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Abstract: In the present paper, a three-dimensional problem of bearing capacity of square footing on random soil medium is ana-
lyzed. The random fields of strength parameters c and ¢ are generated using LAS procedure (Local Average Subdivision, Fenton and
Vanmarcke 1990). The procedure used is re-implemented by the authors in Mathematica environment in order to combine it with
commercial program. Since the procedure is still tested the random filed has been assumed as one-dimensional: the strength proper-
ties of soil are random in vertical direction only.

Individual realizations of bearing capacity boundary-problem with strength parameters of medium defined the above procedure
are solved using FLAC3D Software. The analysis is performed for two qualitatively different cases, namely for the purely cohesive
and cohesive-frictional soils. For the latter case the friction angle and cohesion have been assumed as independent random variables.
For these two cases the random square footing bearing capacity results have been obtained for the range of fluctuation scales from
0.5 m to 10 m. Each time 1000 Monte Carlo realizations have been performed. The obtained results allow not only the mean and
variance but also the probability density function to be estimated. An example of application of this function for reliability calcula-

tion has been presented in the final part of the paper.
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1. INTRODUCTION

Growing interest in economical and safe design of
a structure which takes into account also random ef-
fects implies development of new tools like reliability
analysis including determination of the probability of
failure. This is particularly important in the case of
foundations that are in direct contact with the natural
soil medium (e.g., Puta 2004). The large variability of
the medium, especially in terms of the strength pa-
rameters, can be a challenge for designers who want
to carry out the design process in a safe and economi-
cal way.

The increasing computing capabilities of comput-
ers allow for better statistical representation of the
random effects. There also exist new tools which al-
low of the media characterized by a random spatial
variability of their parameters to be described. One of
such tools is the theory of random fields. The random
field in its simplest form is an uncorrelated one, fully
describable with only a point statistic of random vari-
able (scale of fluctuation equals 0). Even such a field
can be in many cases successfully applied to describe
properties of random material. E.g., in works (Rézanski

and Stefaniuk 2016, Stefaniuk et al. 2016) uncorre-
lated random field has been used to successful esti-
mation of effective heat condition coefficient for soil
skeleton. More sophisticated theory allows the field
to be generated for a given probability distribution
and correlation function.

Based on random fields theory it has also been
possible to develop methods for statistical analysis of
boundary value problems located in random soil me-
dium. One of the most involved of such methods is
RFEM (random finite element method, Griffiths and
Fenton 1993, Fenton and Griffiths 2008). RFEM is
a combination of random fields theory, the classical
finite element method and Monte Carlo simulations.
In order to generate a random field an advanced algo-
rithm known as the Local Average Subdivision has
been developed (LAS, Fenton and Vanmarcke 1990).
In the last two decades, under the RFEM, a number of
works have been published that show application of
the method to (among others) 2D limit state problems
and 3D elastic problems (Griffiths and Fenton 2001,
Fenton and Griffiths 2003, Hicks and Samy 2004,
Vessia et al. 2009, Pieczynska et al. 2011, Rahman
and Nguyen 2012, Pieczynska-Koztowska et al. 2015,
Puta and Zaskorski 2014, Zaskorski and Pula 2016).
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In some other recent works the RFEM has been used
for the stability analysis of slope modeled in three
dimensions (Spencer and Hicks 2007, Hicks and
Spencer 2010).

One of the most fundamental problems in geo-
technics is the problem of bearing capacity of rectan-
gular footing. This problem is of extreme importance,
but of considerable degree of difficulty, even for de-
terministic solution. So far, the authors of the present
work did not find any work showing an application of
RFEM to this problem in three dimensions.

In this paper, we attempt to analyze bearing ca-
pacity of square footing situated on a random soil
medium. To solve this problem a combination of LAS
algorithm, which generates the random filed, and fi-
nite difference program FLAC3D (2006) which solves
individual realization in 3D space, has been used.

