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Abstract

The European standard for the design of concrete structures 
using nonlinear methods contains a deficit in global reliability 
for cases when concrete columns fail due to a loss of stability 
before reaching the design resistance in the critical cross-sec-
tions. A buckling failure is a brittle failure which occurs with-
out warning, and the probability of its formation is markedly 
influenced by the slenderness of the column. The calculation 
results presented herein are compared with the results from 
experimental data. The paper aims to compare the global 
reliability of slender concrete columns with a slenderness of 
90 and higher. The columns are designed according to the 
methods stated in EN 1992-1-1, namely, a general nonlinear 
method and methods based on nominal stiffness and nom-
inal curvature. The mentioned experiments also served, on 
the one hand, as a basis for the deterministic nonlinear mod-
eling of the columns and, subsequently, for the probabilistic 
evaluation of the variability of the structural response. Finally, 
the results may be utilized as thresholds for the loading of the 
structural elements produced. The paper aims at presenting 
a probabilistic design that is less conservative than the clas-
sic partial safety factor-based design and alternative ECOV 
method.
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1 INTRODUCTION 

The reliability method for structures is based on the use of partial 
safety factors when they ensure the required probability of failure. 
In the ultimate limit state (ULS), the effect of loads is increased by 
partial safety factor γF, and the resistance of materials is reduced by 
partial safety factor γM:

(1)

EN 1992-1-1 for the design of concrete structures offers three 
methods for taking 2nd order effects into account (Benko, 2016; Mora-

vcik et al., 2012; Pfeiffer, 2014), i.e., a method based on nominal 
curvature, a method based on nominal stiffness, and a general non-
linear method. The buckling failure of compressed slender concrete 
members can, however, overtake the reaching of the material’s resis-
tance in the critical cross-section (Benko, 2016). In these cases the 
definition of a partial safety factor for a buckling failure is appropri-
ate, because the partial safety factors of the materials influence the 
reliability of the overall design to a lesser extent. Thus far, only the 
Austrian national documents recommend the partial safety factor for 
stability failure (Benko et al., 2016).
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2 General design methods

2.1 Capacity of compressive loaded slender columns

A combination of acting compressive normal forces with bending 
moments around two axes can be mapped by a two-axis eccentric 
normal force. The associated universal static substitute system with 
different buckling lengths in both directions (hef,y and hef,z) is shown in 
Fig. 1. Besides the eccentricities of the normal force (eI

y and eI
z), the 

deformations resulting from the 2nd order theory (ΔeII
y and ΔeII

z) also 
have to be taken into account.

Since concrete only has a very low tensile strength, cracks in the 
cross section depend on the eccentricities of the load. In this case, the 
overpressed cross-sectional area may be  pentagonal, quadrilateral, or 
triangular, as seen in Fig. 2, which shows the relative stress and strain 
distributions of a cracked cross section with a pentagonal pressure 
zone (i.e., when the stress prism intersects with only one edge of the 
cross section)

For calculating the load-bearing capacity for compression mem-
bers, it is always necessary to take into account the effects of de-
formations in the event that the compact elements are not infinite. 
The moment-normal force interactions of uniaxially eccentrically 
loaded compression members are shown in Fig. 3. The outer curve 
corresponds to the bearing capacity of the cross-section. If the ac-
tions are considered according to the 1st order theory in the critical 
section (fixed support, see Fig. 1), the cross-sectional bearing capac-
ity is always achieved, and there is a linear relationship between the 
normal force and the bending moment. If the resulting deformations 
are taken into account, the bending moment increases disproportion-
ately as the normal force increases (cross-sectional failure to the 2nd 
order theory). In the case of compact concrete compression elements, 
the cross-sectional bearing capacity is still achieved despite possible 
cracking in the deflected state. In the case of slender compression, 
the load is increased due to the significant reduction in the dispro-

portionate crack-related stiffness. The equilibrium state (stability of 
the system) is reached within the interaction curve for cross-sectional 
failure. 

