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Abstract: The paper demonstrates how the reliability methods can be utilised in order to evaluate safety in geotechnics. Special at-
tention is paid to the so-called reliability based design that can play a useful and complementary role to Eurocode 7. In the first part,
a brief review of first- and second-order reliability methods is given. Next, two examples of reliability-based design are demon-
strated. The first one is focussed on bearing capacity calculation and is dedicated to comparison with EC7 requirements. The second
one analyses a rigid pile subjected to lateral load and is oriented towards working stress design method. In the second part, applica-
tions of random field to safety evaluations in geotechnics are addressed. After a short review of the theory a Random Finite Element
algorithm to reliability based design of shallow strip foundation is given. Finally, two illustrative examples for cohesive and cohe-

sionless soils are demonstrated.
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1. INTRODUCTION

Safety concepts in geotechnics are based on an
appropriate evaluation of soil properties as well as
loads and then introducing them to a design process.
Basic rules are given by Eurocodes in the European
Union and the geotechnical Eurocode 7 [16] is one of
them. However, one of the main concerns of geo-
technics is the way of considering the uncertainty of
soil properties during a designing process. The com-
plexity of the issue is related to the various factors
influencing this uncertainty. Sources of uncertainty
of soil parameters are mostly associated with natural
spatial variability of soil properties, measurement
errors, insufficient number of in situ tests and un-
certainty of transformation. The influence of the
uncertainty connected with the three last sources can
be decreased because human can affect them. In the
case of spatial variability, it is unpredictable and not
possible to control. Geotechnical designers in such
circumstances can only try to describe the random
character of shear strength parameters in the most
effective (realistic) way. One of the existing ap-
proaches that gained recognition is an application of
the random field theory.

The objective of this paper is to demonstrate the
usefulness of safety evaluations based on probabilistic
methods with reference to EC7 approaches. In the first
part (Sections 2—4) the main emphasis is put on safety

evaluations yielding from so-called first order reli-
ability method (FORM) and second order reliability
method (SORM). The second part shows the profit-
ability of random fields theory in the evaluation of
geotechnical safety.

2. DESIGN APPROACHES IN EC7
AND RELIABILITY BASE DESIGN

The limit state design approach (LSD) introduced
by Eurocodes represents a sort of revolution with re-
spect to the working stress design (WSD) approach
which was earlier commonly used all over Europe.
Two main methodological differences between LSD
and WSD can be pointed out:

e The WSD employs global safety factors calibrated
by the different design experiences performed
throughout European countries whereas the LSD
considers partial safety factors calibrated by sta-
tistical approaches and applied to action and
strength distributions.

e The LSD introduces ‘“characteristic values” con-
cept for design values of loads and strengths while
the WSD deals with “nominal values” for design
parameters without taking care of how they are
determined.

The relationships between characteristic and design
values established by EC7 are based on three design
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approaches DA1, DA2 and DA3 applied if ultimate
limit states are under consideration. The suggested
partial safety factors are collected into three groups,
namely partial factors associated with actions or re-
sults of actions (yr), partial factors for soil properties
(yu), partial factors dedicated to resistance (yg). Partial
safety factor values are presented in Table 1. In the
design approach DA1 two sets of partial factors are
recommended: a combination DA1.C1 — A1+M1+R1
and a combination DA1.C2 — A2+M2+R1. Design
approach DA2 contains sets Al, M1 and R2. Finally,
the approach DA3 denotes partial safety factors: Al,
M2 and R3. In the Polish National Annex [45] the
DA2* is distinguished as a variation of DA2. In the
case of design approach DA2* characteristic values of
actions should be applied instead of design values
when computing resistance.

Table 1. Partial safety factors established by EC7

Partial factors for permanent and variable actions yr
Actions Symbol | Set Al Set A2
Permanent Unfavorable v 1.35 1.0
Favorable 1.0 1.0
. Unfavorable 1.5 1.0
Variable Favorable e 0 0
Partial factors for soil properties y,,
Soil parameters Symbol | Set M1 Set M2
Friction angle Ve 1.0 1.25
Cohesion Ve 1.0 1.25
Soil unit weight 7y 1.0 1.40
Partial factors for resistance yz
Resistance Symbol | SetR1 | Set R2 | Set R3
Bearing capacity YR 1.0 1.4 1.0

No probabilistic methods are suggested by EC7
in order to calibrate partial safety factors presented in
Table 1. As regards characteristic value, Clause
2.4.5.2(10) of EC7 defines it as being “selected as
a cautious estimate of the value affecting the oc-
currence of the limit state”. Furthermore, Clause
2.4.5.2(10) of EC7 states that statistical methods can
be applied when selecting characteristic values, but
they are not mandatory. On the other hand, Eurocode 0
(ECO) [17] gives general rules regarding safety re-
quirements for various types of structures (including
those considered in geotechnics). Its guidelines are
formulated as minimal reliability indices depending
on the type of structure and reference period. Clause
1.1.1(1) of EC7 states that “EC7 is intended to be
used in conjunction with ECO, which establishes the
principles and requirements for safety and service-
ability, describes the basis of design and verification

and gives guidelines for related aspects of structural
reliability”.

It should be emphasised that reliability indices can
be evaluated solely by applying probabilistic tools.
The reliability index [ is associated to probability of
failure by the following relationship

Pr=0y(=5), (D

where @, is one-dimensional standard Gaussian prob-
ability cumulative function. Therefore, designing
a certain structure on selected reliability index
means designing on equivalent “target” probability
of failure. It is worth mentioning that in North
America approach called as load and resistance
factor design (LRFD) is used in practice. This ap-
proach, however, allows for more probabilistic
evaluations than Eurocode 7.