The present work is the first authors’ attempt to
solve the above mentioned problem. Few simplifica-
tions have been made in the analysis. In particular, the
random field generator assumes field to be random in
only one, vertical, direction. The reason is twofold.
First, use of external software for the analysis of
boundary value problem has made it necessary for the
authors to numerically implement the LAS algorithm.
This implementation started with the simplest, one-
dimensional case. Showing the results obtained for
this simplest case seems beneficiary because it allows
for step-by-step verification of the implementation
performed. Second, as has been shown by in-situ
measurements, the variation of natural soil properties
in vertical direction is usually much greater than in
horizontal direction. Thus, considering the relatively
small size of boundary-value problem domain, the
assumption that the soil medium is composed of hori-
zontal layers with parameters constant over the layer
appears not to differ much from the reality (see Kawa
and Lydzba 2015).

1.1. BASIC CONCEPTS
OF RANDOM FIELDS THEORY

First applications of the random fields theory to
geotechnical problems were reported in the 1960s
(Lumb 1966). However, efficient applications have
been started by Vanmarcke (1977a, 1977b). The de-
velopment of computing power in the last decades is
of great importance for effective application of ran-
dom field theory for consideration of spatial variabil-
ity of soil parameters in probabilistic analysis.

Random field (RF) is a generalisation of stochastic
process for higher dimensions. Assume (€, S, P) is

a probability space. Random field is a function X: Q x R’
— R such that for each xeR’, X(@,x) is a random

variable. The space R’ means that the domain of the
field is three-dimensional. However, it can be re-
placed by R* (two-dimensional random field) or by R
(stochastic process). Random variables inside a ran-
dom field are related to each other by a certain cor-
relation structure. A function X(w,, x), where w, is
fixed and x is variable is called a realization of the
field X.

A correlation structure of RF is determined by co-
variance function which is defined as

C(X15 %5 Y15 V25215 2)
=E{[X(x;,,2) —E[X(x,3,2)]]
X[X(xy,5,2,) —E[X(x,,1,,2))]1}, (D

where E[ ] denotes the expected value operator. If the
mean value is a constant for all (x, y, z) under consid-
eration and covariance function depends solely on the
lag vector between points, i.e.,

~2), (2)

then the RF is called weakly stationary (or wide-sense
stationary). The above condition implies that the vari-

C(x), Xy, Y15 ¥2521,2,) = C(xy = X1, 1) — V1,25

ance of RV is constant, o (x,y,z) = 0c".

A weak stationary RF is called isotropic if its co-
variance function depends solely on the distance be-
tween points, i.e.,

C(x15 X0, Y1, Y25 21522)

2 2 2 ®)
:C(\/(xz_xl) (V=) (2, —2)).

This way for isotropic RF its covariance function
is a single variable function. If a covariance function
can be factorised in the following way

Cxy =X, 3, = ¥1,2, —2))
= C(Ax, Ay, Az) = C,(AX)C, (AY)C5(Az),  (4)

then the RF is called separable. It is worth mentioning
that the separability property implies weak station-
arity. The separability allows a correlation structure to
be analysed in each direction separately by three inde-
pendent functions of a single variable.

A suitable measure of the rate of variability of
a random field is a scale fluctuation (or correlation
length) 8 (Vanmarcke 1983). If two points x; and x, of
a RF are separated by a distance greater than 6, it means
that the correlation of X(x;) and X(y») is negligible.
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Precisely the scale of fluctuation can be defined (in
one-dimensional case) as

0= %T C(Ax)dAx = ZT p(Ax)dAx, &)
59 0
where
p(ax =8 (©)
o

is the correlation function of RF under consideration.

Equation (5) demonstrates that the fluctuation
scale is completely determined by the covariance
function of the RF under consideration. It can be
proved that a covariance function must be positive-
definite function. Conversely, any positive-definite
function is a covariance function of a certain RF
(Bochner’s theorem, see Loomis 2011).

Three examples of covariance functions (for one-
dimensional RF) with corresponding correlation
lengths are given in Table 1.

Table 1. Covariance functions and scales of fluctuation

Covariance function Scale of fluctuation
© ce functio (correlation length)
2
C(Ax)=0" -exp(—a|Ax)) ==
a
C(Ax) = o - exp(—ax)cos(bAx) P
X)=0 -eXp(—ax X =
P a’ +b*
C(Ax) = 0 -exp(~a(Ax)?) 0= |%
a

(a and b are field parameters).

