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Abstract: The present article examines the problem 
related to the axisymmetric torsion of an elastic layer by 
a circular rigid disc at the symmetry plane. The layer is 
sandwiched between two similar elastic half-spaces with 
two penny-shaped cracks symmetrically located at the 
interfaces between the two bonded dissimilar media. The 
mixed boundary-value problem is transformed, by means 
of the Hankel integral transformation, to dual integral 
equations, that are reduced, to a Fredholm integral 
equation of the second kind. The numerical methods 
are used to convert the resulting system to a system of 
infinite algebraic equations. Some physical quantities 
such as the stress intensity factor and the moment are 
calculated and presented numerically according to some 
relevant parameters. The numerical results show that the 
discontinuities around the crack and the inclusion cause 
a large increase in the stresses that decay with distance 
from the disc-loaded. Furthermore, the dependence of 
the stress intensity factor on the disc size, the distance 
between the crack and the disc, and the shear parameter 
is also observerd.

Keywords: Axisymmetric torsion; Penny-shaped crack; 
Dual integral equations; Fredholm integral equations.

1  Introduction
The class of problems related to the behavior of rigid 
disc inclusions embedded in bonded contact with an 
elastic medium, has been a subject of much interest in 
geomechanics, civil engineering, and applied mechanics. 
This work is motivated by both theoretical and practical 
interests in the problems of turbines disks, some pipes, 
and many industrial applications. It may give a better 
understanding of the behavior of foundations under 
external loads. In structure-medium interaction problems 
arising in foundation engineering, the foundation is 
usually modeled using a rigid or flexible inclusion having 
circular, strip, rectangular, or arbitrary shape. Nowadays, 
composites play a very important role in geomechanics 
engineering. 

It is common knowledge that all existing structural 
materials contain different inter- and intra-component 
defects (cracks, delaminations, etc.) [1]. The problem of the 
torsion of an infinite elastic medium by a rigid inclusion 
(deeply embedded) was considered by Selvadurai [2, 3]. 
His results depend on the rotational and translational 
stiffnesses of the embedded rigid circular disc. The problem 
of the torsion of an elastic half- space was considered, at 
first, by Reissner and Sagoci [4]. They studied the static 
interaction of a rigid disc and an elastic isotropic half-
space for which they obtained the solution by means of 
the spheroidal coordinates. The same problem was solved 
by Sneddon [5] using a different method. He used the 
Hankel transforms method for reducing the problem to 
a pair of dual integral equations. Collins [6] treated the 
torsional problem of an elastic half-space by assuming 
the displacement at any point in the half- space to be due 
to a distribution of wave sources over the part of the free 
surface in contact with the disc. The solution of the forced 
vibration problem of elastic layer of finite thickness when 
the lower face is either stress free or rigidly clamped was 
given by Gladwell [7]. Pak and Saphores [8] provided an 
analytical formulation for the general torsional problem 
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of a rigid disc embedded in an isotropic half-space. 
Besides, Bacci and Bennati [9] considered the torsional 
of circular rigid disc adhered to the upper surface of an 
elastic layer fixed to an undefonnable support. More 
recently, Singh et al. [10] studied the torsional of a non-
homogeneous, isotropic, half- space by rotating a circular 
part of its boundary surface. Cai and Zue  [11] discussed 
the torsional vibration of a rigid disc bonded to a poro-
elastic multilayered medium.. Yu [12] studied the forced 
torsional oscillations inside the multilayered solid. The 
elastodynamic Green’s function of the center of rotation 
and a point load method were used to solve the problem. 
Pal and Mandal [13] considered the forced torsional 
oscillations of a transversely isotropic elastic half- space 
under the action of an inside rigid disc. A similar problem 
with the rocking rotation was solved later on by Ahmadi 
and Eskandari [14]. They used an appropriate Green’s 
function to write the mixed boundary -value problem posed 
as a dual integral equation. All these problems are based 
on the theory of Hankel integral transformation in order to 
bring the mixed boundary -value problem into a system of 
dual integral equations. Then, the corresponding solution 
is sought from an integral equation of Fredholm type.