2.2 Procedure for determining bearing capacity

2.2.1 Theoretical calculation methods

(a) Centrically loaded compressive elements: The most import-
ant basis for calculating compression elements was done by Euler. 
He assumed a sinusoidal deformation over a column’s length. The 
mean critical normal force (the Euler load) is calculated through the 
following equations:

	 	 (2)

	 	 (3)

The load factor ΦII
crit describes the average system’s load capacity 

based on the average compressive strength fcm and the cross-section-

Fig. 1 Static substitute system of the compression member (Förster, 
2018)

Fig. 2 Stress and strain distribution of a cross-section (Benko, 
2001); t,b are the cross sectional dimensions of the column in 
directions y and z respectively, and the curved prism represents 
the asymmetrical stress distribution σ in the x axis, due to the 
eccentricities ey and ez

Fig. 3 Interaction of moments and normal forces of centrically and 
uniaxially eccentrically loaded compression members (Benko, 2001)
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al area. It depends on a material-specific slenderness (λy = hef, y / t · εf
1/2) 

that uses the strain εf at a maximum stress. The branching load of a 
centrically loaded column made of tensile material is always with-
in the curve of the cross-sectional bearing capacity (see Fig.  3); 
hence this special case can also be regarded as a stability failure (see 
Fig.  4). Since Euler presupposed unrestricted linear-elastic materi-
al behavior, the branching load tends to the infinite for the compact 
compressive elements. Navier recognized that in addition to stability 
failure, cross-sectional failure according to the 2nd order theory may 
also occur. However, this was only generally known through the ex-
periments of Tetmajer (Kollbrunner and Meister, 1961). To limit the 
stresses, Navier proposed a straight-line equation, which could be in-
terpreted as a load factor:

	 	 (4)

Engesser (1889) was able to calculate the load-bearing capacity 
of compact elements with tensile material using a buckling module 
instead of Euler’s stiffness. In this case, the buckling module is com-
posed of moments of inertia of the compression and tension zones as 
well as a modulus of elasticity depending on the material behavior 
and on strain at the ULS. This approach can be used to model the 
load-bearing capacity of compact and slender compression elements. 
Fig. 4 illustrates the related systemic load capacity of a compression 
member made of tensile material in the form of the load factor as a 
function of the material-normalized slenderness. The Euler-hyperbo-
la, the Navier or Tetmajer line as well as the load capacities according 
to Engesser are plotted. For compacted compression elements whose 
slenderness is smaller than the limit slenderness λy,lim, cross-sectional 
failure occurs according to the 2nd order theory, and with increasing 
slenderness, the branch load (stability failure) becomes relevant.

Haller (1949) studied the load-bearing capacity of uniaxially and 
eccentrically loaded unreinforced masonry walls with any stress-
strain relationship. He reduced the determination of the load capac-
ity at the critical section to the equilibrium condition by assuming 
a sinusoidal profile of the curvatures over a bar’s height. The total 
eccentricity in the critical section can be determined on the basis of 
the curvature, which can be determined with the strain-difference (ε1-
ε4) and the wall thickness t (Haller 1949):

	 	 (5)

The load factor can be calculated for rectangular cross-sections 
with the coefficient of the imperfaction αR of the stress-strain rela-
tionship and the related overpressed length tc / t, as follows (Haller 
1949):

	 	 (6)

In addition to the shape of the stress-strain relationship, both the 
coefficient of imperfection αR and the overpressed depth tc also de-
pend on the strain distribution over the cross-section; therefore, the 
system’s load capacity can generally only be determined by iteration. 

Kirtschig et al. (1975) used a parabolic stress-strain relationship 
in the Haller model and ignored tensile strength. Under this boundary 
condition, the bearing capacity for cross-sectional failure according 
to the 2nd order theory can be given as a mathematically closed re-
lationship for the cracked sections. Kirtschig calculated the system 
load, which is relevant for stability failures, only iteratively. Based 
on these findings, he developed an approximate solution for the load 
factor (ΦII

Rd = NII
Rd / (b · t · fcd) based on the design value of the com-

pressive strength, which is still used today in construction, see EN 
1996-1-1.