For practical applications most important are
Gaussian random fields. An RF is called Gaussian or
normal if for any finite set of points xi, x,, ..., x, the
random vector (X}, X3, ..., X,) is normally distributed.
In this case three things have to be defined to charac-
terize a soil parameter by a weakly stationary and
normally distributed random field:

1) the field mean g,

2) the field variance O'f( ,

3) the field correlation structure.

Since in practical analysis the implementation of
a continuous random field is not possible the field has
to be discretized. Various discrete RF generators can
be found in literature, e.g., spectral random field gen-
erator (SRFFT), turning band method (TB), the matrix
decomposition method (LU), the sequential Gaussian
simulation method, the local average subdivision
(LAS) (see Fenton and Griffiths 2008).

1.2. SPATIAL AVERAGING

Vanmarcke (1977a) proposed the spatial averaging
procedure of random field addressed to geotechnical
problems. Spatial averaging reflects the situation that
failure is caused by certain regions of the subsoil area,
but is not a consequence of “point” behaviour. On the
other hand, spatial averaging is the base of the local
average subdivision method (Fenton and Vanmarcke
1990) that will be used in further part of this paper.

Assume now that a soil parameter X is described
by a stationary random field X(x, y, z) with a covari-

ance function C(Ax, Ay, Az) = 0')2( px(Ax, Ay, Az),
where 0)2( is a variance of a random field X and py is

its correlation function. Let ¥ — R* denotes a certain
area and |V| be the volume of V. Spatial (local) aver-
age, used by Vanmarcke (1977a, 1983), is defined as
follows

1

X, =—
e

j j jVX(x, v, 2)dxdydsz. (7)

It can be noticed that X is a random variable de-
fining a certain mean of random field X in area V. By
changing the area J another random field is created
X(V'), denoted Xy for simplicity. Random fields Xj
and X have the same mean value (which a con-
sequence of the stationarity) but different variances.
A variance of a random field X takes the form

VAR X, =0} =y(V)oy (8)

where (V) is called the variance function. It can be
proved (Fenton and Griffiths 2008) that in one-dimen-
sional case the variance function takes the following form

y(L)= % ! (1 —%j p(Az)dAz. )

According to many opinions (e.g., Cherubini 2000,
Puta and Rézanski 2012) the spatial averaging should
be applied if reliability evaluations are carried out in
geotechnics. Otherwise, one can obtain not realistic
values of reliability measures.

2. LAS ALGORITHM

Local Average Subdivision (Fenton and Van-
marcke 1990) is one of the most involved methods of
random fields generation. The basic idea behind the
algorithm is to sequentially subdivide a “parent” cell
into two halves. The random values for these newly
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created cells are taken such that their mean is equal to
the value of the “parent”. Additionally, these values are
generated in such a way as to provide both: correct
variance according to local averaging theory as well as
appropriate spatial correlation between the cells and
their “parent” according to provided covariance func-
tion. The process continues in the recursive fashion
(newly created cell becomes “parent” in the next step)
until the desired discretization of the field is obtained.

The algorithm can be used for simulation of any
random stationary process in 1D, 2D as well as 3D. In
the present study the spatial field has been assumed to
be random only in one direction.

The zero mean Gaussian stationary process having
exponential covariance function

C(Ax)=0"" exp(— M)

7 (10)

has been assumed as governing for the 1D LAS
simulation as in the earlier works (Fenton and
Vanmracke 1990, Samy 2003, Spencer 2007). For this
function respective variance function (9) has form

0% | 2L -2L
L)=—| "= +exp| —= |-1].
7 2L{0 Xp[ej }

The LAS algorithm proceeds as follows: Let Zj

(1)

denote value in the j-th cell in the i-th step of the algo-
rithm. In the “zero” step the only existing cell Z; has
a size equal to the size of problem domain D. The
mean of the Zl0 is equal to the given mean of the gen-
erated field (here: equal to 0) and the variance, ac-
cording to local averaging theory, is equal to 0[2) =

Jf (D) where o” is the point variance of the process.