3. METHODS OF RELIABILITY
INDEX EVALUATION

Usually structural and geotechnical reliability
problems are presented in the form of so-called limit
state function g(x). The argument x of the function g
is a random vector X = (X}, X5, ..., X,) consisting of
basic random variables defining loads, material prop-
erties, geometrical quantities, etc., as well as some
other properties considered as deterministic. The limit
state function is defined such that it takes non-
negative values if the argument x is in “a safe domain”
and negative values otherwise (x in a failure domain).
The first concepts of reliability index come from Cor-
nell [11], [12]. However, most of the contemporary
reliability evaluations are based on index proposed by
Hasofer and Lind [32] that is defined as

fu = min (x-EXD'C(x-EX}) (@)
where E{X} is the expected value of the vector X, C is
the covariance matrix and the hypersurface correspond-
ing to the equation g(x) = 0 is called the limit state
surface. The most important step was done by conjunc-
tion of the Hasofer—Lind concept with some probability
transformation that allowed the probability distribution
of vector X to be taken into account. This was possi-
ble by utilizing the Rackwitz—Fiessler algorithm [50]
and so-called normal tail approximation [14]. Conse-
quently, these new approaches allow probability of fail-
ure evaluation. The next development enables elabora-
tion of the First Order Reliability Method (FORM) and
the Second Order Reliability Method (SORM) [34] that
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are briefly outlined below. The probability of failure
is used as a reliability measure
pr= [ fdx. 3)

{g(x)<0}

Here, fx denotes a multidimensional joint prob-
ability density function (pdf) of the random vector X.
In the special case if X is a Gaussian random vector
with uncorrelated components X;, i = 1, ..., n, the lin-
ear transformation of the coordinate system, known as
the standardisation, is convenient to use

_x—B(X)

Ox

i=1,..n, 4

i

i

where E(X;) is the expected value and oy, denotes the
standard deviation of the random variable X;, respec-
tively. The corresponding mapping of the limit state
surface g(x) = 0 is as follows

G(y)=g(x(y)) =0. )

If moreover, the limit state function g is a linear
one, then G will remain linear. By utilizing the prop-
erty that the family of Gaussian probability distribu-
tions is closed with respect to linear combinations, it
could be easily demonstrated that [46],

[6.(n)dy =@y (-p). ©)

{G(y)<0}

Pr=

(provided that pr < 0.5) where ¢, is n-dimensional
standard Gaussian probability density function, @, is
one-dimensional standard Gaussian probability cu-
mulative function, and £ is the distance of the hyper-
plane G(y) = 0 from the origin called the reliability
index (see equation (1)). This result is schematically

presented in Fig. 1.
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Fig. 1. Graphical representation of £ geometrical meaning
in two-dimensional case

In the most practically interesting cases if either
non-Gaussian probability densities or non-linear
limit state functions appear the exact value of pr is
hardly obtainable. If distributions are non-Gaussian then
a transformation to the standard normal space is nec-
essary. As a result, a new Gaussian vector is obtained.
Under some mathematical assumptions such a transfor-
mation always exists [52]. Next the point y* that mini-
mizes the distance of the limit state surface G(y) = 0
from the origin in the standard normal space has to
be found. This yields the following optimization
problem

minimize |||, subjected to G(y) =0, (7)
where ||.|| denotes the Euclidean norm. Several so-
phisticated algorithms for this problem were devel-
oped. A critical review of them can be found in [37].
The point y” is called the design point and its distance
from the origin is denoted by /3 (therefore the point y"
is sometimes called the beta-point). Finally, the limit
state surface in the standard normal space is replaced
with the tangent hyperplane at the point y and the
probability of failure is evaluated by the following
approximate form

e |

Vey<o)

9, (Y)dy =@y (=F) . @®)

The details can be found in [15], [34] and [46].
The idea of the above approximation is illustrated in
Fig. 2. Comparison of equation (8) and equation (1)
demonstrates the fundamental role of the reliability
index S.

e
G(y)<0
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Fig. 2. Graphical presentation of limit state surface approximation
according to the first-order reliability method

G(y)=0

Having in mind the form on the n-dimensional
normal pdf it is clear that point y" is the most probable
point in the transformed failure region and therefore it
reflects the most probable failure combination of
parametric values.
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In the SORM approximation, the limit state sur-
face is fitted with a quadratic surface in the vicinity
of the design point y'. The results were obtained by
Tvedt [55] (exact result) and by Breitung [5]. Based
on their results Hochenbichler and Rackwitz [35]
proposed a correction factor to the failure probabil-
ity, namely

. (1 4CEH )
Pr =@ ﬂ)ll:[(l ®,(-f) Kij =Prsoru (9)
where x; are the main curvatures of the surface G(y)
= 0 at the design point y'and g is the one-dimensional
standard normal pdf. This gives the value of prsorm.
Next the reliability index fsorm can be computed by
inverting the following relationship

(10)

The methods described in this section are classical
methods in structural reliability. However, due to their
mathematical complexity and requirement of specially
dedicated software, through many years they were not
very often used to safety assessments in geotechnics.
The situation improved when FORM and SORM
techniques had been coded as spreadsheet applica-
tions. The spreadsheet-automatic constrain optimiza-
tion FORM computational approach was proposed
by Low and Tang [38], [39]. More comments on
FORM/SORM spreadsheet methods can be found in
recent paper by Low and Phoon [40]. Some files il-
lustrating the [38], [39] open-source approaches are
available at http://alum.mit.edu/www/bklow.

Bsorm = _CDEI(PFSORM) .

4. EXAMPLES

In the present section, two examples of reliability
based evaluation oriented toward design are presented.
First example is compared with some EC7 results. The
second one is confronted with WSD method.