	 	 (7)

For the first time, Glock (2004) presented closed solutions for the 
systemic load capacity of slender and compact compression elements 
with linear-elastic material behavior with and without consideration 
of the tensile strength. Further, he showed that in the case of stability 
failure, Euler’s solution could be transferred to eccentrically stressed 
columns:

	 	 (8)

For non linear material behavior, Glock (2004) developed a nu-
merical calculation model. This serves as the basis for a computa-
tional approach that can be used to determine the bearing capacity of 
unreinforced compression members by taking into account various 
compliances of the stress-strain relationship, including the detection 
of flexural tensile strength. The method, which realistically models 
both cross-sectional and stability failures, is suitable for determining 
the bearing capacity of concrete and masonry components with uni-
axial bending stress.

In his work on the load-bearing capacity of uniaxial, eccentrically 
loaded pressure elements Bakeer (2016) uses Glock’s approach on 
stability failure. For cross-sectional failure he extended the parabolic 
approach by Johnson et al. (1916). This method can be found in the 
latest proposal for the revision of EN 1996-1-1.

	 	 (9)

	 	

(b) Biaxial bending elements: For determining the load capacity 
of non-reinforced pressure elements made of mineral material under 
a biaxial eccentric load, only rudimentary information can be found 
in the literature. A scientifically proven theoretical solution is still 
pending. The load-bearing capacity of reinforced concrete pressure 
elements under oblique bending can be solved without numerical fi-
nite element (FE) calculations only for a few simple cases or by using 
special interaction diagrams (Allgöwer, 2001 and Quast, 2004).Fig. 4 Load-bearing capacity of centrically loaded compression 

members (Benko, 2001)
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2.2.2 �Normative regulations for concrete pressure 
members

(a) Uniaxially bending-stressed compression members: The 
design of exclusively uniaxial, eccentrically stressed compression 
members may be simplified in accordance with EN 1992-1-1 (2004) 
with Eq. (10). The load factor (ΦII

Rd,y = NII
Rd,y / (b · t · fcd) depends 

linearly on the slenderness hef, y/t. The maximum value (1 - 2 · eI
y /t) 

defined in equation (10) corresponds to the cross-sectional capacity 
for rigid-plastic material behavior without any consideration of the 
tensile strength.

	 	 (10)

(b) Biaxial bending-stressed compression members: Under cer-
tain circumstances, in the case of biaxial eccentrically-loaded com-
pression members according to EN 1992-1-1, both main directions 
may be calculated separately without taking into account the effects 
of oblique bending. The system’s load capacity corresponds to the 
smaller of the two load capacities determined. This rule was devel-
oped for reinforced concrete elements. However it is also valid for 
unreinforced compression elements, and the limits according to Eqs. 
(11) and (12) (see white triangles in Fig. 5), must be taken into ac-
count.

	 	 (11)

	 	 (12)

If the referenced eccentricity in the direction of the width is  
eI

z/ b > 0.2, the calculated reduced cross-sectional width bred, EC2 must 
be taken into account according to the German NA of DIN EN 1992-
1-1 (2004): 

	 	 (13)

Even though it has a different quantity, the computational reduc-
tion of the cross-sectional width corresponds to the procedure of the 
German NA of DIN EN 1996-1-1 by multiplying the load factors 

2.3 �Analysis of a system’s load capacity according to 
different approaches

The design values of a system’s capacities can be determined 
based on the following calculation methods:

1. �Realistic non linear calculations, taking into account the eccen-
tricities in both directions

2. �Calculations without any correction factor using the uniaxial 
load capacities from a non linear calculation

3. �Calculations without any correction factor using the uniaxial 
load capacities according to EN 1992-1-1 (eq. (9))

4. �Calculations according to the German NA of EN 1992-1-1 
based on separate proofs in the axial directions (eqs. (10) with 
(13))

5. �Calculations according to the German NA of EN 1992-1-1 
based on the moment interaction 

In addition to the approaches outlined here, there are also oppor-
tunities in the new Eurocode generations for non linear numerical in-
depth procedures. These methods as well as the experimental studies 
in the interaction diagrams (see Fig. 3) show some effects that do not 
completely fulfill the safety requirements. These are highlighted in 
the following sections.

