 
domain containing 3) inflammasome, leading to caspase-
1-mediated cleavage and release of active proinflamma-
tory IL-1β (34). In our study, increased expression of the 
NLRP3 inflammasome and IL-1β in macrophages was 
present in visceral adipose tissue and pancreatic islets of 
obese Galectin-3-deficient mice in comparison with wild 
type mice fed with an HFD (32). A key point of our work 
is that pancreatic islets of obese Galectin-3-deficient mice 
had increased deposition of AGE and RAGE expression, 
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described profibrotic IL-33/ST2/IL-13 pathway in mac-
rophages is Galectin-3-dependent (41).

The notion that Galectin-3 has a proinflammatory role 
in T-cell-mediated disease has been demonstrated in ani-
mal experimental models, such as Concanavalin A (Con 
A)–induced fulminant hepatitis (42). Con A is a potent, 
hepatotropic T cell mitogen, and it induces acute hepa-
titis in a model of T lymphocyte-mediated liver damage 
in mice (43). Our results demonstrate that ablation of Ga-
lectin-3 markedly attenuated liver injury by reducing the 
number of effector cells, such as T lymphocytes, natural 
killer (NK) and natural killer T (NKT) cells, and increas-
ing the number of M2-polarized macrophages. Thus, our 
data support the assertion that Galectin-3 promotes in-
flammation in the liver following Con A injection. Further, 
apoptosis of liver-infiltrating cells contributes to the lower 
number of mononuclear cells in the livers of Galectin-
3-deficient mice, supporting the concept that Galectin-3 
has an antiapoptotic role, particularly if it is localized with-
in cells (42). Similar to the effects of deleting the Galec-
tin-3 gene, pretreatment of wild type mice with a selective 
Galectin-3 inhibitor (TD139) also significantly reduced 
Con A-induced liver injury by suppressing infiltration of 
IFN-γ-, IL-17- and IL-4-producing CD4+ T lymphocytes 
and IFN-γ-producing CD8+ T lymphocytes, and increas-
ing the number of IL-10-producing CD4+ T lymphocytes, 
as well as alternatively activated macrophages (42). Alto-
gether, our findings indicated that reduced inflammation 
in the liver of Con A-treated Galectin-3-deficient mice and 
TD139-pretreated wild type mice could be the result of at-
tenuation of macrophage and T cell activity.  

Primary biliary cirrhosis (PBC) is considered a pro-
gressive autoimmune liver disease with immune-mediated 
destruction of intrahepatic biliary epithelial cells and fre-
quent appearances of autoantibodies against the major 
mitochondrial autoantigen, PDC-E2 (pyruvate dehydro-
genase complex component E2) (44, 45). It appears that 
biliary epithelial cells (BECs) are the major targets of injury 
and thus they are active participants in the initiation and 
perpetuation of autoimmunity in the pathogenesis of PBC. 
It is assumed that a unique apoptotic feature of biliary epi-
thelial cells may contribute to epitope presentation to the 
immune system, causing unique tissue damage (46, 47). 
In this scenario, both acquired and innate immunity have 
been proposed as contributors in autoimmune-mediated 
destruction (48). 

Our laboratory has decided to examine the role of Ga-
lectin-3 in PBC pathogenesis by using a murine model of 
autoimmune cholangitis following immunization of Ga-
lectin-3-deficient mice with 2-octynoic acid (2OA) cou-
pled to BSA (2OA-BSA). In contrast to the results from 
our previous studies, which indicated that deletion of the 
Galectin-3 gene reduces several T cell-mediated autoim-
mune diseases, such as diabetes (49) and experimental au-
toimmune encephalomyelitis (50), we demonstrate here 
that another autoimmune disease, PBC, is aggravated by 
Galectin-3 deficiency (data have been accepted for pub-

suggesting that deletion of the Galectin-3 gene impairs 
their removal, leading to accelerated inflammation and 
subsequent damage of pancreatic β-cells. Additionally, we 
noticed that this increased deposition of AGE and RAGE 
was accompanied by higher expression levels of phos-
phorylated NF-κB p65 and mature caspase-1 in pancreatic 
tissue and visceral adipose tissue (32). It appears that the 
NF-κB-mediated proinflammatory pathway operates in 
the enhanced metaflammation observed in Galectin-3-de-
ficient mice. 