The torsional of elastic layers with a penny -shaped 
crack was considered by some researchers. Sih and Chen 
[15] studied the problem of a penny-shaped crack in 
layered composite under a uniform torsional stress. The 
displacement and stress fields throughout the composite 
were obtained by solving a standard Fredholm integral 
equation of the second kind. Low [16] investigated a 
problem of the effects of embedded flaws in the form of 
an inclusion or a crack in an elastic half- space subjected 
to torsional deformations. The corresponding Fredholm 
integral equations were solved numerically by quadrature 
approach. The same method was used by Dhawan [17] for 
solving the problem of a rigid disc attached to an elastic 
half-space with an internal crack. By using Hankel and 
Laplace transforms and taking numerical inversion of 
Laplace transform, Basu and Mandal [18] treated the 
torsional load on a penny-shaped crack in an elastic layer 
sandwiched between two elastic half-spaces. The purpose 
of this article is to study an axisymmetric torsion of an 
embedded circular rigid disc in bonded contact with an 
isotropic elastic layer sandwiched between two elastic 
half-spaces with two penny-shaped cracks symmetrically 
located at each of the two interfaces between the layer and 
the half-spaces.  A similar method was used in arecently 
published work by Madani and Kebli [20], dealing with 
the case of a penny-shaped crack problem in the interior 
of a homogeneous elastic material at the symmetry plane, 

under an axisymmetric torsion by two circular rigid discs 
symmetrically located in the elastic medium.

2  Basic Equations of the Problem
In view of the axial symmetry of the problem, it is natural 
to consider (r, θ, z) the cylindrical polar co-ordinates.  Here 
we consider an axisymmetric torsion of an embedded 
circular rigid disc with a radius b at the symmetry plane 
z = 0 in an isotropic and homogeneous layer of thickness 
2h and with one material sandwiched between two half- 
spaces of the second material. Two penny -shaped cracks 
with a  radius a were symmetrically located at the interface 
between the layer and the half- spaces z = ±h. The faces of 
the cracks are assumed  to be stress free while the discs 
rotate with an equal angle ω about  the z- axis passing 
through their center as shown in Figure .1.
Owing to symmetry about the z = 0 plane, it is sufficient 
to consider the problem in the upper half- space where z 
≥ 0. In this case of an axisymmetric torsion problem, the 
displacement vector assumes the form (0, uθ , 0) in the 
cylindrical polar coordinate system (r, θ, z). It is convenient 
to identify a layer region (superscript (1)) occupying the 
region r ∈ (0, ∞); z ∈ (0, h−) and a layer region (superscript 
(2)) occupying the region r ∈ (0, ∞); z ∈ (h−, ∞). The signs 
h+ and  h−”  denote the variables in the upper surface and 
the lower surface of plane z = h, respectively.
The only non-zero components of stress are given by

(1)

where uθ = uθ (r, z) and Gi is the shear modulus of the 
material. As the torsion of the homogeneous material is 
static, the displacement uθ (r, z) must satisfy

(2)

By means of Hankel’s transformation, integral and its 
inverse given in [19],

And
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The solution of  equation  (2) for the regions I (0 ≤ z ≤ h) 
and I I (z ≥ h) is expressed as

(3)

where λ is the transform variable, J1 is the Bessel function 
of the first kind of order one, and Ai and Bi are unknown 
functions

3  Boundary and Continuity 
Conditions
We consider the regularity conditions at infinity, the 
symmetry plane condition at z = 0, and the boundary and 
continuity conditions at the bonded interfaces  and  

. Therefore, we find the  following conditions

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

Applying the regularity conditions at infinity given in Eq. 
(4a), we obtain

(5a)

(5b)

(5c)

(5d)

where A1(λ), B1(λ), and A2(λ) are arbitrary functions that  
need to be determined by satisfying the boundary and 
continuity conditions.
The boundary and the continuity conditions in Eqs. (4c) 
and (4e) lead  to

(6)

The above equation implies

(7)

where .
The mixed boundary conditions Eqs. (4e), (4d), (4f), and 
(4b) are satisfied if A1 and B1 are solutions of the following 
dual integral equations:

 (8a)

(8b)

      (8c)

      (8d)

3.1  Limiting Cases

Let’s take the limit a → 0 and the nonhomogeneity 
parameter γ = 1, one can obtain the closed-form solution 
pertinent to the torsional rotation of a rigid disc embedded 
in a homogeneous elastic full-space. Owing to the 
symmetry of the full-space case with respect to the plane 
of the disc, it can be deduced that τθz is zero for r > a at 
the disc plane. This situation corresponds exactly to the 
torsion of a homogeneous elastic half-space by a circular 
rigid disc (0 < r < a, z = 0) bonded to the surface. This is 
adapted to the problem concerning isotropic half-space 
considered by Reissner and Sagoci [4].