3 �Advanced verification of slender concrete 
columns

3.1 Experimental setup

The task of the experiments was to design the geometry and rein-
forcement of the columns together with the initial eccentricity of the 
axial force in such a way that the columns would collapse due to the 
loss of stability inside the interaction diagram, i.e., before achieving 
the design resistance in the critical cross-section with an approximate 
compressive strain in concrete εc1 = 1.5 ‰ (Benko et al., 2016). The 
force and the initial eccentricity e1 for the buckling failure were de-
termined using non linear calculations with the Stab2D-NL software. 
The standard characteristics of the C45/55 material and B500B steel 
were used in these calculations. The experimentally verified concrete 
columns had a rectangular cross-section with dimensions of 240 x 
150 mm. The total length of the columns with spread steel plates was 
3840 mm. The columns were reinforced with four Ø14 mm diameter 
bars. These four bars were supplemented with another four bars with 
a diameter of Ø14 mm and a length of 600 mm on both ends of the 
columns. The supplementary bars were welded to steel plates with a 
thickness of 20 mm. The transverse reinforcement consisted of two 
leg stirrups with a diameter of Ø 6 mm. As the local failure in the 
ending parts can precede the stability collapse of the columns, the 
resistance was increased by doubling the transverse reinforcement 
along the length of the additional bars; (Benko et al., 2016) provides 
further details.

3.2 Experimental results

After the production of the experimental samples and preparation 
of the laboratory conditions, the concrete columns were tested in the 
laboratory of the Civil Engineering Faculty of SUT Bratislava. During 
the experiments, measurements were taken on both sides of the con-
crete cross-section. The results of the experiments are in Benko et al. 
(2016). Despite the fact that the columns were fabricated using the 
same materials and with great attention paid to accuracy, the differenc-

Fig. 5 Calculated reduction in the width of the cross-section for 
positive eccentricities according to DIN EN 1996-1-1
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es in the results are notable. The major difference in the buckling force 
reaches 15.9%, whereas in deformations of the columns in the middle 
(e2), it goes up to 44.9%. The measurements were taken on 6 testing 
samples of slender concrete columns (Benko et al., 2016). 

3.3 Reliability of columns – loss of stability

Fig. 6 shows a comparison of the results for the experimentally 
verified S1-1 to S1-6 columns. The group of results from the non 
linear calculations calibrated to the mean values of the material char-
acteristics acquired from the experiments is marked with a thick line. 
The axial force at the stability loss is then 306.5 kN. When assum-
ing the characteristic values of the material characteristics, the axial 
force at the loss of stability is 279.9 kN (characteristic). Finally, when 
assuming the design values of the material characteristics, the axial 
force is 240.0 kN (design). According to the method based on nomi-
nal stiffness, the maximal resistance of the column with a slenderness 
of λ=89 is 205.0 kN (stiffness). The maximal resistance is the point 
where the stiffness curve intersects the design interaction diagram. 
According to the method based on the nominal curvature (EN 1992-
1-1), the resistance of the column is 153.0 kN (curvature). Tab.  1 
summarizes the partial reliability factors for the loads and materials 
and also the overall reliability factor. The overall reliability of the 
design according to the method based on nominal curvature is 1.57 
times higher than the reliability of the non linear method according 
to EN 1992-1-1.

3.4 �Reliability of columns – parametric study 
slenderness λ = 89 to 160

The differences in the reliability of the design methods accord-
ing to EN 1992-1-1 for a slenderness of λ = 160 and the initial ec-
centricity of e1 = 40 mm are shown in Fig. 7. The resulting values 
for the column’s resistance and the partial reliability factors for the 
loads and materials together with the overall reliability factors of the 
above-stated design methods are in Tab. 2.