Recently, it has been suggested that type 2 diabetes 
is an autoinflammatory disease with a central role for 
NLRP3-ASC (apoptosis-associated speck-like protein 
containing a caspase recruitment domain) inflamma-
some-mediated IL-1β production (35). In this regard, 
we noticed a trend towards increased expression of the 
NLRP3 inflammasome and ASC adaptor proteins in pan-
creatic and visceral adipose tissue, respectively. Addition-
ally, peritoneal macrophages from Galectin-3-deficient 
mice released higher amounts of IL-1β and had increased 
NLRP3 inflammasome expression and caspase-1 activity 
in response to stimulation with lipopolysaccharide and/
or saturated fatty acid palmitate compared with perito-
neal macrophages from wild type mice in vitro. We also 
noticed that silencing of the NLRP3 inflammasome at-
tenuated IL-1β production by macrophages from Galec-
tin-3-deficient mice, suggesting that the release of IL-1β 
was mediated by NLRP3 inflammasome activation. Fi-
nally, we demonstrated that obese Galectin-3-deficient 
mice had increased systemic inflammation, as shown by 
elevated serum levels of proinflammatory IL-6 and IL-1β, 
followed by significantly decreased serum levels of im-
munomodulatory IL-13 and IL-10. Altogether, the results 
obtained from our study suggest an important protective 
role of Galectin-3 in obesity-induced inflammation and 
type 2 diabetes (32).

Nonalcoholic fatty liver disease (NAFLD) is a com-
mon chronic metabolic complication of obesity and 
type 2 diabetes (36). Liver steatosis is a benign condition 
that progresses to nonalcoholic steatohepatitis (NASH), 
which is characterized by chronic liver inflammation and 
fibrosis (37). The liver is the main catabolic site for AGEs 
and ALEs (advanced lipoxidation end-products) (38). Re-
cently, it has been reported that Galectin-3 is involved in 
the regulation of fatty acid and glucose metabolism in the 
liver (39). RAGE, found predominantly in hepatocytes, 
and Galectin-3, which is highly expressed in sinusoidal 
liver endothelial and Kupffer cells, are the principal scav-
enger receptors for AGEs/ALEs and are involved in their 
removal without initiation of inflammation (40). To clar-
ify the role of Galectin-3 in the pathogenesis of obesity-
related NASH, Galectin-3-deficient mice were placed on 
the obesogenic HFD (41). The data obtained show that 
Galectin-3 attenuates steatosis but promotes liver injury, 
inflammation and fibrosis, thus regulating disease pro-
gression in the obesogenic mouse model of NASH. In 
addition, we show here for the first time that the newly 
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lication). This autoimmune disease is characterized by 
increased periportal infiltration, bile duct damage, granu-
lomas and fibrosis. It is well established that intracellu-
lar Galectin-3 is a critical negative regulator of apoptosis. 
Thus, the cause of these differences appears to be the fact 
that in PBC, the ablation of Galectin-3 leads to increased 
availability of autoantigen(s). In actuality, lack of Galec-
tin-3 may affect mitochondrial membrane integrity and 
resistance to apoptosis in BECs and, consequently, cause 
the release of putative antigen(s) that induce a stronger 
activation of DCs, a higher influx of inflammatory lym-
phocytes, and enhanced bile duct damage and liver fibro-
sis. In addition, we did not detect Galectin-3 expression 
in BECs from healthy wild type mice. However, the ex-
pression of Galectin-3 was significantly increased in BECs 
from 2OA-BSA-immunized mice. Finally, we assume that 
increased expression of Galectin-3 in BECs in the murine 
model of autoimmune cholangitis is probably a compen-
satory mechanism that is used to protect the BECs from 
apoptosis induced by different stimuli.