4.1. EXAMPLE 1. RETAINING WALL

The example presented below in its deterministic
part is based on the example given in Tomlinson’s
textbook [54]. The probabilistic approach follows the
considerations given by Low and Phoon [40]. Tomlin-
son determines the factor of safety against bearing
capacity failure of a retaining wall that is shown in
Fig. 3.
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Fig. 3. The retaining wall analyzed in the example

The retaining wall is subjected to a horizontal load
H =300 kN/m applied at a point 2.5 m above the base
and a centrally applied vertical load V= 1100 kN/m
(see Fig. 3). The base (B =5 m x L = 25 m) of the
retaining wall is embedded at a depth of 1.8 m in
a silty sand with an angle of internal friction ¢ = 25°,
a cohesion ¢ = 15 kN/m’, and a unit weight y =
21 kN/m’. For the bearing capacity case the limit state
function is defined as

g£=9,—49 (11)

where

. . B .
q,=cN.sd.i.+ poNqudqlq +7]/N7Syd;,l;, , (12)

q9=— (13)

B

in which ¢, is the ultimate bearing capacity, ¢ the
applied pressure, p, the effective overburden pressure,
B’ the effective width of foundation (B' = B — 2e,
where e is the eccentricity of the load), ¢ is the cohe-
sion of the subsoil, y the unit weight of soil below the
base of foundation. Bearing capacity factors N., N, N,
that are functions of the angle of internal friction (p)
of soil are calculated according the same equations as
given in EC7 (N, according to Vesic). The shape fac-
tors s., 4, s, are defined by equation (14), the factors
accounting for the depth effects of foundation d,, d,,
d, are defined by equation (15) and the factors ac-
counting for the inclination of the effect of the applied
load i., iy, i, are defined by equation (16), cf. Tables
4.5a and 4.5b in Bowles [3].

c

N, B B B
s =1+—2L.—= s =l+—sing, s, =1-04—, (14
Nz SeTirpsnd s AR

d,=1+0.4k, d =1+2igp(l-sing)’k, d, =1, (15)
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1-i

q

N, -1

.
(16)

In order to illustrate reliability based design the
example described above has been probabilistically
elaborated. Soil strength parameters and both hori-
zontal and vertical loads were treated as lognormally
distributed random variables with mean values equal
to corresponding values accepted in Tomlinson’s ex-
ample. All necessary probabilistic assumptions are
given in Table 2.

The computations were carried out by means of the
FORM method. The target reliability index against bear-
ing capacity failure has been selected on the level equal
to f=3.0. The width of the foundation B =4.51 m was
obtained as the minimal satisfying the target reliability
index. Detailed results are presented in Table 3 and
Table 4.

Note that Table 3 contains the coordinates of de-
sign point that are understood as design values of
cohesion, friction angle, horizontal load and vertical
load, respectively. Values of the coefficients in equa-
tion (12) computed for the above design values of the
parameters are presented in Table 4.

B 0.5H
V+A-c-ctgg

3 0.7H
V+A4-c-ctgg

} , 225, <5,

} , 2<a,<5.

21

In geotechnical design according to EC7, the char-
acteristic values of resistance parameters are divided
by partial factors to obtain the design values, while the
characteristic values of action parameters are multi-
plied by partial factors. The detailed values of partial
factors depend on a design approach (see Table 1 in
Section 2). Note that the partial factors in Table 1 do
not contain any statistical information concerning
coefficients of variations of neither loads nor pa-
rameters. As has already been mentioned in Section 2,
the characteristic values of geotechnical parameters
may be selected by applying some statistical tools, but
statistical approach is not mandatory.

The role of a mean value, a standard deviation and
a design point in the reliability based approach is
analogical to the role of a characteristic value and
a partial factor of the same parameter in the EC7 de-
sign approach. For example, for a given mean value
and standard deviation of a friction angle ¢ one gets
(by assuming at 10 percentile of the lognormal distri-
bution) the characteristic value ¢, = 21.9°. Then the
partial safety factor of ¢* (denoted by y,) implied by
the design point y~ is Vo = @/@* = 21.9°/20.77°
= 1.054. In EC7, the partial safety factor is applied to
tang instead of @. However, assuming a mean value
and a standard deviation of tang the partial factor yian,
can be analogically evaluated using the FORM
method. In the case of a horizontal load H assuming

Table 2. Probabilistic characteristics assumed in Example 1

Parameter Unit Mean Stal'.ndgrd Distribution Correlation matrix R
value | Deviation
Cohesion ¢ [kPa] 15 3 lognormal 1 -0.5 0 0
Friction angle ¢ [°] 25 2.5 lognormal 0.5 1 0
Horizontal load # | [kN/m] | 300 45 lognormal 0 0 0.5
Vertical lad V' [KN/m] | 1100 110 lognormal 0 0 0.5 1
Table 3. Results of probabilistic computations
Design point
B L D y ep er B r q * . o B
c 0] H V
[m] | [m] | [m] | [kKN/m®] | [m] | [m] | [m] | [m] | [kPa] | [kPa] | [-] |[kN/m] | [kN/m] | [-]
4511|2518 21 087 0.0 | 2.77 | 25 | 37.8 | 15.20 | 20.77 | 412.63 | 1184.7 | 3.00
Table 4. Values of coefficients in equation (12) calculated at the design point
Sq Se s, iy i i N, N, N, d, d. d,
| HH (-] (-] (-] (-] (-] | ] H
1.03 | 1.03 | 0.98 | 0.64 | 0.582 | 0.406 | 6.908 | 15.58 | 5998 | 1.13 | 1.16 | 1.00
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a characteristic value at 90 percentile of a lognormal
distribution (with the mean value and the standard
deviation as in Table 2) one gets H; = 359 kN/m. Re-
ferring to the design point value the corresponding
partial factor is yy; = H'/H, = 412.6/359 = 1.15. In the
case of cohesion the design value is slightly higher
than the assumed mean value. This is the consequence
of the negative correlation between strength parame-
ters @ and ¢ that was assumed in this example. Nega-
tively correlated ¢ and ¢ means low values of ¢ tend
to occur with high values of ¢ and vice versa.

In a reliability-based design the same target reli-
ability index (equivalently the same probability of
failure) can be utilised across different applications
and different levels of parametric uncertainty and
correlations. If the consequences of failure are more
significant than the target reliability index should be
raised to a higher level. Consequently, by means of
the reliability computations proposed above, another
set of partial factors can be obtained. Such a flexibility
in parametric sensitivities and correlations are not
found in EC7 based on code-recommended partial
factors. Also characteristic values can be precisely
defined if the reliability approach is used.

