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Abstract

Geotechnical and structural engineers are faced with a  difficult 
task when their designs interact with each other. For complex 
projects, this is more the norm than the exception. In order to help 
bridge that gap, a method for modeling the behavior of a foun-
dation using a simple elasto-plastic subgrade reaction was devel-
oped. The method uses an optimization technique to position 4-6 
springs along a pile foundation to produce similar load deflection 
characteristics that were modeled by more sophisticated geo-
technical finite element software. The methodology uses an Excel 
spreadsheet for accepting user input and delivering an optimized 
subgrade spring stiffness, yield, and position along the pile. In this 
way, the behavior developed from the geotechnical software can 
be transferred to the structural analysis software. The optimization 
is achieved through the solver add-in within Excel. Additionally, 
a beam on a nonlinear elastic foundation model is used to com-
pute deflections of the optimized subgrade reaction configuration.  
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1 INTRODUCTION

Structural and geotechnical engineers are faced with a wide array 
of software packages to help them in the design of structures and 
foundations. AxisVM and SAP2000 are typical structural design and 
analysis programs used every day throughout Europe and the U.S. 
To perform geotechnical design, Plaxis, Fine, FLAC, and MIDAS 
are typical choices. However, when faced with a complex issue of 
soil-structure interaction, a comprehensive modeling approach using 
general purpose finite element programs (NASTRAN, ABAQUS, DI-
ANA) may be prohibitively expensive, or too much of an investment 
in time and otherwise profitable design talent. This paper describes 
a method that falls between a nonlinear geotechnical finite element 
model and a structural design model. The method allows the engi-
neer to create sophisticated models for pile foundations under axial 
and lateral loads and replace them with a few elasto-plastic subgrade 
reactions (soil springs) applied at strategic locations on the structural 
pile to produce the same behavior. This allows the structural design 

and analysis to proceed as usual with a more realistic representation 
of the soil reactions. 

2  NONLINEAR FEM FOR THE GEOTECHNICAL 
MODELING OF PILE FOUNDATIONS

Creating realistic models of pile and pile group foundations has 
evolved into a very sophisticated and relatively inexpensive process 
for a geotechnical modeler. Using Plaxis or Midas, a modeler can 
simulate construction stages, consolidation, pile installation, and 
complicated load cases. While all of these processes cannot be repro-
duced with a subgrade reaction, a large percentage of the soil struc-
ture interaction that is key to dimensioning and arranging structural 
members can be faithfully modeled. 

We have used this approach for bridge abutment designs and mid-
rise office buildings. It can also serve as a first estimate for dynamic 
interactions. When concerns center around the first one or two modes 
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of vibrations in a structure, a subgrade model can produce fairly use-
ful results. 

3 METHODS

The initial problem consists of two design perspectives: geotech-
nical and structural (Fig. 1). The first step is to model the geotechnical 
system carefully using geotechnical software to study the effects of 
soil strength, stiffness, and layering as well as pile-soil interface con-
ditions. The structural interaction can be modeled where needed as 
simple elastic frames or walls. 

The structural section design and more refined details are left for 
later.  A typical problem would be a medium-sized building supported 
by piles or small pile groups. The initial behavior studies examine 
the load deflection behavior of the piles and pile-cap system. The 
load-displacement and moment-rotation relationships at strategic lo-
cations throughout the building foundation are recorded for later use. 
These may be specific points on the pile cap or the tops of individu-
al piles. As each load case is applied to the foundation systems, the 
resulting deflections and rotations are recorded and then stored on 
a spreadsheet for subsequent matching with a simpler spring system. 
One may consider the behavior of a single pile or the behavior of the 
group as a block. The degree of detail will depend on the demands of 
the specific design.

4 THE PILE MODEL

In order to simplify this discusssion, a lateral load system will be 
presented. If both the axial and lateral loads are to be modeled, addi-
tional vertical springs can be placed at the same nodes, or new nodes 
can be added with only the vertical springs applied. This example will 
only fit the lateral displacement at the pile top (δ), but the rotation at 
the top (θ) may be another value to fit as well. The pile model con-
sists of beam elements connected at the nodes. Each node can accept 

a soil spring reaction that is either elastic, elastic-plastic, or generally 
non-linear.  A schematic representation is shown in Fig. 2a.