PROTUMOURIGENIC ROLE OF GALECTIN3 

Galectin-3 expression is altered or abnormally local-
ized in cells of various human solid tumours and blood 
malignancies, suggesting that this multifunctional mole-
cule may modulate tumour progression and influence dis-
ease outcome (1, 51). Some immunohistochemistry stud-
ies have indicated that overexpression of Galectin-3 may 
be a prognostic factor for poor survival of patients with 
gastric cancer, hepatocellular carcinoma, thyroid cancer 
and leukaemia (52-56). It seems that the translocation of 
Galectin-3 from the cytoplasm to the nucleus of mela-
noma cells results in a more aggressive phenotype (57). 
Interestingly, tumour hypoxia upregulates the expression 
of Galectin-3 and also leads to changes in its subcellular 
localization (58). Under hypoxic conditions, the expres-
sion of Galectin-3 shifts from a nuclear location to cyto-
plasmic and membranous locations, suggesting that this 
shift favours resistance to apoptosis and malignancy of 
mammary tumour cells (58). Circulating Galectin-3 is also 
increased in the bloodstream of cancer patients. Thus, 
markedly higher serum concentrations of Galectin-3 were 
found among patients with many types of cancer (59-61), 
compared with those of healthy individuals. Additionally, 
patients with advanced melanoma have higher concentra-
tions of circulating Galectin-3 than those with localized 
tumours. It appears that the source of increased Galectin-3 
concentrations in the serum of patients with cancer may be 
the tumour cells, as well as the peritumoural inflammatory 
and stromal cells (16, 59). 

Despite its involvement in physiological processes, Ga-
lectin-3 is also a key player in many steps of tumour de-
velopment and metastasis. It has been demonstrated that 
Galectin-3 favours a broad range of cancer cell activities, 
such as malignant cell transformation and tumour growth 

(62-64), cell adhesion, migration and invasion (65-69), 
anoikis resistance (70), apoptosis inhibition (71), (72) and 
angiogenesis (73). 

Galectin-3 can promote malignant transformation due 
to simultaneous stimulation of cell growth and prevention 
of apoptosis. For example, nuclear Galectin-3 can interact 
with β-catenin to enhance the expression of cyclin D and 
c-Myc (74) and thus promote cell cycle progression (14). 
This galectin can upregulate β-catenin expression in the 
nucleus of human colon cancer cells and augment Wnt/β-
catenin signalling by regulating glycogen synthase kinase-
3β (GSK-3β) phosphorylation and activity via the PI3K/
Akt pathway (75). Additionally, cytoplasmic Galectin-3 
may cause constitutive activation of Ras-dependent PI3K 
and Raf-1 activation by its interaction with activated K-Ras 
(63). Altogether, these results suggest that Galectin-3 is a 
pivotal player in the regulation of cancer-related gene ex-
pression and the activation of many signalling pathways. 
One of the main hallmarks of cancer is the evasion of 
apoptosis that contributes to cancer cells’ survival. An ad-
ditional function of Galectin-3 that is relevant to tumour 
progression is inhibition of apoptosis. Following apoptotic 
stimuli, Galectin-3 translocates from either the cytosol 
or the nucleus to the mitochondria (4), where it inter-
acts with Bcl-2 and blocks the alteration of mitochondrial 
membrane potential and cytochrome-c release (71). It has 
also been reported that Galectin-3 heterodimerizes with 
Bax, mediated by the carbohydrate recognition domain of 
Galectin-3, which leads to attenuation of apoptosis in hu-
man thyroid carcinoma cells (76). Further, this galectin is 
an important antiapoptotic effector molecule that confers 
resistance to conventional cancer chemotherapy. Thus, 
when leukaemia cells were treated with cisplatin, Galec-
tin-3 expression was upregulated and caused resistance to 
apoptosis in surviving cells (77). In contrast, silencing of 
Galectin-3 in gastric cancer cells augments apoptosis in-
duction by chemotherapy by decreasing the expression of 
cell survival molecules (e.g., survivin and cyclin D1) (78). 
Additionally, the silencing of Galectin-3 with RNA inter-
ference also sensitizes multidrug-resistant cells to epirubi-
cin by activation of the mitochondrial apoptosis pathway 
through modulation of the β-catenin/GSK-3β pathway in 
human colon cancer cells (79).