In the first step Z, is divided into two cells: Z and

Z) with size D' = |D|/2. Due to the condition of up-
ward average preservation imposed, i.e.,

1

E(ZZI_] +2y)=2;, (12)

only value for the Z) is generated. The value for the

other cell Z| is obtained directly from formula (12).

In the subsequent steps, the algorithm continues to
generate in step i, 2' cells with size D' = D/2'. The

Zi+1

random values are generated only for cells Z,;,

which represents a half of parent cells for each step.
The values for the cells ZZI_ , are obtained from equa-

tion (12). The procedure schematically illustrated in

Fig. 1. The gray level of the individual cell back-
ground corresponds to value assigned to the cell in
exemplary realization.

algorithm
direction

z3
& ] 2

Fig. 1. The generation of cells with LAS algorithm

In order to preserve correct spatial correlation of
the field additional conditions need to be imposed on
generated values. For arbitrary cell Z;J;.l generated in
i + 1 step these conditions are: correct variance ac-
cording to local averaging theory and appropriate
correlation with cells in the neighborhood of the par-
ent. As has been shown in the works by Fenton and
Vanmarcke (1990) and Samy (1998) for the process

with exponential covariance functions a neighborhood
of the size 3 ({Z;_1 , Z;, Z;H }) is sufficient for the
generation of correctly correlated random field.
i+1

Therefore, the value generated for the cell Z;;" can be

expressed as

i+l _ i+l i i+l i i+l —7i i+ly i+l
Zy, =ai Z; tay Z,+a, Z;,+c Uy (13)

where Uzl denotes the Gaussian white noise with

zero mean and unit variance (Fenton and Griffiths
2008). For using formula (13) values of a," (k € {1,
0, 1}) coefficients need to be derived based on correct
correlation of the cell ZZI with its parents neighbor-

hood, and the value of coefficient ¢’ is taken such that
the variance of Zl/ is equal to o ¥(D").

The set of equations for calculation of a can be
obtained by multiplying equation (13) by Z!, and
then taking expectations and using the fact of the
Gaussian white noise being independent of the Z;

values. The resulting set of three equations for m = {j
—1,j,j+ 1} can be written as

E[Z}'Z)1=d"'E[Z} \Z})]

+ay E[Z,Z,1+d}} E[Z},,Z,,], (14)

+1 Jj+l1

where E[Z;Z;

w+m] 1S the covariance between local

averages. The latter can be computed utilizing local
averaging theory (Vanmarcke 1983). For values aver-



Random analysis of bearing capacity of square footing using the LAS procedure 7

aged over length D', the covariance in terms of vari-
ance function y(7) can be defined as

2

AVAVAIN ="7[(m ~1)?y((m-1)D")

k+m

—2m*y(mD") + (m+1)>y((m+1)D")].  (15)

It needs to be noticed that the cross-step covariances
appearing on the left hand side of equation (14) can also
be expressed as appropriate sum of covariances in step
i+1

i i 1 i+ i i i
E[Z}Z)]= E(E[Zz N2y 1+ E12525,]. (16)

Variance of the expression aTZ ’]',_1 + af)”Z;. +
a’_]lZ}+1 which is a part of Z;}l is equal to the sum of
respective covariances. Since desired value of variance
of the cell Z;7' is E[Z3' Z37'], the coefficient ¢! for
Gaussian white noise needs to be equal to

Ci+1 —

JAGH-d 0237, ) ~dy B25 2 - A 2 7).
(17)

i1 +1
" and ¢'” can be calculated

Now, the values of a,
using equation set (14) and equation (17). Since coef-

§=10m, N=200

C(Ax)

Ax [m]

6=10m, N=1000

Ax [m]

0 1 2 3 4

ficients @, and ¢’ depend only on the step number i,

they can be computed prior to the actual LAS algo-
rithm, for the predetermined number of steps. After
that the algorithm proceeds for all the realizations and

all the values of Zj. are calculated.