This example shows four springs with the pile itself divided into 
three beam elements. One may use any number of springs and el-
ements; however, 3-6 seem to be sufficient. The user can vary the 
parameters shown in the figure, with some constraints. Each spring 
may have a different stiffness (ki) and yield value (ci). Other spring 
models (hyperbolic, polynomial) can be applied as well. The springs 
can be placed at different depths (Zi) as long as they follow some 
order with K1 at the top and K4 at the bottom. Typically, K1 and K4 
are constrained to be at the surface and pile tip respectively. For the 
model in Fig. 2, since Z1=0 and Z4=L, the number of parameters to 
vary is reduced to 10 (Z2,Z3,k1,c1,k2,c2,k3,c3,k4,c4). Usually, the length, 
section, and material properties of the pile itself are fixed. 

The values of the horizontal force FH, versus the horizontal dis-
placement δ,  at the pile top was already measured or calculated by 
the previous finite element simulation (i.e. Fig. 1a). This load-dis-
placement curve is the target to be reproduced by moving the springs 
along the pile (Z2, Z3) and varying the spring stiffnesses (k1, k2, k3, 
k4) and yield strengths (c1,c2,c3,c4). The optimum solution minimizes 
the error between the field data (or FEM model) and the optimized 
springs (Fig. 2b). The spring reactions are applied at the nodes of the 
beam elements. Naturally, if the springs are moved up or down, the 
beam elements will change their lengths correspondingly. 

5  IMPLEMENTATION OF THE OPTIMIZATION 
METHOD

The method for selecting the best location and parameters for 
each spring is implemented in Microsoft Excel. The spreadsheet 
serves to define the input parameters and constraints. The Micro-
soft Excel Solver add-in performs the minimization process, and the 
Visual Basic code within the workbook module computes the nonlin-
ear pile top deflection. Each of these components are described in the 
following sections.

 a) b)
Fig. 1 Geotechnical model (a) and structural model (b) perspectives.
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The input/output spreadsheet consists of the input data, spring 
positions, spring parameters, and constraints. The problem consists 
of a system with six springs (Fig. 3). The left columns show the 
load-displacement behavior for the test/FEM calculations; the next 
column is the deflection, which is computed during the optimization 
process. The error column is the difference between the test and the 

computed deformations. At the base of this column is the sum of the 
errors which is to be minimized by the solver program. On the right 
side of the spreadsheet are the depths of the nodes where the springs 
are attached. The Y-values will be varied subject to the minimum and 
maximum depths listed. Note that the top and bottom nodes (1 and 
6) are fixed. Below the node locations are the spring parameters; Ki 
is the spring stiffness; Ci is the yield strength. These may be initial 
estimates since all 12 of these parameters are systematically varied 
during the solver’s optimization. The constraints on the spring pa-
rameters are listed at the bottom and may reflect the soil strengths 
and stiffness based on the field data. Since they are not being used for 
the foundation design, the constraints are not as critical, the physical 
conditions should be reflected as nearly as possible.

Two other parameters are shown: Toler is the convergence toler-
ance, and N.Iter are the maximum iterations for performing the de-
flection computations. Usually the worksheet is color coded to reflect 
the purpose of each cell. Once the test load and test deflection values 
are entered, the user will set the constraint values for the spring lo-
cations, stiffnesses and yield values. The computed deflections are 
brought into the spreadsheet through a user-defined function call. The 
function has been programmed “behind” the spreadsheet in the Visual 
Basic Application (VBA) environment in Excel. 

6 COMPUTING THE DEFLECTIONS

The deflection of a beam on an elastic foundation was first solved 
analytically by Hetenyi (1946). Since then there have been many 
variations of this concept applied to shallow foundations as well as 
piles (Bowles, 1997; Das, 2009). The procedure adapted here uses 
a simplified beam element where the end nodes have two degrees of 
freedom: the displacement in the horizontal direction and the rotation. 
Loads that are carried by the beam are simplified to horizontal forces 
and bending moments. If greater freedom is needed, the beam ele-
ments can model the vertical displacement and carry the axial loads 
as well. However for this problem, they are not needed and would 
only add to the computational demands of the problem. 