The migratory and invasive potential of tumour cells 
is associated with tumour progression. The invasion and 
metastasis processes involve changes in several proteins 
engaged in cell–cell and cell–matrix adhesion (2), and 
cell surface expression of Galectin-3 seems to contribute 
to these processes, thus promoting the metastatic spread 
of cancer cells from primary to secondary tumour sites 
(51, 80). Adhesive interaction with components of the 
extracellular matrix (ECM) is important for migration of 
malignant cells (81). It is well established that Galectin-3 
interacts with glycoproteins of the ECM, such as fibro-
nectin, collagen IV, elastin and laminin (19, 82). It appears 
that increased levels of Galectin-3 in the bloodstream of 
cancer patients can be critical in malignant cell metastasis 
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(16). One of the Galectin-3 binding partners is oncofoetal 
Thomsen-Friedenreich antigen, which is on the transmem-
brane mucin protein MUC1 expressed by many metastatic 
cells (83). This interaction results in increased tumour cell 
homotypic aggregation to form microtumour emboli that 
prolong metastatic cell survival in the circulation by pre-
vention of anoikis and enhanced heterotypic adhesion of 
the metastatic cells to the vascular endothelium (83-85).

A critical step in successful establishment of organ-
specific metastasis is the adhesion interactions of tumour 
cells with the host microenvironment, especially inter-
actions with components of the ECM and vascular en-
dothelium in target organs. It appears that the degree of 
organ-specific metastasis may be associated with Galec-
tin-3 expression in the lungs. In this regard, we reported 
that Galectin-3 ablation in the host markedly decreases 
lung melanoma metastasis. In an experimental model of 
B16-F1 murine melanoma, we demonstrated that Galec-
tin-3-deficient mice were more resistant to metastatic 
melanoma, as evidenced by markedly reduced number 
and size of lung metastatic colonies compared with wild 
type mice. In addition, by in vitro assay we noticed lower 
numbers of attached malignant cells in lung tissue sec-
tions of Galectin-3-deficient mice, suggesting that host-
derived Galectin-3 plays a pivotal role in tumour cell ad-
hesion to the metastatic target (86). Recently, it has been 
shown that Galectin-3, which is expressed in lungs (espe-
cially on the vascular endothelium), cooperates with po-
ly-N-acetyl-lactosamine on N-glycans on B16-F1 murine 
melanoma cells, as a ligand for Galectin-3 (87). This in-
teraction between Galectin-3 and its glycoprotein ligand 
not only facilitates initial adhesion of tumour cells to the 
vascular endothelium but also participates in subsequent 
metastatic processes such as extravasation, degradation of 
the matrix and organ colonization (88). Finally, metastatic 
cells continue to proliferate in the target organ. Tumour 
angiogenesis is involved in the metastatic cascade both at 
the primary site and at downstream sites of metastasis. In 
addition to its role in dissemination of tumour cells, an-
giogenesis is also required for expansion of the metastatic 
colony in the target tissue. It appears that Galectin-3 has 
proangiogenic activity via interactions with several endo-
thelial cell surface receptors. For example, Galectin-3 in-
teracts with αvβ3 integrin on endothelial cells and induces 
promotion of VEGF- and bFGF-mediated endothelial mi-
gration and, consequently, vessel branch formation (89).