3.5 Probabilistic analyses

The SARA GUI environment along with the ATENA solver and 
FReET reliability tool (Novak et al., 2014) were used for the sto-
chastic analysis in order to estimate the statistical variability of the 

Normal-Moment capacity of the slender columns discussed and to 
propose probabilistic-based design values or resistances. A sensitivity 
analysis performed at the beginning of the whole process showed the 
most decisive/dominating parameters of the non linear modeling. A 
set of 12 parameters was utilized for a stochastic evaluation of the 
variability of the structural response. The stochastic model of the con-
crete was based on data presented in (Routil et al., 2014; Strauss et al., 
2014; Zimmermann et al., 2014; Zimmermann et al., 2016), and was 
obtained by ANN-based identification (Lehky et al., 2014; Zimmer-
mann and Lekhy, 2014).

Tab. 1 Comparison of the reliability of columns; λ=89 and 
e1=40mm; the overall safety factor is calculated as the product of 
the partial safety factors as a principle of the LRFD design

overall reliability to the 
characteristic values of 
the material properties

Axial force [kN] γF γM γo

design characte­
ristic load material overall 

characteristic 279.9 - 1.40 1.00 -

design 240.0 171.4 1.40 1.17 1.63

stiffness 205.0 146.4 1.40 1.37 1.91

curvature 153.0 109.3 1.40 1.83 2.56

Tab. 2 Comparison of the reliability of columns; λ=160 and 
e1=40mm; the overall safety factor is calculated as the product of 
the partial safety factors as a principle of the LRFD design

overall reliability to the 
characteristic values of 
the material properties

Axial force [kN] γF γM γo

design characte­
ristic load material overall 

characteristic 99.0 - 1.40 1.00 -

design 90.0 64.3 1.40 1.10 1.54

stiffness 68.0 48.6 1.40 1.46 2.04

curvature 48.0 34.3 1.40 2.06 2.89

The material parameters of the concrete identified were obtained 
from a laboratory test under perfect conditions, which resulted in 
quite small variations of the material parameters of the concrete. In 
order to ensure realistic results, it was necessary to introduce a higher 
degree of variability for the material parameters obtained and to also 

Fig. 6. Reliability of the columns according to loss of stability; λ = 
89 and e1 = 40mm (Benko et al., 2017)

Fig. 7 Reliability of the columns according to loss of stability –  
λ = 160 and e1 = 40mm (Benko et al., 2017)
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randomize the density of the concrete mixture. The non linear mod-
eling of the experiment performed showed some variability in the 
reinforcing effects around the value calculated. Due to the small num-
ber of experimental samples, it was not possible to make a reliable 
assessment; therefore, the recommendations of the JCSS regarding 
the uncertainties were adopted. The whole stochastic model of the 
destructive tests of the columns is shown in Tab. 3, whereby E and the 
correlation matrices utilized are presented in Tabs. 4 to 7.

3.6 Probabilistic assessment

Due to the enormous computational demands of such a study, it 
was necessary to utilize the efficient HSLHS (Vorechovsky, 2014) of 
concrete. This approach permits extending the number of simulations 
performed after previously performed runs of the LHS simulations. 
The aim is to perform an analysis with a lower number of samples 
generated at the beginning to fix possible errors and to use previous 
simulations in cases where no errors occur.

The statistics of the response of the above-described columns us-
ing a set of 11 simulations extended to a second run of the HSLHS 
method by an additional 20 simulations. The response of the assessed 
structural members was evaluated for two limit states, i.e., (I) the 
Ultimate limit state represented by the critical value of the force 
applied during the experiment (peak of the LD diagram) and (II) the 
Service limit state represented by the value of the force at the mo-
ment when the first bending cracks occur. A lognormal probability 
distribution is assumed for both limit states. In the case of a fully 
probabilistic design, the percentile of the N-M resistance calculated 
corresponds to a probability of 0.0012 according to the recommenda-
tions in EN 1990 (based on the separation of the resistance and the 
action of the load variables). Fig. 8 shows a comparison of the 31 LD 
curves for the simulations calculated.