Fig. 2 Schematic representation of a pile with (a) optimized elasto-plastic springs; (b) load displacement curve from FEM fitted by a spring model. 

Fig. 3 Input/Output worksheet for the optimization problem for 
six springs. The first two columns are the measured or FEM data; 
the third column is the computed response; the fourth column is the 
square of the difference between columns 2 and 3. The right side 
sections are the location of the springs, the spring properties, and 
the constraints on those properties.
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The global stiffness matrix used in the formulation is generated 
from the direct stiffness method, which is common to many matrix 
structural analysis programs as well as more general finite element 
models. The individual element stiffness matrices are first computed 
as shown in Fig. 4.  Then the global matrix is assembled the same way 
as with any other structural system as they are super-imposed on each 
other according to their nodal degrees of freedom. 

The global stiffness matrix is then combined with the soil reaction 
matrix to obtain the equilibirium equations. 

  (1)

where 
[KG]  is the global stiffness matrix of all the beam elements in the 

problem
[Ks]  is the spring stiffness matrix of the soil reactions (diagonal 

matrix)
{y}   is the horizontal deflection of the element nodes
{p}  is the vector of the horizontal loads and moments applied; 

there is usually just one load and perhaps one moment ap-
plied to the top node

For the linear reaction case, [KG] and [Ks] can be added together 
to form a combined stiffness matrix, and the problem is solved like 
any other linear model. However, if the soil response is not linear, 
then the formulation looks like: 

  (2)

And since [Ks (y)] is no longer constant, the matrices cannot be 
added. Instead, one must use a Newton-Raphson method to solve the 
non-linear simultaneous equations. It is the simplest multidimension-
al root-finding method and provides a very efficient means of con-
verging to a root, if one has a sufficiently good initial guess. It can 
also spectacularly fail to converge, indicating (though not proving) 
that one’s putative root does not exist nearby. In a general sense, one 
may cast equations in this form (Press et al., 2007): 

 
  (3)

We let x denote the entire vector of values xi and F denote the 
entire vector of functions Fi . In the neighborhood of x, each of the 
functions Fi can be expanded in a Taylor series:

   (4)

The matrix of the partial derivatives appearing in equation (4) is 
the Jacobian matrix J:

   (5)

In the matrix notation equation 4 is

   (6)

By neglecting the terms of order δx2 and higher and by setting  
F(x + δx) = 0, we obtain a set of linear equations for the corrections 
δx, which move each function closer to zero simultaneously, namely:

   (7)

Matrix equation 7 can be solved by an LU decomposition. The 
corrections are then added to the solution vector:

   (8)

and the process is iterated to a convergence. In general it is a good idea 
to check the degree to which both the functions and variables have 
converged. Once either one of them reaches machine accuracy, the 
other will not change. For our problem, as written in the Visual Basic 
Application code within the spreadsheet, the following algorithm is used:

1.  Populate stiffness matrix [KStiff], soil 
reaction matrix [KSoil], soil force 
function vector {F(Y)},derivative soil 
force vector {DF(Y}, load vector {P} 
(KSoil usually unit diagonal matrix)

2.  Governing equation: [KStiff] {Y} + 
[KSoil] {F(Y)} = {P}

Fig. 4 Direct stiffness concept for the beam element formulation in bending. If an axial displacement is desired, two axial forces, two axial 
deflections, and one axial stiffness would be added to this matrix. For laterally loaded piles the diagram would be turned sideways.

 a) b)

Lateral

Axial (not shown)
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3.  Solving by Newton-Raphson, guess initial 
values {Y0}