Immune evasion and suppression are associated with 
tumour progression through inhibition of effector immune 
cells or via expansion of immunosuppressive cells (90, 91). 
Galectin-3 is an important modulator of immune respons-
es through the regulation of homeostasis and immune cell 
function. For example, Galectin-3 reduces the affinity of 
the T-cell receptor (TCR) for major histocompatibility 
complex (MHC) Class I and peptide ligand by segregating 
the TCR from its CD8 coreceptor (92), disrupts the im-
munological synapse by internalizing the TCR (93), and 
induces apoptosis of T cells (94).

It is well established that NK cells and CD8+ cytotox-
ic T cells are crucial players in the control of melanoma 
growth and metastasis. Recently, Kouo et al. (95) sug-
gested that Galectin-3 modulates antitumour immune 
responses by suppressing effector CD8+ T cells exclu-
sively in the tumour microenvironment via lymphocyte 
activation gene 3 (LAG-3), an inhibitory receptor that 
is associated with regulation of terminal T-cell activa-
tion/exhaustion. Our data support a link between Ga-
lectin-3 and the cytotoxic capacity of NK cells, but not 
that of CD8+ T cells. In fact, we demonstrated that lack 
of Galectin-3 is associated with enhanced tumouricidal 
activity of NK cells directed against B16-F1 melanoma 
cells (86). The antitumour capacity of NK cells is de-
pendent on their development and maturation. We 
observed that Galectin-3-deficient mice constitutively 
have a significantly higher percentage of effective cy-
totoxic CD27highCD11bhigh NK cells and immature CD-
27highCD11blow NK cells, regardless of reduced numbers 
of NK1.1+ cells in the spleen, compared with wild type 
mice. However, the percentage of less functionally ex-
hausted CD27lowCD11bhigh NK cells and NK cells bearing 
the inhibitory KLRG1 receptor was markedly lower in 
Galectin-3-deficient mice (86). It is believed that Galec-
tin-3 interferes with binding to regulatory molecules on 
the cancer cell that serve as ligands for receptors of NK 
cells (96). Additionally, the results from Wang et al. (97) 
suggested that expression of membrane KLRG1 recep-
tors on NK cells impairs their activation and IFN-γ pro-
duction, but increases apoptosis of these cells in chronic 
hepatitis C virus infection. 

Some evidence suggested that Galectin-3 is associated 
with a decrease in regulatory T (Treg) cell frequency and 
thus influences the course of experimental autoimmune 
encephalomyelitis and Leishmania major infection (98, 
99). These results raise the question of whether Galectin-3 
deficiency also impaired the number of Treg cells in an 
experimental model of B16-F1 murine melanoma. We no-
ticed that injection of melanoma cells resulted in marked 
increases in the percentage and total number of regulatory 
CD4+Foxp3+ T cells in wild type mice, but not in Galectin-
3-deficient mice (86). Thus, our findings suggest that host-
derived Galectin-3 could lead to an increase in the number 
and percentage of Treg cells, which promotes the forma-
tion of an immunosuppressive tumour network and can 
be one of the main facilitative mechanisms important for 
tumour metastasis. A high number of Treg cells has been 
directly correlated to cancer progression (100). In our ex-
perimental model of B16-F1 murine melanoma, it appears 
that the most important role of Treg cells is suppression 
of NK cell function. A previous study demonstrated that a 
high number of Treg cells was inversely correlated to the 
frequency and function of NK cells (100). For example, co-
cultivation of human allogeneic Treg cells with resting NK 
cells led to markedly reduced NK cell natural cytotoxicity, 
cytokine production and expression of NKG2D activating 
receptors in vitro (101).
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While IL-17 exhibited both protumour and antitu-
mour roles (102), IFN-γ exerted potent antitumour immu-
nity against melanoma and various other cancers (103). It 
has been reported that IFN-γ has direct antiproliferative 
and proapoptotic effects on tumour cells in animal mod-
els (104, 105) and that these effects prevent B16 experi-
mental metastasis by directly inhibiting cell growth (106). 
We observed higher serum levels of IFN-γ and IL-17 in 
tumour-bearing hosts in Galectin-3 deficiency, which was 
not accompanied by differences in the number of CD4+ 
and CD8+ T cells in the spleen. This does not exclude the 
possibility that the number of tumour-specific Th1 cells 
and cytotoxic CD8+ T cells is different (86). Reported data 
suggest that Galectin-3 suppresses IFN-γ production by 
antigen-specific CD8+ T cells in vitro (95). Further, den-
dritic cells lacking the Galectin-3 gene have been shown 
to increase both T-cell numbers and cytokine production 
in helminthic infections and promote an effective Th17 
immune response (107, 108). Altogether, it appears that 
Galectin-3 is involved in the tuning of acquired immunity 
against tumours by determining the cytokine milieu in the 
tumour microenvironment.  