The estimated probability function (PDF) of the N/M resistance 
is shown in Fig.  9. The structural response was considered to be 
log-normally and normally distributed respectively. 

4 �Probabilistic design and Safety 
Formats

4.1 Semi-probabilistic approach

In practical applications nonlinear finite element models amount 
to huge calculation efforts, and stochastic models contain a high num-
ber of randomly input variables. In such cases, the computational re-
quirements are significantly reduced by semi-probabilistic methods, 
where the design value of response R is evaluated instead of the prob-
ability of failure. If R is a lognormal distributed independent random 
variable, the design value of R is defined as: 

	 	 (14)

where is the coefficient of the variation (CoV);  represents the sen-
sitivity factor; and the recommended value is  = 0.8. The reliability 
index β is another way to express the probability of failure pf and is 
defined by:
	 	 (15)

Tab. 3 Stochastic model of the destructive test

Parameter Mean COV [%] PDF Unit

Steel reinforcement (Bars and stirrups)

E 200 2 Normal [GPa]

fys 500 5 Normal [MPa]

Concrete C45/55

E 38.17 18 Weibull min (3 par) [GPa]

ft 3.471 15 Gumbel Max. EV I [MPa]

fc -46.75 6 Gumbel Min. EV I [MPa]

Gf 8.677E-05 22 Gumbel Max. EV I [MN/m]

r 0.0023 4 Normal [kton/m³]

Tab. 4 Correlation of parameters for concrete, Series 1

E ft fc Gf ρ
E 1 0.60 -0.70 0.80 0
ft 1 -0.90 0.50 0
fc 1 0.70 0
Gf 1 0
r 1

Tab. 5 Correlation of parameters for concrete, Series 2

E ft fc Gf ρ
E 1 0.48 -0.56 0.64 0
ft 1 -0.72 0.40 0
fc 1 0.56 0
Gf 1 0
r 1

Tab. 6 Correlation of parameters for concrete, Series 3

E ft fc Gf ρ
E 1 0.36 -0.42 0.48 0
ft 1 -0.54 0.30 0
fc 1 0.42 0
Gf 1 0
ρ 1

Tab. 7 Correlation of parameters for concrete, Series 4 (no correlation)

E ft fc Gf ρ
E 1 0 0 0 0
ft 1 0 0 0
fc 1 0 0
Gf 1 0
r 1
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Fig. 8 N-M Diagrams of the stochastic models

Fig. 9 PDF of the force applied at the ultimate limit state (in kN – horizontal axis). The PDFs are fitted to the results presented in Fig. 8
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where  is the inverse of the standard normal probability distribu-
tion function. The target reliability index for the ultimate limit state, 
the moderate consequences of failure, and the reference period of 50 
years are set as n = 3.8 according to the Joint Committee on Struc-
tural Safety (JCSS). 

Obviously, for a determination of the design value by a semi-prob-
abilistic approach, it is crucial to correctly estimate the mean value 
and CoV; this can be done by various reliability methods. Besides 
a full probabilistic method using Monte Carlo-type sampling, it is 
possible to use more efficient sampling methods, e.g., the Latin Hyper 
Cube Sampling (LHS) method.

4.2 Partial safety factor

According to EN 1990, Non Linear Finite Element Analysis 
(NLFEA) is computed with the design values of the input random vari-
ables, and the result is assumed to be a design value of resistance Rd:

	 	 (16)

The partial safety factor (PSF) method may lead to an unreal-
istic redistribution of internal forces and different failure modes of 
the structure because of the extremely low design values of the in-
put variables. Due to the possibility of the different behaviour of the 
FE-model, it is recommended to compute NLFEA with the mean val-
ue and apply the global safety factor to the result.