When the direct parent of the ZZI cell lies on the

boundary of the problem domain, only part of neigh-
borhood of size 3 lies in the domain. For such cells
equations (14) and (17) need to be modified (Fenton
and Vanmarcke 1990). If only one parent neighbor
lies outside of the domain, the number of equations in

the set (14) as well as coefficients a,i“

reduces to
two. If both of the parent neighbors lie outside of the
domain (when generating the value for cell Z}) the
number of equations (14) reduces to one (namely:
E[Z,Z)] = ayE[Z) Z]]) and q; is the only a"
coefficient to calculate. The formulas for ¢’ are modi-
fied accordingly.

3. TESTING IMPLEMENTATION
OF LAS METHOD

In order to utilize the procedure above LAS algo-
rithm has been numerically implemented in Mathe-
matica environment. The generation process has been

C(Ax)

6=1m, N=200

Ax [m]

C(Ax) §=1m, N=1000

Fig. 2. Comparison of theoretical and estimated covariance functions (averaged over N realizations) for two different values
of fluctuation scale 6 and realization number N. N and 0 specified above in respective diagrams
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tested for compliance with the theoretical values of the
mean, variance, and covariance function. Moments
showed very good agreement with the actual values for
simulated process, even with a small number of realiza-
tions (say 50). The obtained agreement between theoreti-
cal, equation (10), and simulated covariance functions for
two different values of fluctuation scale 8 and two differ-
ent numbers of realization is shown in Fig. 2. As can be
seen from this figure, the simulated covariance function,
averaged over realizations, is in a good agreement with
the theoretical function for both values of 8. The agree-
ment improves with the number of realization. For reali-
zation 1000 the obtained agreement is almost perfect.

The zero mean process can be easily extended to
any Gaussian process with specified mean and vari-
ance. The values for the cells in general case can be
calculated based on the generation performed for zero
mean process as

K.=Zc+u, (18)

where oand u represent the desired values of standard
deviation and mean of the new process. In the present
work, formula (18) has been utilized for generation of
Gaussian fields of soil parameters, with given mean
and variance.

Table 1. Deterministic elastic properties
used in the analysis

Property Value
Shear modulus (G) 0.1 GPa
Bulk modulus (K) 0.2 GPa
Young’s modulus* (E) 0.25 GPa
Poisson’s ratio* (v) 0.28

*alternatively.

4m (16 zones)

[
I
I Y
[ |

8m (32 zones) ‘

4. RANDOM ANALYSIS
OF BEARING CAPACITY
OF THE SQUARE FOOTING

The implemented procedure has been used for
analysis of bearing capacity of the square footing on
random soil medium. The footing has been assumed
as not embedded, rigid and smooth one with dimen-
sions 1 x 1 m. The soil has been assumed as weight-
less, elastic-perfectly plastic with the Mohr—Coulomb
plasticity criterion. Strength parameters (cohesion and
internal friction angle) have been modelled using ran-
dom fields. The elasticity parameters for the soil have
been assumed as deterministic and constant over the
domain. Their values are presented in Table 1. The indi-
vidual realizations of three-dimensional boundary-value
problem have been solved with FLAC3D software
(FLAC3D 2006) which bases on finite difference
method. The domain of the problem has been discre-
tized in the software using cubic zones of size 1/4 of
footing dimension. The problem discretization and the
boundary conditions are presented in Fig. 3. Two dif-
ferent cases have been considered in which the soil
has been assumed to be either purely cohesive or co-

applied load
(smooth surface footing)

L :

O W& & &

X

applied load
(smooth surface footing)

L :

Fig. 3. Discretization of the problem domain and assumed boundary conditions
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hesive-frictional. In both cases the value of dilation
angle has been assumed as deterministic and equal
to zero.