Figure 1: Geometry and coordinate system.
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By taking the parameter γ = 1, the problem is simplified to 
the torsional rotation of a rigid circular inclusion attached 
to an elastic half-space with internal crack and the dual 
integral equations become

  (9a)

(9b)

(9c)

(9d)

This system of dual integral equations has the same 
meaning as Eqs. (13), (14), (15), and (16) in Dhawan’s paper 
[17].

4  Reduction of the dual integral 
equations
Equations 8b and 8d are identically satisfied if we 
introduce the following representation:

  (10)

(11)

where  and  are the Bessel functions of the first kind 
of order  and , respectively. The unknown functions are 
given by the following equation:

 (12)

   (13)

where  are continuous 
unknown functions of t defined over two intervals  
and , respectively. Substituting A1(λ) and B1(λ) in 
Eqs. (8a) and (8c), we get

  
(14)

 (15)

where

The expression for p(λ) approaches to 1 for large values 
of λ. Equation 14 can be converted to the Abel integral 
equation by means of the relation , 
and then, by taking into account the integral formula

we obtain the Abel equation corresponding to Eq. (14)

   

(16)

Next, we invert the last equation by applying the Abel 
transform formula

to obtain

(17)

For the left-hand side of the above equation, the integral 
is further simplified by using the following relationship:

we obtain the first Fredholm integral equation of the 
second kind
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(18)

where

Following the similar procedure as before, Eq. (15) is 
reduced to the second Fredholm integral equation.
Using the following formula

we obtain the following Abel-type equation:

(19)

Now, we invert the above equation by applying the Abel 
transform formula to get

(20)

Using the following relationships

we get the second Fredholm integral equation of the 
second kind

                                           (22)

with the kernel

To get a non-dimensionalized equation, from Eqs. (18) to  
(22), let us change the variables as follows

  (23)

Next, we multiply the above two equations of the system 
by , respectively, and using the 
following substitutions

(24)

we obtain the following equations:

 (25a)

  (25b)

where

5  Numerical Results and Discussion
As the kernels K, L, M, and N are continuous on the interval 
[0, 1], the system of Fredholm integral equations can be 
solved by direct or iterative techniques [21]. The midpoint 
quadrature [22] is used to find the numerical solution 
for the system given by Eqs. (25a) and (25b). By dividing 
the interval [0, 1] into N equal subintervals, so that the 
midpoints are ,  
and by introducing the following notations

(27a)
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(27b)

We evaluate numerically the infinite integral K, L, M, and 
N using the Simpson rule. After solving the above system, 
the unknown coefficients can be obtained.

5.1  Stress intensity factors

The stress intensity factors at the edge of the crack and 
at the rim of the disc are defined, respectively, by the 
following equations:

(28a)

(28b)

On the planes z = h for r ≥ a and z = 0, the expressions of 
stress are given by

(29)

     (30)

The second part of the integrals in Eq. (29) converge 
quickly as their limits r → a and r → b automatically 
vanishes; however, the limits of the other two integrals 
analyzed asymptotically as follows.  Using the relation  

, we obtain 

(31)

    (32)

For large values of λ, we use the following asymptotic 
behavior of the Bessel function of the first 

 and using the following integral 
formulas for the first infinite integral in the right part of 
the Eqs. (31) and (32), respectively,

(33)

As p(λ) → 1 as λ → ∞, Eqs. (31) and (32) become

     (34a)

(34b)

where 

(35)

Now integrating by parts, we get

(36a)

We note that the infinite integrals in the preceding 
expressions are convergent throughout the medium 
except at the singular points r → a+, which occupy the 
crack boundary.

(36b)

In this case, the integral in the above relation converges 
quickly and the integral is bonded as r → b−. As a result, we 
obtain a square root singularity at r = b and the constant 
ψ(b) is the measure of the strength of singularity at the 
vicinity of the rigid inclusion. By using the following 
transformations  .
we obtain the stress intensity factor at the edge of the 
crack and at the rim of the disc

(37a)
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(37b)

Figure 2 shows the variation of the normalized stress 
intensity factor  at the edge of the crack defined by Eq. 
(37a) against c for various values of the layer thickness H = 
1, 0.75, 0.5, 0.25 calculated using the shear modulus ratio 
γ = 1. It is observed that the values of stress intensity factor 
increase and attain its maximum values at c = 1, and with 
the increase in the value of c, the stress intensity factor 
decreases. In addition, the effect of the axial distance 
between the crack and the disc H on the stress intensity 
factor is also shown in this figure. The increase in the 
distance H induces the decrease in stress intensity factor 
for all the values of parameter c. Figure 3 illustrates the 
variation of the stress intensity factor at the crack because 
of variations in shear modulus ratio γ for different values: 
the normalized crack size c = 0.25, 0.5, 0.75, 1 and the 
layer thickness H = 1. We observe from the figure that as 
the shear parameter γ increases, the stress intensity factor 
decreases for all values of c.