4.  Compute [KStiff] {Y0} + [KSoil] {F(Y0)} 
– {P} = {Gmat}

5.  Compute [KStiff] + [KSoil] {DF(Y0)} = 
[Fmat]

6.  Solve for {DeltaY} by Gauss Elim. [Fmat] 
{DeltaY} = -{Gmat}

7.  {YNew} = {Y0} + {DeltaY}
8.  reiterate until {DeltaY} is small, 

solution is {YNew}

The method works for any soil reaction that can be differentiated 
either as an analytical derivative or a finite difference (the DF(Y0)
term in the VBA listing above). Note that for an elasto-plastic re-
sponse, the soil reaction and derivative are adjusted based on the yield 
value. When below the yield value, the deriviative is ks and above 
the yield value; the derivative is 0. If one wishes to use a polynomial 
function such as the Ramberg Osgood formulation or a Hyperbolic 
formulation for a soil response, the derivative function can either be 
programmed by substituting the analytical formula derivative or us-
ing a finite-difference slope computation. The hyperbolic formulation 
is shown in Eq. 9:

  (9)

where  Fsoil = soil reaction force (kN) 
y = deflection (m) 
A = 1/Esoil  (Young’s modulus, kPa) 
B = 1/τmax (maximum shear strength of soil, kN)

The reaction force would also need a value for the contributing 
area (1m x length); however, that would vary with the change in loca-
tion and dimensions of the spring reaction system. 

This process of computation is programmed as a user function 
in Excel VBA and is recalculated whenever inputs to the function 
change. Using the spreadsheet example above, there are 11 calls to 
the nonlinear solution (generating new values of the computed deflec-
tion) every time an optimization parameter is changed by the solver. 
The Toler and N.Iter spreadsheet cells set the tolerance for the con-
vergence (Eq. 8) and limit the Newton-Raphson method to a finite 
number of iterations. 

7 SOLVER

The solver add-in bundled with Microsoft System’s Excel spread-
sheet was developed by Frontline systems and incorporated into Ex-
cel in the mid-1990s (Fylstra et al., 1998). From the perspective of 
Operations Research/Management Science, the Solver is a somewhat 
low-end solution to optimization problems. However, the modest 
standing of the software is mainly due to its speed and capacity lim-
itations, not the correctness or rigor of the methods used to perform 
the optimization.  A comparison of the different solver “packages” is 
shown in Table 1. 

8 SOLVING NONLINEAR PROBLEMS

 When the Assume Linear Model box in the Solver Options 
dialog is cleared, the Excel Solver uses the generalized reduced gra-
dient method (GRGM), as implemented in the GRG2 code (Lasdon et 
al., 1978), to solve the problem. Like other gradient-based methods, 
GRG2 is guaranteed to find a local optimum only for problems with 
continuously differentiable functions and then only in the absence of 
numerical difficulties (such as degeneracy or ill conditioning). The 
GRGM approach requires a great deal of computational finesse in that 
if one wishes to reach an optimum in a reasonable time, taking the 
steepest descent path does not often lead to a rapid solution. Nuances, 
both conceptual and computational in the algorithm are worth inves-
tigating for the interested reader (see Press et al., 2007, on conjugate 
gradient methods).  

However, GRG2, compared to other nonlinear optimization 
methods, has a reputation for robustness when dealing with difficult 
problems where these conditions are not fully satisfied. The GRG ap-
proach used by the solver remained stable for almost all of the prob-
lems attempted in this study. Most of the solver difficulties were due 
to the instability of the physical problem, not the mathematical model 
representing it.

Perhaps the most notable characteristic of the optimization “sys-
tem” is that it uses finite differences to determine the gradients of 
the functions and constraints. This is due to the nature of Excel; it is 
a numerical rather than a symbolic (such as Mathematica) system. In 
order for the optimization programming to interact with other Excel 
functions, all the problem manipulations had to be numeric. 

Tab. 1 Relative performance characteristics of various optimization solvers (Fylstra et al., 1998).

Excel Built-In Solver Premium Solver Premium Solver Plus Premium SolverPlatform
NLP Variables/ Constraints 200/100 + bounds 400/200 + bounds 400/200 + bounds 1000/1000 + bounds
LP Variables/ Constraints 200/unlimited 800/unlimited 800/unlimited 2000-16000/unlimited

Setup Performance 1x 1-50x 1-50x 1-50x
NLP Performance 1x 1x 1.5x 2-10x
LP Performance 1x 2-3x 2-3x Large Scale

MIP Performance 1x 5-10x 25-50x 25-50x

Selection of optimizers Fixed set Fixed set Fixed set Multiple choices, field-in-
stallable

LP/QP Methods Simplex w/bounds Enhanced Simplex w/
bounds

Enhanced Simplex, Dual
Quadratic

Sparse Simplex, LU,  
Markowitz

MIP Methods Branch & Bound Enhanced Branch & Bound Enhanced B&B,  
P&P, Dual Simplex

Enhanced B&B,
P&P, Dual Simplex

NLP Methods GRG2 GRG2 Enhanced GRG2 LSGRG, SQP, etc.