The ECO code recommends a minimum reliability
index for three reliability classes RC1, RC2, and RC3 for
the ultimate limit state (Table B2 in EC0). The minimum
reliability indices for 50 year reference period are 3.3,
3.8 and 4.3, respectively. In contrast, the EC7 established
“Geotechnical categories”. However, there is no link
between RC classes and “Geotechnical categories” un-
less reliability-based calculations are carried out.

As has already been mentioned in the case of
strength parameters mutual correlation of soil proper-
ties is reflected in the design values obtained by a reli-
ability approach. It is worth mentioning that such a cor-
relation cannot be considered in EC7.

4.2. EXAMPLE 2. PILE SUBJECTED TO
LATERAL LOADS

The example presented below is based on results
of a larger study published by Puta and Rozanski [48].
Let us now consider the problem of the evaluation of the
bearing capacity of a rigid pile embedded in a homoge-
neous cohesionless soil deposit and subjected to lat-
eral loads as in Fig. 4.

The mechanism associated with the failure assumes
a rotation of the pile about the centre O due to external
load as well as reaction of surrounding soil. Let A, and
M, denote the ultimate lateral load and the ultimate
moment. An ultimate ground resistance at a depth z is

denoted by p,(z). Treating the pile as a strip of width
D (or diameter D in the case of a pile of circular cross-
section) and length L the equilibrium equations can be
written in the form

H,=[p,@Ddz~ [ pDdz.  (7)
0 z,

u

z, L
M,=He=- j p,(2)Dzdz + I p,(2)Dzdz. (18)
0 z,

Fig. 4. A scheme of rigid pile embedded in soil
and subjected to lateral load

The parameters to be found in equation (17) and
equation (18) are z, and H,. It is evident that the solu-
tion of those equations needs specifying the ground
resistance distribution, p,(z) along the pile. Here the
distribution proposed by Brinch Hansen [6] has been
applied. This approach utilizes the limit state theory as
well as rigid ideally-plastic model of subsoil. Using
the equations derived by Brinch Hansen [6] it can be
found (see Puta and Rozanski [48]) that the equations
for the rotation centre z, and the ultimate lateral load
H, can be written as follows

a, +a,z, +a,z: +a,z; +b, In(D + a,z,)=0, (19)

H,=a}+alz, +a,z’ +b In(D+ a,z, (20)

where ao, a,, a1, a;, ax, a5, as, by, a, are coefficients
depending on soil properties, namely the friction angle ¢
and the unit weight y, as well as load parameters like
overburden pressure p and an eccentricity e (see Fig. 4).
Due to a relatively complex character of Brinch Hansen
solution also the coefficients specified above are ex-
pressed by rather complicated equations. Details can be
found in a paper by Puta and Rozanski [48].

In deterministic computations as a measure of
safety a total safety factor can be considered, which is
defined as the ratio of the ultimate lateral force H, and
the applied lateral force H,
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e2y)

Some preliminary numerical studies have evi-
dently showed high sensitivity of the ultimate loading
force H, to a value of the subsoil friction angle ¢.
Then investigation of random fluctuations due to in-
herent variability of ¢ seems to be a vital problem.

If some soil properties are assumed to be random
variables then a natural question arises: how reliable
the total safety factor is? Accordingly, appropriate
reliability problem can be formulated as follows: find
the probability pr such that the applied loading H, ex-
ceeds the ultimate lateral loading H,

Hu
pF:P{Ha>Hu}=P{H

< 1} =P{F<1}. (22)

a

Due to complicated mathematical relationships
between a soil friction angle and the total safety factor F
it is reasonable to support FORM/SORM computa-
tions by some preliminary evaluations, namely by
response surface method [4]. In general, this method
consists in approximating an unknown by the known

function chosen appropriately. In the case of numeri-
cal computations, relationships between the model
parameters xj, X2, ..., X,, Which are introduced as the
input data (random parameters of the problem), and
the values obtained as output data y = f(x, x2, ..., Xp)
are defined. In the case considered in this example y =
H,(p, L). The fitting of the function f'is done by means
of the non-linear regression analysis. Having the de-
pendence H, = f(x1, x2, ..., X,) the SORM method can
be utilized straightforward.

As an example let us consider a situation with three
random variables (the scheme is presented in Fig. 4): the
angle of internal friction of the soil ¢, the pile length L
and the external load H,. The details are given in Table 5.

In this case, the response function was established as
H,=al’(c-9)", (23)

where a = 0.17 - 10%, b =2.868, ¢ = 141.6, d = -9.411,
@ 1is introduced in degrees and H,, in kN.

Now, evaluation of reliability index that corre-
sponds to a given value of the factor F' can be per-
formed according the following algorithm [48]:

Table 5. Parameter characteristics involved into the problem considered

Probability Expected Coefﬁm?nt
No. Parameter o of variation
distribution value
cov[%]
1 |Angle of internal friction ¢ |lognormal 33.6° 15%
2 |External lateral load H, lognormal 823 kN 15%
3 |Pile embedding L normal 29m 0%, 2%, 5%
4 |Eccentricity e constant (nonrandom) 8.64 m
5 |Unit weight y constant (nonrandom) | 20.2 kNm™
6 |Pile diameter D constant (nonrandom) 0.36 m.
7 |Overburden pressure p constant (nonrandom) | 8.8 kNm™

Table 6. Reliability indices obtained in analysis with three random variables (¢, L, H,)

Total safety | Cxpected value | Reliability index | oy iiies index g | Reliability index 3
factor F of the applied coviL}=0.0 cov{L} =0.02 coviL} = 0.05
lateral load H, [kN] L is non-random
12 21.92 0.38 0.37 0.35
1.4 18.79 0.75 0.73 0.70
16 16.44 1.09 1.07 1.01
18 14.61 1.41 138 1.30
2.0 13.15 1.70 1.67 1.56
22 11.95 1.97 1.94 1.81
24 10.96 22 2.19 2.04
26 10.12 2.46 2.44 2.26
28 9.39 2.69 2.67 2.46
3.0 8.77 291 2.90 2.66
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1. Assume a value of F;