4.1. PURELY COHESIVE SOIL

In the first case the soil has been assumed as
purely cohesive. First, the problem has been solved
for the assumed deterministic value of cohesion ¢
equal to 30 kPa constant over the problem domain.
The obtained solution has been verified against both:
lower (corresponding to exact solution for bearing
capacity of strip footing by Prandtl)

' =Q2+n)c, 19)
and upper bound (Shield and Drucker 1953)
q" =(5.14+0.66)c (20)

found in literature. The obtained result places between
bounds (19) and (20). Since further reduction of the
size of zones did not change the value of bearing ca-
pacity more than 1%, discretization was considered
sufficient.

Further analysis considered cohesion to be random
with mean equal to 30 kPa and standard deviation equal
to 6 kPa (coefficient of variation c,. equal to 0.2). The
Gaussian probability density function and exponential
covariance function has been assumed for generation
of the respective random field. The field has been
generated using LAS procedure (see Sections 2 and 3).
After generation, values have been assigned to the
respective finite difference zones. As has been men-
tioned earlier, the field has been assumed to vary only
in vertical direction. In consequence the obtained field
has constant value in horizontal direction and its
structure can be regarded as layered. Typical random
realization of the field is presented in Fig. 4. Because
of computation limits only four steps of LAS proce-
dure has been performed resulting in 16 layers of
zones with random parameters.

Block Contour of cohesion
2.2985e+004 to 2.4000e+004
2.4000e+004 to 2.6000=+004
2.6000e+004 to 2.8000=+004
2.2000e+004 to 2.0000=+00<3
2.0000e+004 to 2.2000=+004
3.2000e+004 to 2.4000e+004
3.4000e+004 to 2.6000e+004
2.8000e+004 to 2.2000e+004
2.2000e+004 to 4.0000=+004
<%4.0000e+004 to 4.017434e+003
Interval = 2.0e+003

Fig. 4. Typical realization of random field

The Monte Carlo simulation has been performed
for different values of fluctuation scale 8. For each
value of 0 one thousand of random realizations have
been solved. For the assumed discretization, execution
of 1000 realizations took around 24 hours (work sta-
tion, parallel computation). Mean and variance of the
results obtained for different values of fluctuation
scale are presented in Table 2.

As can be seen in the table the mean value of
bearing capacity seems to be almost constant against
different values of fluctuation scale. The value is also
very close to deterministic solution obtained for con-
stant cohesion ¢ = 30 kPa. On the other hand, the co-
efficient of variation of bearing capacity clearly in-
creases with the increase of scale of fluctuation. It can
also be seen that while the scale of fluctuation takes
large values (which means that the field in a single
realization should be almost constant), the coefficient
of variation of the footing bearing capacity converges
to 0.2 which is the value assumed for cohesion (which

Table 2. Results of random analysis for frictionless soil obtained for different scales of fluctuation

0. He Cye Hyq Cvq N

0.5m 30 kPa 0.2 157.5 kPa 0.156 1000

Im 30 kPa 0.2 156.0 kPa 0.187 1000

2m 30 kPa 0.2 156.3 kPa 0.188 1000

5m 30 kPa 0.2 157.2 kPa 0.195 1000

10 m 30 kPa 0.2 157.6 kPa 0.197 1000
deterministic value (¢ = 30 kPa) 157.3 kPa - 1

6., u., ¢, denote, the scale of fluctuation, mean and coefficient of variation for cohesion, re-
spectively, u,, ¢, denote, the mean and coefficient of variation for bearing capacity, respectively.
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is in agreement with the fact that bearing capacity for
purely cohesive, homogeneous soil depends linearly
on the value of cohesion).

The analysis also allowed us to obtain approxima-
tion of probability density function. An example of
the kernel density estimation function (smoothed his-
togram) for bearing capacity as well as its approxima-
tion with normal distribution for the mean and vari-
ance obtained is presented in Fig. 5. As can be seen
the smooth histogram is in a very good agreement
with respective normal distribution. For other values
of fluctuation scale # the obtained agreement is even
better.

