Mechanisms of Intracellular Chlamydiae Survival

Open access

Abstract

Chlamydiae are Gram-negative, non-motile, obligate intracellular, and spherically shaped bacteria with a diameter of 0.2-1.5 μm. Chlamydiae are present in several different morphological forms: the elementary body, the reticular body, and in the last several years, there has been the observation of a third form known as the persistent or atypical form. The intracellular localization of Chlamydia provides a unique replication cycle that occurs inside a membrane-surrounded vacuole in the host cell cytoplasm and is significantly different from the method of multiplication of other microorganisms. Chlamydiae are capable of manipulating different signalling pathways inside the infected cell, thus avoiding the host immune response. This ensures intracellular multiplication, survival, and long-term persistence of Chlamydiae. There are two basic means of achieving this persistence: inhibition of apoptosis and manipulation of NF-κB (nuclear factor kappa B)-mediated signals in the host.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Tomanović S Đukić S. (2011). Classical and molekular methodes for diagnosis of Chlamydia trachomatis infections. Med Pregl. LXIV(9-10) 477-480.

  • 2. Mascellino MT Priscilla B Andliva AO. (2011). Immunopathogenesis in Chlamydia trachomatis Infected Women. ISRN Obstetrics and Gynecology. ID 436935.

  • 3. Uzunović-Kamberović S. (2009). Medical Microbiology. Pressroom Fojnica d.o.o. Fojnica.

  • 4. Welch D. (1990). Detection of plasmid DNA from all Chlamydia trachomatis serovars with a two-step polymerase chain reaction. Apll Environ Microbiol. 8:2494-2498.

  • 5. Carlson JH Whit mire WM Crane DD Wicke L Virtaneva K Sturdevant DE Kupko JJ 3rd Porcella SF Martinez-Orengo N Heinzen RA Kari L Caldwell HD. (2008). The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun. 76: 2273

  • 6. Hagan RJ Mathews SA Mukhopadhyay S Summersgil JT and Timms P. (2004). Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 7(4) 1843-1855.

  • 7. Vivoda M Cirkovic I Đukic S. (2011). Biology and intracellulare life of Chlamydia. Med Pregl. LXIV(11-12) 561-564.

  • 8. Essig A. Chlamydia and Chlamydophila. In U: Murray PR Baron EJ Jorgensen JH Landry ML Pfaller MA. (2007). Manual of clinical microbiology.Washington DC: American Society for Microbiology; 2007:1021-35.

  • 9. Fadel S Eley A. (2007). Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dapendent adhesion. J. Med Microbiol. 65:15-22.

  • 10. Lutter EI Martens C Hackstadt T. (2012). Evolution and conservation of predicted inclusion membrane proteins in chlamydiae. Comp Funct Genomics. 2012:362104

  • 11. Zhang JP Stephens RS. (1992). Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell. 69: 861-869.

  • 12. Galan JE Lara-Tejero M Marlovits TC Wagner S. (2014). Bacterial type III secretion systems: specialised nanomachines for protein delivery into target cells Annu Rev Microbiol. 68:415-438.

  • 13. Mabey DC Solomon AW Foster A. (2003). Trachoma. Lancet. 362:223-229

  • 14. Đukić S Nedeljković M Pervulov M et al. (1996). Prevalence of Chlamydia trachomatis antibodies in cord blood. Infect Dis Obstet Gynecol. 4:114-5.

  • 15. Mpiga P Ravaoarinoro M. (2006). Chlamydia trachomatis persistence: An update. Microbiologicyl Research. 9-19.

  • 16. Molleken K Schmidt E Hegemann JH. (2010). Members of the Pmp protein family of Chlamydia pneumoniae media teadhesion to human cells via short repetitive peptidemotifs. Mol Microbiol. 78: 1004-1017.

  • 17. Dautry-Varsat A Subtil A Hackstadt T. (2005). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol. 7:1714-1722.