2. Replace all random variables by constants equal to
their expectations and use them to evaluate the ul-
timate resistance H, given by equation (20);

3. For a given total safety factor F (step 1) and ob-
tained value of H, (step 2) calculate the value of
applied load H, utilising equation (21);

4. Treat H, and ¢ as random variables. Assign to H,
the expectation equal to the value obtained in step
3. Other probabilistic characteristics have to be
additionally assumed;

5. Evaluate f and pr by making use of equation (22);

6. All steps above have to be repeated for several
different values of factor F.

The results of SORM computations for various

values of safety factor F' are summarised in Table 6.
Table 6 demonstrates how the total safety factor

used in WSD method can be related to reliability in-

dex. Here, the values of factor /' and index S are
closed to each other. Consequently it is seen what
range of lateral load H, can be applied for a target
level of safety in the sense of total factor as well as
reliability index. It can also be seen that index S is
sensitive with respect to possible fluctuations of the
pile’s length.

It should also be noted that the response surface
method can be a useful tool that can support FORM
and SORM methods in reliability-based design.

5. MODELLING BY RANDOM FIELDS

In previous sections the important role of reliabil-
ity methods as a supporting tool in geotechnical de-
sign has been pointed out. However, both examples
being discussed are based on quite a simple probabil-
istic modelling. Namely the modelling was conducted
by assigning a single variable to a parameter treated as
random. The parameters could be mutually correlated.
This way of modelling suits well a lot of typical de-
sign problems as it takes in account mean values,
standard deviations, probability distributions of indi-
vidual parameters as well as a possible correlation
between them. However, such an approach can be
hardly applicable if the spatial variability of soil prop-
erties is under consideration, especially important if
relatively large area can be involved in failure mecha-
nism. Moreover, it could not be sufficient if the reli-
ability evaluations are performed in conjunction with
finite element computations. In both cases mentioned
a probabilistic modelling by the theory of random
fields seems to be adequate solution.

5.1. BASIC CONCEPTS OF RANDOM
FIELDS THEORY

Random field (RF) is a generalisation of stochastic
process. Given a probability space (2, S, P), by ran-
dom field we understand a function X: Q x R* — R
such that for each x e R, X(w, x) is a random vari-

able. The space R’ means that the domain of the field
is three-dimensional. However, it can be replaced
by R’ (two-dimensional random field) or by R (sto-
chastic process).

Hence, to each point of a field (area) under con-
sideration a random variable is assigned. Addition-
ally, these random variables are related to each other
by a certain correlation structure. A function X(wy, x),
where w, 1s fixed and x is variable is called a realiza-
tion of the field X.

Random field theory has been implemented to
geotechnical problem since the 1970s, when it was
applied to examine variation of soil parameters with
depth [2]. Important papers which contributed to the
development of the application of random fields the-
ory to description of soil properties were published by
Vanmarcke [56], [57]. The modern approach to mod-
elling of soil parameters by random fields was for-
mulated by Rackwitz [51]. Worth mentioning is the
fact that the development of computing power in the
last decades is of great importance for effective appli-
cation of random field theory for consideration of
spatial variability of soil parameters in probabilistic
analysis.

Assume that to a certain soil property a random
field X(x, y, z) is assigned. Then at each point (x, y, z)
of the space (or plane in two-dimensional problems)
the property is represented by a single variable. Usu-
ally it is convenient to express an RF as

X(x,y,z) =E{X(x,y,z)+6X(x,y,z)U(x,y,z)} b
(24)

where E{X(x, y, x)} is a mean value, ox(x, y, z) corre-
sponds to a standard deviation and U(x, y, z) is a ran-
dom field with zero mean value and unit standard
deviation. A correlation structure of RF is determined
by covariance function which is defined as

C(x), %y, Y15 Y2521, 2,) = BEU (x5, Y5, 2)U (X, 1, 21) } »
(25)

U(x, y, z) as in (24). If the mean value E is a constant
for all (x, y, z) under consideration and covariance
function depends solely on the lag vector between
points, i.e.,
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C(x15 X5, V15, Y2521,22) = C(xy = X1, ¥y = V1,22 — 7))
(26)

then the RF is called weakly stationary (or wide-sense
stationary). A weak stationary RF is called isotropic if
its covariance function depends solely on the distance
between points, i.e.,

C(xpxzsypyzszpzz)

~ (Yo =5+ a2+ @ -2 @)

It is clear that for isotropic RF the covariance
function is a single variable function. Another impor-
tant case of weakly stationary RF is a separable RF.
For separable RF its covariance function can be fac-
torised as follows

C(xy =X, ¥, = Y152, — 7))

= C(Ax, Ay, Az) = G, (A) G, (Ay)C5(A2). (28)

A feature of separability allows a correlation struc-
ture to be analyzed in each direction separately by
three functions of single variable. In the sequel, only
weakly stationary RF will be considered.

A suitable measure of the rate of variability of
a random field is a scale fluctuation 6 [56]. A value of
a scale fluctuation (also referred as correlation length or
correlation radius) specifies how two points in a field
are correlated with each other. If two points are sepa-
rated by a distance greater than 6, it means that these
points are significantly uncorrelated. Precisely a scale
of fluctuation can be defined (in one-dimensional
case) as

0= %T C(Az)dAz = 2T p(Az)ydAz,  (29)
o 0 0

where

p(an) =5
O

(30)

is a correlation function. It can be proved that
a covariance function must be positive-definite
function.

Some examples of covariance functions (for one-
dimensional RF) with corresponding correlation lengths
are presented in Table 7.

For practical applications most important are
Gaussian random fields. An RF is called Gaussian or
normal if for any finite set of points xi, x,, ..., x, the
random vector (Xj, X3, ..., X,) is normally distributed.

In this case three things have to be defined to charac-
terize a soil parameter by a weakly stationary and
normally distributed random field:

1. the field mean gy,

2. the field variance o7,
3. the field correlation structure.