Reports Standard:
Answer, Limits, Sensitivity

Standard + Linearity,
Feasibility

Standard +
Linearity, Feasibility

Standard +
Linearity, Feasibility
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9  OPTIMIZATION APPLIED TO A PILE 
RESPONSE

There are several aspects of the specific optimization that are im-
portant. They include:

1.  The variable to be optimized 
2.  The parameters to be manipulated to produce an optimum result
3.  The constraints applied to the general problem (usually to the 

parameters in (2))
4.  The functional relationship between the parameters and the 

system’s response. 

A sample of the spreadsheet used in the optimization is shown in 
Fig. 3. The variable to be optimized is indicated in the figure. It is the 
sum of the square of the error between the test deflections  (column 2) 
and the computed deflections (column 3).  This is exactly the same 
as a least-squares fit problem for trend lines in Excel. The goal of the 
optimization is to minimize this value.

The parameters that are allowed to vary are shown in the table, 
i.e., the Y-coordinate of the pile nodes, except for nodes 1 and 6. Node 
1 is set on the surface, and node 6 represents the bottom of the pile. 
From the table, one can see that there are four Y-coordinate parame-
ters that can be manipulated.  The spring parameters (Ki,Ci) are shown 
as well, with two parameters for each spring.  For this problem, the 
solver has a total of 16 parameters (18 minus the 2 fixed locations) 
it can vary in order to find an optimum solution. If more springs are 
added, then there will be more possible variations. 

All the parameters are constrained by the user. The spring depths 
are limited so that one spring does not get any closer than a set dis-
tance to its neighbor. This is set by the Excel formulas in the cells in 
columns 8 and 9 labeled “min depth” and “max depth”. These con-
straints can change as the spring locations change so that the mini-
mum allowed depth of spring 2 is -30 cm (30 cm from spring 1), and 
the maximum allowed depth is -220 (30 cm from spring 3). If spring 
3 changes its depth during the optimization, then the maximum al-
lowed depth for spring 2 would also change. Other constraints set 
by the user are for the stiffness and yield of each spring. There may 
be physical limits to the strength and stiffness of the soil one might 
encounter, so setting these constraints to reasonable values allows the 
user to better model the soil profile.  

The solver does not guarantee that it will find the best solution 
(the global minimun) but only a satisfactory solution (the local mini-
mum). However, one may obtain a global, or nearly global minimum, 
by carefully setting the initial values for the depth, stiffness, and yield 
in the spreadsheet before initiating the solver. Other issues with the 
solver’s ability to find a minimum solution are often linked to “scal-
ing factor” problems. These occur when the parameters have widely 
different magnitudes (different by factors of 1000-10,000); hence the 
units for the parameters were chosen so they all had similar numerical 
values. 

10 RESULTS AND CONCLUSIONS

Figure 2b shows the results from a four-spring optimization prob-
lem. The values for goodness of fit (R2) can be computed using the 
data already generated. Once the springs and their locations are com-
puted, they can be transferred to a structural analysis program and 
applied to the pile beam member that is integrated into the remaining 
structure. In this way, a structural designer has a more accurate soil 
response and will produce more realistic results for different loading 
configurations (Szép and Ray, 2013).

The impetus for this paper came about from a need to connect 
geotechnical modeling to structural design in a straightforward and 
understandable way. The results have been satisfying in that the struc-
tural design and analysis produce more accurate behavior with very 
little added effort. The reader should remember, however, that the 
model does not address many important geotechnical issues associat-
ed with building construction. It will certainly not replace careful ge-
otechnical investigations, rigorous analysis, and experienced insight 
in the design process.
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