  • 18. Abromaitis S Stephens RS. (2009). Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5: e1000357

  • 19. Lane B Mutchler C Al Khodor S Grieschaber S Carabeo R. (2008). Chlamydial entry involves TARP binding of guanine nucleotide exchange factors PLoS Pathog. 4 p. e1000014.

  • 20. Jewett TJ Fischer ER Mead DJ Hackstadt T. (2006). Chlamydial TARP is a bacterial nucleator of actin Proc Natl Acad Sci U S A 103:15599-15604.

  • 21. Rzomp KA Scholtes LD Briggs BJ Whittaker GR Scidmore MA. (2003). Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun. 71:5855-5870.

  • 22. Hackstadt T. (2000). Rediretion of host vesicle trafficking pathways by intracellular parasites. Traffic. 1: 93-99

  • 23. Cocchiaro J L Valdivida R H. (2009). New insights into Chlamydia intracellular survival mechanisms Cell Microbiol. 11:1571-1578.

  • 24. Carabeo R. (2011). Bacterial subversion of host actin dynamics at the plasma membrane. Cell Microbiol. 13: 1460-1469.

  • 25. Scidmore MA. (2011). Recent advances in Chlamydia subversion of host cytoskeletal and membrane trafficking pathways. Microbes Infect. 13: 527-535.

  • 26. Carabeo R A Grieschaber S S Hasenkrug A Dooley C Hackstadt T. (2004). Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells Traffic. 5:418-425.

  • 27. Carabeo RA Dooley CA Grieshaber SS Hackstadt T. (2007). Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol. 9:2278-2288

  • 28. Schramm N Bagnell CR Wyrick PB (1996). Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect Immun. 64:1208-1214

  • 29. Grieshaber SS Grieshaber NA Miller N and Hackstadt T. (2006). Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic. 7:940-949.

  • 30. Jewett TJ Dooley CA Mead DJ Hackstadt T. (2008). Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochem Biophys Res Commun. 371:339-344.

  • 31. Bastidas RJ Elwell CA Engel JN and Raphael H. (2013). Valdivia Chlamydial Intracellular Survival Strategies. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect. a010256.

  • 32. Wallin KL Wiklund F Luostarinen T Angstrom T Anttila T Bergman F et al. (2002). A population-based prospectivestudy of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer J. 101:371-374.

  • 33. Carabeo RA Mead DJ Hackstadt T. (2003). Golgidependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci. 100: 6771-6776.

  • 34. Elwell CA Jiang S Kim JH Lee A Wittmann T Hanada K Melancon P Engel JN. (2011). Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7: e1002198.

  • 35. Derre I Swiss R Agaisse H. (2011). The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog. 7: e1002092.

  • 36. Su H McClarty G Dong F Hatch GM Pan ZK Zhong G. (2004). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem. 279: 9409-9416.

  • 37. Thwaites T Nogueira A Campeotto I Silva A Grieshaber SS Carabeo RA. The Chlamydia Effector TarP Mimics the Mammalian Leucine-Aspartic Acid Motif of Paxillin to Subvert the Focal Adhesion Kinase during Invasion.J Biol Chem. 289(44): 30426-30442.

  • 38. Cocchiaro JL Kumar Y Fischer ER Hackstadt T Valdivia RH. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci. 105:9379-9384.

  • 39. Kumar Y Cocchiaro J Valdivia RH. (2006). The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol. 16:1646-1651.

  • 40. Friedrich N Hagedorn M Soldati-Favre D Soldati T. (2012). Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev. 76:707-720.

  • 41. Hybiske K Stephens RS. (2008). Exit strategies of intracellular pathogens. Nat Rev Microbiol. 6:99-110.

  • 42. Hybiske K Stephens RS (2007). Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A. 104:11430-11435

  • 43. Chin E Kirker K Zuck M James G Hybiske K. (2012). Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS ONE. 7:e46949.