Table 7. Covariance functions and scales of fluctuation

Scale of fluctuation

Covariance function .
(correlation length)

C(Az)=0"-exp(-a| Az|) 92%

a

C(Az) = 0 -exp(~a| Az | cos(bAz) -
= p 4+ b2

2
C(Az) = o> -exp(—a| Az |)J, (bAz) | 6= \E .exp(_ l;a ]1

C(A2) = 0 -exp(—a(Az)?) 6=

a and b are field parameters, J; is a Bessel function of the first
kind, /, is a modified Bessel function of the first kind.

The correlation structure is defined by assigning
a covariance (correlation function) and a fluctuation
scale is included as a parameter of the covariance
function. The application of RF theory in practical
analysis requires some simplifications, because an
implementation of a continuous random field in nu-
merical analysis would be cumbersome. Hence a ran-
dom field has to be discretized. In literature, various
RF generators can be found [22], e.g., spectral random
field generator (SRFFT), turning band method (TB),
the matrix decomposition method (LU), the sequential
Gaussian simulation method, the local average subdi-
vision (LAS).

5.2. SPATIAL AVERAGING

An important step in utilizing random fields in
geotechnics was applying spatial averaging procedure
proposed by Vanmarcke [56]. Spatial averaging re-
flects the situation in which failure is caused by cer-
tain regions of the subsoil area, but is not a conse-
quence of “point” behaviour. On the other hand,
spatial averaging is the base of the local average sub-
division method [18] that will be used in further part
of this paper.

Assume now that a soil parameter X is described
by a stationary random field X(x, y, z) with a covari-

ance function C(Ax, Ay, Az) = oy pAx, Ay, Az),

where o is a variance of a random field X and py is
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its correlation function. Let ¥ — R® denote a certain
area and |V] the volume of V. Spatial (local) average,
used by Vanmarcke [56], is based on an introduction
of new field expressed by

X, = il j j j X(x, y, z)dxdyd: .

€1y
It can be noticed that X} is a random variable de-
fining a certain mean of random field X in area V. By
changing the area J another random field is created
X(V), for simplicity denoted X,. Random fields X and
X have the same mean value (that is a consequence
of stationarity) but different variances. A variance of
a random field X takes the form
VARLX, =03 =y (V)o (32)
where y(V) is the variance function (called sometimes
the variance reduction function). The variance func-
tion in one-dimensional case is defined as

y(L)y=— (1 ——jp(AZ)dAZ 33)

According to many opinions (e.g., [8], [47]) the
spatial averaging should be applied if reliability
evaluations are carried out in geotechnics. Otherwise,
one can obtain not realistic values of reliability meas-
ures. The example below demonstrates the effects of
this procedure. Let us now come back to example 2 in
Section 4 and assume that the friction angle of the soil
surrounding the pile is characterised by one-dimensional
isotropic lognormal RF (see Section 7) with constant

mean value m, and constant point variance 05,. Addi-
tionally, assume that the covariance function in the field
is given by Gaussian function (last row in Table 7).

Consider now the spatial averaging of the ¢ along the
pile’s length

(34

h|| —

j‘q)(z)dz
0

where L is the pile length (in the cases where L is

treated as random variable L is understood as the
expected value of L). Under the above assumptions
the variance function (33) takes the form

T T erf ﬁ[ —1+exp(—”217j
— 0 o o
y(L)=

52L

(35)

where Jis a fluctuation scale. Values of function (35)
for three different values of & and resulting values of
the variance function are shown in Table 8.

Table 8. Values of variance function for three different values
of fluctuation scale

Values of the fluctuation scale
6=0.6[m] | 6=0.8[m] | =10 [m]
Values of the variance function

2.9 01933 | 02516 | 03070

Averaging
length L [m]

Next, the SORM computations were carried out
with reduced variances yielding from equation (32).
Comparison of results is presented in Fig. 5.

—®— with spatial averaging (8 = 0.6m) —e— with spatial averaging (& = 0.8m)
—a&— with spatial averaging (8 = 1.0m) —s¢— without spatial averaging

6

¢

W

P

Reliability index B

Lk —

o =N

1.4 1,6 1.8 2 22 2.4 2.6 28 3
Total safety factor F

s
]

Fig. 5. The influence of spatial averaging on the values
of reliability indices

The results obtained evidently demonstrate high in-
fluence of spatial averaging on reliability measures /.
Note that the total safety factor F of level 2.4 gives
relatively high values of reliability indices (greater
than 3.4), if the averaging is applied. On the other
hand, it is worth mentioning that the effect of the
value of fluctuation scale is remarkable.

6. APPLICATION OF RANDOM FIELDS
IN CONJUNCTION WITH FEM

Local average subdivision method (LAS) has an
advantage over other random field generators due
to which it can be in an uncomplicated way applied to
finite element method (FEM) which nowadays is
commonly used by engineers during a designing proc-
ess. LAS method allows a random field considered to
be discretized on a finite number of elements which
correspond to the number of elements in finite ele-
ment grid in FEM [30]. Random field theory together
with LAS method and Monte Carlo simulations was
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used in an effective manner to the modeling of spatial
variability of soil parameters in the random finite
element method (RFEM). RFEM was introduced in
a paper by Griffiths and Fenton [25]. Generally,
RFEM is a specific type of earlier created stochastic
finite element method SFEM [13], [24], [33]. RFEM
is distinguished from other courses developed within
SFEM in that the LAS method is consequently applied
as a random field generator. RFEM is an useful tool,
which can be used in reliability base design. More de-
tailed description of RFEM can be found in a mono-
graph by Fenton and Griffiths [22].

An effective application of RFEM was possible
relatively late, namely after the development of com-
puter technology, especially when personal computers
gained high computing power. RFEM, as a probabil-
istic method, requires a great amount of results ob-
tained through MC simulations to estimate statistical
parameters such as a mean value, a standard deviation
or a probability distribution. MC simulations together
with random field generation and finite element com-
putations are time-consuming. However, to this day
it was successfully introduced to solve various geo-
technical issues:

e A settlement of foundations [20], [31], [36];
e A bearing capacity of foundation on one layer soil

[19], [27], [43], [44], [49];

e A slope stability [10], [29], [42];
e An earth pressure on retaining structures [28],

[30];

e A flow of water in soil [1], [25], [26].