In summary, our data determined several findings sup-
porting Galectin-3 as a potential facilitator of melanoma 
lung metastasis. First, host-derived Galectin-3 is a criti-
cal player in tumour cell adhesion to the metastatic target 

and thus contributes to the initial adhesion and survival 
of circulating metastatic cells. Second, Galectin-3 shapes 
the immune response against B16-F1 melanoma cells by 
suppressing effector NK cells and enhancing expansion of 
CD4+Foxp3+ T cells. Thus, our findings clearly confirm the 
results obtained in other studies suggesting that Galectin-3 
has a wide range of pivotal protumourigenic functions that 
are associated with tumour growth and metastasis, imply-
ing that it would be an ideal therapeutic target to prevent 
tumour progression.

EXPERT OPINION

The cell- and tissue-specific profiles of Galectin-3 
expression differ under physiological and pathological 
conditions (14, 109, 110); they can undergo a variety of 
changes under the stress conditions encountered in tu-
mour microenvironments, inflammation or fibrosis. Di-
vergent specificities and affinities of Galectin-3 for vari-
ous glycoproteins appear to contribute to the multiplicity 
of its activities. 

Galectin-3 is a highly versatile protein and a potent 
modulator of pivotal cellular processes. The role of Galec-
tin-3 in various pathological conditions is complex, with 
diverse and sometimes opposing functions. We report 

Figure 2. � e eff ects of Galectin-3 in infl ammation, autoimmunity and melanoma metastasis.
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herein that Galectin-3 exhibits deleterious roles in the 
promotion of tumour progression and liver inflammation 
after Con A injection and the aggravation of T cell-me-
diated autoimmune diseases such as type 1 diabetes and 
experimental autoimmune encephalomyelitis. However, it 
appears that Galectin-3 has a protective function in condi-
tions such as type 2 diabetes and primary biliary cirrhosis. 
In addition, the paradoxical role of Galectin-3 in nonalco-
holic steatohepatitis during obesity is reflected in the fact 
that it contributes to inflammation and fibrosis in the liver, 
but reduces steatosis (as illustrated in Figure 2). The func-
tional dichotomy in various pathological conditions sug-
gests that the effects of Galectin-3 depend on cellular and 
tissue localization, or the availability, glycosylation status 
or expression level of its ligands. 

The key question is: How does Galectin-3 achieve its 
target specificity to become a meaningful effective mol-
ecule? The identification and characterization of the na-
ture and structural diversity of Galectin-3 ligand(s) (e.g., 
glycoconjugate or protein) responsible for target selectivity 
(111) will be the basis for not only developing rational anti-
inflammatory and antitumoural approaches but also for 
taking advantage of the protective functions of Galectin-3 
in metabolic abnormalities or primary biliary cirrhosis. 
Specifically, the major aim for therapeutic manipulation is 
singling out the pathological aspect in target tissue while 
avoiding harm at the physiologic site. Ideally, Galectin-3 
therapy should be strictly spatially confined.
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