0.000015
F f- -
- L)
| ¥
= 000001
5.om 1-:"5

_/

q [kP2]
Fig. 5. Agreement between continuous histogram function

obtained from analysis (black line) and probability density function
for respective normal distribution (dotted line), = 1.0 m

4.2. COHESIVE-FRICTIONAL SOIL

In the second example bearing capacity of
square footing placed on cohesive-frictional soil has

been analyzed. The methodology of this analysis is
identical as for the previous case. Cohesion and
friction angle have been assumed to be independent
random fields. The mean value of cohesion has
been assumed as before as 30 kPa with coefficient
of variation equal to 0.2. The mean value of friction
angle has been assumed as 20° with coefficient of
variation 0.15. Normal distribution and exponential
covariance function have been assumed as govern-
ing for both of the random fields. Additionally,
scales of fluctuation for both variables have been
assumed identical. The results of random analysis
for footing bearing capacity obtained for different
values of fluctuation scale, each time using 1000 of
random realizations are gathered in Table 3.

4. x10"%

.xl':l_ﬁ- T ¥
L r A
I ) \
L [ ﬁ\

w1078 \
[ 200000

BO0 000

[

Prob.
=]

e

Lx1075}

600000
q [kPa]

00000 1x10%

Fig. 6. Agreement between smooth histogram
of bearing capacity results (black line)
and probability density function
for respective normal distribution (dotted line), = 1.0 m

As can be seen in the table in cohesive-frictional
case the bearing capacity mean value seems to slightly
increase with the increment of fluctuation scale. Also,

Table 3. Results of random analysis for cohesive-frictional soil
obtained for different scales of fluctuation

0.=0, He G, Uy S, Hy <, N
0.5m 30 kPa 0.2 20° 0.15 494.2 kPa 0.187 1000
Im 30 kPa 0.2 20° 0.15 500.5kPa | 0.236 1000
2m 30 kPa 0.2 20° 0.15 506.2kPa | 0.264 | 1000
5m 30 kPa 0.2 20° 0.15 506.9kPa | 0.257 | 1000
10 m 30 kPa 0.2 20° 0.15 520.8 kPa 0.295 1000

deterministic value | deterministic value
(c = 30 kPa) (p=20°) 499.8 kPa - 1

6., u., ¢, denote, the scale of fluctuation, mean and coefficient of variation for cohe-
sion respectively, 0, u,, c,, denote, the scale of fluctuation, mean and coefficient of
variation for friction angle, respectively, u,, c, denote, the mean and coefficient of

variation for bearing capacity, respectively.
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as previously, the value of coefficient of variation
increases with the increment of fluctuation scale. For
the large values of the fluctuation scale the coefficient
of variation for bearing capacity reaches a value of
about 0.3. This value is clearly greater than assumed
values of variation coefficients for both cohesion and
friction angle.

As in the previous case the result of the analysis
has been used to obtain probability density function
for the footing bearing capacity. A smooth histogram
obtained for fluctuation scale # equal 1.0 m is pre-
sented in Fig. 6 together with its Gaussian approxi-
mation. As can be seen the description of obtained
results with Gaussian probability density function,
although sufficient, seems to be slightly worse than
for purely cohesive case.

5. RELIABILITY ANALYSIS
FOR SQUARE FOOTING

As an example of application of the obtained re-
sults the reliability assessment of bearing capacity of
footing on the cohesive-frictional soil has been per-
formed. The scale of fluctuation 6 has been assumed
equal to 1.0 m for both cohesion and friction angle.
2000 realizations have been carried out. Normal dis-
tribution, obtained identically as in the previous sec-
tion is used to approximate the probability density
function of footing bearing capacity. The mean and
standard deviation used in the analysis are presented
in Table 4.

Table 4. Mean values and coefficients of variations
assumed for soil strength parameters together with mean value
and standard deviation of bearing capacity
received after 2000 realizations

He 2 2 Hy C, Hgo Hq ]

30kPa| 0.2 | 1m | 20° | 0.15| 1 m |500.5kPa|118.0 kPa

The symbols as in Table 3.