Figure 4 illustrates the variation of the normalized 
stress intensity factor   at the edge of the rigid inclusion 
defined by Eq. (37b) versus c for H = 1, 0.75, 0.5, and 0.25. 
Relatively, small variation for smaller values of c and 
considerable variation for larger values of c are observed. 
Also, the interaction between the cracks and the rigid 
disc is greater when the cracks are closer to the disc. In 
addition to the interaction, the stress intensity factor 

 increases as the crack  radius increases. From the 

formulation and the presented figures, conclusions may 
be deduced:

1. Singularity at the edge of the internal crack and the 
internal rigid inclusion is observed (The results seem to 
agree with the previous works (Low [16], Dhawan [17], and 
Madani and Kebli [20]).

2. The Mode III stress intensity factor  at the edge 
of the crack is negative, and it decreases with increasing γ.

3. There is considerable interaction between the 
cracks and the rigid inclusion when a/b is large and the 
cracks are close to the rigid inclusion.
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5.2  The moment required to produce rotation 
of the disc

The torque required to sustain the rotation of the disc can 
be computed using the following equation:

(38)

Using the relation , we get

(39)

Here, as the moment is applied only to the rigid inclusion, 
the integrand is expressed in terms of ψ(t). Substituting 
the values of A1(λ) and B1(λ) from Eqs. (12) and (13) into 
Eq. (39) and using the asymptotic behavior of the Bessel 
function of the first kind , we find that

(40)

Taking into account the relation , we 
obtain the moment applied to the inclusion 

(41)

By using the following transformations t = bu and 
.

(42)

The moment required to effect the rotation ω, when the 
medium contain no crack, can be formulated as

. Equation 42 can be expressed as

(43)

The problem of inclusion–crack interaction has a 
remarkable use in the design of composite anchoring 
systems with flat disc inclusions, in deep foundations 
in a geological medium, in in situ load tests at the base 
of a borehole, in injection anchoring regions in soft rock 
masses with sealing materials, or when penetrating 
single-propelled anchors in steep soil masses, such as 
over-consolidated clays.

5.3  Displacement and stress fields

The results for the variation of the normalized displacement 
u(i)(ρ, ξ)/ωa and stress τ(i)(ρ, ξ)/Giωa with ρ = r/b are shown 
graphically in Figures 5–8 for the different values of the 
dimensionless axial distances ξ = z/b. For each region, five 
different axial distances are selected as I (ξ =0; H/5; 2H/5; 
3H/5; H) and I I (ξ = H ; 6H/5; 7H/5; 8H/5; 2H), with the 
particular values of the height H = 1, the dimensionless 
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crack size c = 1 and the shear parameter γ = 1 and γ = 2. 
The variation of the normalized displacements is shown 
in Figures 5 and 6. We notice that the displacements in the 
two regions increase at first, reach maximum values at ρ = 
c, and then decrease out of the disc band with increasing 
ρ. The distribution of the shear stresses in the elastic 
medium are also discussed and shown in Figures 7 and 8. 
The stresses initially increase, attain its maximum values, 
and then with the increase in the value of ρ, the stresses 
go on decreasing.

6  Conclusion
In this article, an axisymmetric torsion of a rigid disc 
embedded in the interior of a homogeneous elastic 
layer sandwiched between two half-spaces containing 
two interface cracks is analytically addressed. By using 
the Hankel integral transformation and its inverse, the 
mixed boundary value problem is reduced to a system 
of dual integral equations, which are reduced to a 
Fredholm integral equation system of the second kind. 
The numerically computed results of the displacements, 
the stresses, and the stress intensity factors are presented 
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graphically for some dimensionless parameters. The 
numerical results show that the discontinuities around 
the crack and the inclusion cause a large increase in the 
stresses that decay with distance from the disc loaded. 
Furthermore, the dependence of the stress intensity factor 
on the disc size, the distance between the crack and the 
disc and the nonhomogeneity parameter is observed.
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Figure 8: Shear stress τθz
2 versus ρ for various ξ, z≥h.