7. ALGORITHM OF RFEM
TO RELIABILITY BASE DESIGN
OF A SHALLOW STRIP FOUNDATION

At the beginning, as mentioned above, an applica-
tion of random fields requires a determination of mean
values, standard deviations and scales of fluctuations
of soil parameters whose spatial variability has great
influence on the safety assessment of a structure con-
sidered. These statistical parameters shall be obtained
from in situ tests, existing knowledge and experience.
A methodology for determination of statistical pa-
rameters of soil properties is not within the scope of
the present study. Next information which has to be
specified is probability distributions of soil properties
being considered. In the case of cohesion or Young’s
modulus a lognormal distribution is commonly used.
A lognormal random field Y can be obtained from
normal random field G by the transformation Y =

exp{G}. The probability density function of a log-
normal distribution takes the form

2
1 1 Inx—u
(x)=—————-expy——| — L | L forx>0,
4 XO,yN27 P 2 Olny
(36)

where

tny =E[G], o3,y = Var[G]. (37)

While a friction angle or Poisson’s ratio can be de-
scribed by a distribution of bounded support. Such
a choice is supported by the fact that these soil pa-
rameters vary within bounded ranges. Hence an appli-
cation of a normal or a lognormal distribution would
not reflect the real nature of a friction angle or Pois-
son’s ratio. Consequently, nonphysical values of these
parameters could be obtained during a generation of
random fields. A bounded random field QQ can be
achieved by a hyperbolic tangent transformation from
a normal random field G

Q=a+%(b—a){l+tanh(§j}, (38)

where a and b correspond to the minimal and maximal
values of a random field Q considered. Parameter s
denotes the scale factor related to a standard deviation
of a random field 2. The probability density function
of the bounded tanh distribution takes the form

Jr(b-a) ew{_z_i{ﬁln(z:zj—m}z},

709= V2s(x—a)b-x)
(39)

where m is a location parameter.

The last assumption concerns a correlation struc-
ture of random fields. In this paper, the anisotropic
case is under consideration because a greater correla-
tion radius is observed in a horizontal rather than ver-
tical direction in natural conditions. This is obviously
associated with geological processes that occurred in
the past. It is assumed that a correlation function is
described by a function of the form

2 2
p(7) =exp| — (2”2'} +[2|TI|] ,  (40)

o 0

x y

where 7, =x, —x; and 7; =y, — . Furthermore, 6, and 6,
are scales of fluctuation in horizontal and vertical
directions, respectively.
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In the next step, the geotechnical problem which
we want to solve has to be transferred to FEM code.
Based on specified characterization of random fields,
the LAS method can be applied in order to generate
random fields of soil parameters. Firstly, normal
(Gaussian) random fields are created, and then using
the above-mentioned transformations final random
fields can be obtained. Figure 6 presents one realiza-
tion of random field of a cohesion associated with
FEM grid together with failure mechanism of shallow
foundation. As can be noticed, each finite element is
described by a single random variable.

Fig. 6. A realisation of cohesion random field (lognormal)

The numerical computations can be performed af-
ter all assumptions have been made. A result of Monte
Carlo simulation is a statistical set of results, e.g.,
a random bearing capacity of a foundation. The
greater number of realizations N in MC simulation the
more accurate the estimation of statistical parameters
of a random bearing capacity will be. The accuracy in
MC simulation can be approximately expressed by

ﬁ (due to the Tschebyschev inequality). In conse-

quence of numerical analysis a mean value, a standard
deviation of a random bearing capacity can be evalu-
ated. These statistical moments are crucial to estimate
a probability distribution of a random bearing capacity
whose application is one of the approaches to calculate
a reliability index f. The reliability index S can also
be evaluated based on distribution free methods such
as Hasofer—Lind mentioned in Section 3.

A selection of theoretical pdf which will be well-
fitted to the empirical pdf can be conducted by the
Kolmogorov—Smirnov [23] goodness-of-fit test. This
test is concentrated on the measurement of a dis-
tance Dy between empirical Sy(x) and theoretical F(x)
probability distribution functions.

D, = sup

—00< X <+00

[ F(x) =Sy (). (41)

There is no reason to reject a theoretical pdf if Dy is

lower than assumed threshold value i. N denotes

JN

the number of realisations in MC simulation, A, is
a value associated with a significance level « and can be
found in the statistical table of Kolmogorov—Smirnov
test [23].

A fitted theoretical pdf of random bearing capacity
gy can be applied to evaluate a reliability index f and
equivalent failure probability pr. For example, the
design value Q, of bearing capacity of foundation can
be evaluated as the value that satisfies the following
equation

Pr=Plg, <0, (42)

8. EXAMPLES OF APPLICATION
OF RFEM
TO RELIABILITY BASE DESIGN

8.1. SAFETY ASSESSMENT
OF A SHALLOW FOUNDATION
ON COHESIONLESS SOIL

The authors of the present study conducted reli-
ability analysis of an embedded shallow footing in
cohesionless soil for various width of foundation [49].
The plane strain situation was considered because
a foundation length was assumed as infinite. The
bearing capacity analysis applied an elastic-perfectly
plastic stress-strain law with a Mohr—Coulomb failure
criterion. Soil parameters were investigated in the
vicinity of Wroctaw (see [53]) and are gathered in
Table 9. Only a friction angle was described by a ran-
dom field. Therefore, a random character of bearing
capacity depended solely on spatial variability of a fric-
tion angle. Figure 7 presents a geometry of a founda-
tion and soil.