The failure has been defined as a situation in which
random variable corresponding to bearing capacity gy
exceeds a certain deterministic level of load ¢,
(acceptable load). Therefore the probability of failure
is defined as

e2))

Alternative reliability measure is the reliability in-
dex S, for which there is a ono-to-one correspondence
to probability of failure by the following relationship

pf:P{quqd}'

Py =0(=F)

where @, denotes cumulative distribution function for
standard normal distribution. The values of bearing
capacity which ensure reliability at a certain level of
safety (for a given probability of failure or reliability
index f) are shown in Table 5. As can be seen value
of load which corresponds to probability of failure
equal to 0.0000723 and S = 3.8 (S = 3.8 is commonly
accepted value in civil engineering and recommended
by standards, e.g., EN 1992:2002. Eurocode) should
be approximately 10 times smaller than the mean
value of the bearing capacity.

(22)

Table 5. Probability of failure and reliability indexes
corresponding to certain applied loads

q Pr B
500.5 kPa 0.5 0.0
382.5 kPa 0.159 1.0
264.5 kPa 0.0227 2.0
205.5 kPa 0.00621 2.5
146.5 kPa 0.00135 3.0
122.9 kPa 0.000687 32
99.3 kPa 0.000337 34
75.7 kPa 0.000159 3.6
52.1 kPa 0.0000723 38
28.5 kPa 0.0000317 4.0

6. CONCLUSIONS

In this paper the application of Local Average
Subdivision (LAS) to the random analysis of bearing
capacity of square footing has been presented. Soil
strength parameters have been modelled by station-
ary random fields, allows spatial variability of soil
properties to be introduced. The approach presented
employs Monte Carlo simulation technique. The
individual realizations are solved in FLAC3D soft-
ware. The random field of parameters has been gen-
erated using numerical implementation of LAS pro-
cedure. As has been shown for both frictionless as
well as cohesive-frictional soil the analysis per-
formed allows us to obtain mean, variance and prob-
ability density function for bearing capacity of foot-
ing. It has also been shown that the probability
density function obtained can be utilized to estimate
the probability of foundation failure.

Two main conclusions can be drawn from the
study:
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i. The LAS algorithm can be a useful tool for gen-
eration of random fields. The performed reimple-
mentation allows to combine it with any finite
elements and finite difference method. Its use with
Monte Carlo simulation allows for random analy-
sis of almost any boundary value problem, also
in 3D.

ii. The numerical solution for random analysis of
bearing capacity of square footing consumes a lot
of computation power as the problem requires 3D
analysis. The methodology presented allows to be
performed random analysis of the problem for in
reasonable amount of time. The obtained results
can be used for reliability-based design of shallow
foundations (Low and Phoon 2015).

Since the present study is a preliminary one, sev-
eral simplifications have been used in the analysis.
Thus the present analysis is subject to at least a few
limitations:

i. Random fields that modelled the soil properties
were assumed random in only one direction. Al-
though such an assumption seems not to differ
much from reality, it is a significant simplification
of three dimensional problem. The future studies
need to include both three-dimensional LAS pro-
cedure as well as analysis of anisotropy effect (dif-
ferent scales of fluctuation in horizontal and verti-
cal direction, Pieczynska-Koztowska et al. 2015).

ii. Although assumed discretization seems to be satis-
factory when solving deterministic problem (constant
value of parameters over the field) the same has not
been proved for a random problem. Some tests per-
formed for one-dimensional LAS procedure pre-
sented showed that further reduction of zone size
does not affect the results significantly while strongly
increasing the computation time. This effect however
needs further investigation, especially when the 3D
LAS procedure is to be used.

iii. The normal Gaussian distribution has been as-
sumed as governing for both cohesion and friction
angle. Some other probability distributions (log-
normal or distributions of bounded supports) of
strength parameters of soil can better characterize
random variability of these parameters in natural
soils (Fenton and Griffiths 2008).The future stud-
ies need to take into account the appropriate distri-
butions of soil parameters which certainly also af-
fect obtained bearing capacity distribution.

iv. The FLAC3D software which utilizes finite differ-
ence method solved with the explicate scheme has
been used in the analysis. It is possible that the
solution of boundary-value problem obtained for
similar discretization with some other method (for

example, FEM with implicit scheme) will prove to

be more computationally efficient.

The overcoming of the above limitations is subject
of further studies of the authors.
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