  • 44. Ingalls RR Rice PA Qureshi N Takayama K Lin JS Golenbock DT. (1995). The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun. 63:3125-3130.

  • 45. Prebeck S Kirschning C Durr S da Costa C Donath B Brand K Redecke V Wagner H Miethke T. (2001). Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol. 167:3316-3323.

  • 46. Prebeck S Brade H Kirschning CJ da Costa CP Durr S Wagner H Miethke T. (2003). The Gram-negative bacterium Chlamydia trachomatis L2 stimulates tumor necrosis factor secretion by innate immune cells independently of its endotoxin. Microbes Infect. 5: 463-470.

  • 47. Heine H Muller-Loennies S Brade L Lindner B and Brade H. (2003). Eur. J. Biochem. 270:440-450.

  • 48. Bulut Y Shimada K Wong MH Chen S Gray P Alsabeh R Doherty TM Crother TR Arditi M. (2009). Chlamydial heat shock protein 60 induces acute pulmonary inflammation in mice via the Toll-like receptor 4- and MyD88-dependent pathway. Infect Immun. 77: 2683-2690.

  • 49. Fichorova RN Cronin AO Lien E Anderson DJ Ingalls RR (2002). J. Immunol. 168:2424-2432.

  • 50. Joyee AG Yang X. (2008). Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des. 14(6):593-600.

  • 51. Ying S Fischer SF Pettengill M Conte D Paschen SA Ojcius DM Hacker G. (2006). Characterization of host cell death induced by Chlamydia trachomatis. Infect Immun. 74:6057-606628.

  • 52. Hacker G Weber A. (2007). BH3-only proteins trigger cytochrome c release but how? Arch Biochem Biophys. 462:150-155.

  • 53. Paschen SA Christian JG Vier J Schmidt F Walch A Ojcius DM Hacker G. (2008). Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J Cell Biol. 182:117-125.

  • 54. Rajalingam K Sharma M Paland N Hurwitz R Thieck O Oswald M et al. (2006). IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog. 2:e114

  • 55. Tse SM Mason D Botelho RJ Chiu B Reyland M Hanada K et al. (2005). Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem. 280:25210-25215.

  • 56. Verbeke P Welter-Stahl L Ying S Hansen J Hacker G Darville T Ojcius DM. (2006). Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2:e45.

  • 57. Rajalingam K Sharma M Lohmann C Oswald M Thieck O Froelich CJ Rudel T. (2008). Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis- infected cells. PLoS ONE. 3:e3102.

  • 58. Buchholz KR Stephens RS. (2007). The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect Immun. 75:5924-5929.

  • 59. Lad SP Li J da Silva Correia J Pan Q Gadwal S Ulevitch RJ Li E. (2007). Cleavage of p65/RelA of the NFkappaB pathway by Chlamydia. Proc Natl Acad Sci U S A. 104:2933-2938.

  • 60. Cocchiaro JL Valdivia RH. (2009). New insight into Chlamydia intracellular survival mechanisms. Cell Microbiol. 11(11):1571-1578.

  • 61. Christian J Vier J Paschen SA Hacker G. (2010). Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with Chlamydiae. J Biol Chem. 285:41320-41327.

  • 62. Sun SC Ley SC. (2008). New insights into NFkappaB regulation and function. Trends Immunol. 29:469-478.

  • 63. Negrate G Krieg A Faustin B Loeffler M Godzik A Krajewski S Reed JC. (2008). ChlaDub1 of Chlamydia trachomatis suppresses NF-kB activation and inhibits IkBa ubiquitination and degradation. Cellular Microbiology. 10:1879-1892.

  • 64. Zhong G. (2011). Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol. 2:14.

  • 65. Chen AL Johnson KA Lee JK Sutterlin C Tan M. (2012). CPAF: A chlamydial protease in search of an authentic substrate. PLoS Pathog. 8: e1002842.

Search
Journal information
Impact Factor


CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 125 8
PDF Downloads 103 67 2