4.3 EN 1992-2

The only global safety factor approach defined in the Eurocodes 
is a concept according to EN 1992-2; the design value is estimated 
as follows:

	 	 (17)

where  is the mean value of the steel reinforcement; 
 is the reduced mean value of the concrete’s property 

because of its higher variability and the idea that the design values 
should correspond to the same probability. These values are derived 
from the characteristic values (5% percentile) Xk. The global safety 
factor for resistance is set at  = 1.27. EN 1992-1-1 only allows a 
compressive type of failure for concrete; however, the study present-
ed by Cervenka (2014) also extended the application to brittle modes 
of failure. As can be seen, the PSF and EN 1992-2 methods need just 
one NLFEA simulation.

4.4 ECoV by Červenka

The ECoV methods are based on a semi-probabilistic approach; 
the difference is in how to estimate the coefficient of the variation 
and the mean value of the response. A lognormal distribution for the 
response variable R is assumed in the proposal by Cervenka (2013) 
and Holicky (2006); thus the coefficient of variation  can be esti-
mated as:
	 	 (18)

Note that in ECoV by Cervenka (2013) just 2 simulations of 
NLFEA are needed, i.e., the first one with mean values of the input 
random variables Rm = R(fym, fcm,anon  ...) and the second simulation Rk 
using characteristic values. The concept described was adopted in the 
fib (2013), and the design value Rd was later decreased by another 
factor  = 1.06:

	 	 (19)

4.5 ECoV by Schlune et al.

The extended ECoV method was proposed by Schlune et al. 
(2011); R is composed of the variability of the numerical model m, 
geometrical uncertainties g, and material uncertainties f:

Fig. 10 Sampling points in 2D
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	 	 (20)

The recommended values for the variability of NLFEM and the 
geometric uncertainties can be found in the literature. The coefficient 
of variation of the material f if the material parameters are not cor-
related can be calculated as:

	 	 (21)

where the response of construction  is determined by NLFEA us-
ing the reduced mean values of the material variables by , and  
is the standard deviation of the i-th variable. If the lognormal distri-
bution of the material variables is assumed, the reduced values of  
can be calculated as:

	 	 (22)

where fmi is the mean value of the material characteristic and the step 
size parameter is defined as  Note that this approach 
requires N+1 simulations of NLFEA, where N is the number of mate-
rial random variables. The extension of the method for the correlated 
material variables can be found in Schlune et al. (2011).

4.6 Sampling points in 2D

A representation of the methods described can be seen in Fig. 10. 
The single approaches define the sampling points in the N-dimension-
al space, where their coordinates represent the values of the random 
material characteristics input. The difference lies in the number and 
position of the sampling points. Generally, more sampling points lead 
to a more accurate estimation of the CoV, and the choice of the most 
efficient method depends on the size of the NLFEM and stochastic 
model implemented. Note that the computational requirements of the 
ECoV method by Schlune et al. (2011) and the numerical quadra-
ture by Rosenblueth (1981) are strongly dependent on the size of the 
stochastic model. Thus a sensitivity analysis should be performed to 
reduce the number of random variables input.

5 Summary

The global reliability of slender columns according to a non lin-
ear design method is several times lower than the global reliability of 
slender columns according to a method based on a nominal stiffness 
or nominal curvature.

The user of non linear software can result in yet another reduction 
of the global reliability when entering the input data for non linear 
calculations. This mainly applies in cases when the aim of the design 
is the minimization of the dimensions and the saving of material. This 
is often the main criterion for the free market in the European Union. 
The difference in the axial force of the predictions of the results with-
in the planned experiments was 23%, and the difference between the 
maximal force within the non linear calculations and experimentally 
verified columns was 41% (Benko, 2016). 

In cases when the buckling failure governs the design, the non 
linear method according to EN 1992-1-1 for slender columns pos-
es limitations in its incorporation with material reliability concepts. 
Based on the cases demonstrated herein, it is evident that the standard 
requires revisions for this domain with an expansion to buckling-spe-
cific verifications for the reliability index and probability of failure.
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