Reliability indices f and corresponding design
values of bearing capacity R, for various width and
a depth of embedment 4, = 1.0 m are shown in Fig. 8.
The reliability base design was proceeded by RFEM
according to the algorithm given in Section 7 on
the basis of 2000 realizations. The Weibull distri-
bution was adopted to characterize a bearing capac-
ity of foundation by distribution fitting approach
described in Section 7 (for details, see [49]). Next
the design values of bearing capacity O, were found
by equation (42). As can be expected, the higher the
reliability index, the lower the design value of
a bearing capacity regardless of the foundation
width.
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Table 9. Soil parameters used in numerical analysis
of the bearing capacity of cohesionless soil

of an embedded shallow foundation on cohesive
soil from the vicinity of Taranto city in Italy. Reli-

Soil parameter Unit | Value | Distribution ability analysis was used to examine an influence of
Ls °] 30 horizontal scale of fluctuation on reliability index f.
o ] 50 As in example 8.1, the plane strain situation was
Friction angle ¢| bounded considered. The bearing capacity analysis applied
f [°] 40/20 an elastic-perfectly plastic stress-strain law with
L 08 a Mohr—Coulomb failure criterion. The width of the
e : 1;] '0 y — foundation was constant (B = 1.0 m) as the depth
CO’ coton @ [kPa] eterm?n%sgc (h. = 1.0 m). The soil parameters used in the ana-
You.ng S mOdu.hw‘ 2 [MPa] o3 deteranTSt?c lysis (Table 10) and correlation lengths concern
Poisson’s ratio v -] 0.3 | deterministic Taranto Blue Clay were described by Cafaro [7]
kN . . . .
Soil unit weight { 3} 185 | deterministic z'cmd.Cherublnl [9]. The soil FEM model is shown
m in Fig. 9.
Dilation angle w [°] 12 deterministic
Scale of
fluctuation 00, [m] 10.0x1.0 Table. 10. Soil parameters used in numerical analysis
of the bearing capacity of cohesive soil
=1,0m-18,5kN/r
SEREREE LB _ Soil parameter Unit Value Distribution
oL v (_LL L1t - My [°] 20
: oy | I°] 4.8
Friction angle max bounded
g gled 7‘2 , [°] 35/5
E ‘ s -] 2.27
H , 4 | [kPa] 36
Cohesion ¢ lognormal
o. | [kPa] 20
Young’s modulus £ | [MPa] 36 deterministic
Poisson’s ratio v -] 0.29 deterministic
Fig. 7. The soil model used in numerical analysis KN deterministic
of the bearing capacity of cohesionless soil Soil unit weight y [E} 19.0
150 o, Scale ()f 6. [m] 1.0; 5.0; 10; 50; o0 -
- [KN/m] fluctuation 6, [m] 1.0 -
400 -
C
330 zi\E\g\ =s g g o o
TA-L
300 A== =h."y=1,0m-19,0kN/m
AN q=nz-y=1, )
250 =6 BA--A-p-p-p B=1,0m
- o — e. —_— e —_— ey
200 F0mg ©-6-6-6-90 |
150 KoKy OO0 0 Tl E
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Fig. 8. Design values of the bearing capacity
depending on the footing width B and reliability index S

8.2. SAFETY ASSESSMENT
OF A SHALLOW FOUNDATION
ON COHESIVE SOIL

RFEM was applied in paper by Pieczynska-Koztow-
ska et al. [44] to evaluate a random bearing capacity

\ 50 elements (5.0m) |

Fig. 9. The soil model used in numerical analysis
of the bearing capacity of cohesive soil

Figure 10 presents results of reliability analysis.
The trend looks the same as in example 8.1. It can be
observed that for 6,/B > 10 differences in Q, for the
same beta are negligible.
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Fig. 10. Design values of the bearing capacity

versus different £ and % values

9. CONCLUSIONS

The paper demonstrates the way in which reli-
ability method can support geotechnical design. The
classical reliability methods like first- and second-
order reliability methods can now be utilized in
a more efficient way due to codding them as
spreadsheet applications. The reliability-based de-
sign recently more frequently appears in geotechnics
because some inconsistency between Eurocode 0 and
Eurocode 7. ECO establishes the principles and re-
quirements for safety and serviceability that are
based on typical reliability measure, that is, the
reliability index f. On the other hand, partial safety
factors recommended by EC7 do not allow for
adopting any statistical information concerning
uncertainty in soil properties. Moreover, the use of
statistical methods is not mandatory when evaluat-
ing characteristic values. Applying FORM and
SORM methods one finds the design point which is
generated automatically without information of
characteristic values and partial safety factors by
means of reliability based design. The information
is obtained by means of elaborating statistical data.
Therefore the troubles in determining characteristic
values of soil properties can be avoided. Addition-
ally, information concerning correlation between
soil properties can be included.

The second part of the paper is dedicated to appli-
cations of random fields theory. This theory is very
useful when we deal with spatial variability of soil
properties. In such a case, the probabilistic modeling
by assigning to a soil property a single random vari-
able may not be sufficient. The random field theory is

also a powerful tool when uncertainty of soil proper-
ties is considered in conjunction with finite element
computations. Specially dedicated to these problems
is the Random Finite Element Method.

An algorithm of Random Finite Element Method
to reliability based design of shallow strip foundation
is given and illustrated by two computational exam-
ples based on properties of natural soils.

A crucial point for random fields application is
adequate selection of their correlation structure. It was
demonstrated that the most important parameter is the
scale of fluctuation. Determining the fluctuation scale
usually requires a lot of results from in-situ investiga-
tions. But these results can be gained from SPT or
SPTU testing.

The discussion given above shows the useful-
ness of FORM/SORM design as well as random
field approach. Illustrative examples suggest that
reliability-based design can provide additional to
EC7 design or LRFD as well as working stress
method when the statistical information (like mean
values, standard deviations, correlations and prob-
ability distributions) for key parameters affecting
the design are known. If the distributions are not
obtainable the Hasofer—Lind approach can be ap-
plied.

Finally, it should be emphasized that reliability
computations have to be supported by credible statis-
tical data. In geotechnical practice quite often amount
of this data coming from testing is not sufficient
enough. In order to overcome this difficulty in several
countries, data bases of soil properties are created.
Also developing applications other mathematical
theories like fuzzy sets theory or the theory of random
sets seems to be permissible for future safety evalua-
tions in geotechnics.
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