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Abstract: This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible
fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used
in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from
the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the meth-
ods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equa-
tions should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through
a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

Key words: filtration, seepage, soil consolidation, underground water

1. INTRODUCTION

1.1. LAWS GOVERNING WATER SEEPAGE
THROUGH PORES OF TWO-PHASE MEDIUM

All rocks, especially soils, have permeability prop-
erties owing to which liquids and gases can penetrate
through them under the influence of: the gravitational
field, an electric or chemical potential difference and
a temperature difference. The basic law of the flow of
water through soils was formulated by H. Darcy [12] in
the years 1852—1855. Darcy did not take into account
earlier works (1842) by J.L. Poiseuille, who when theo-
retically considering the laminar flow of water through
a capillary tube had derived an averaged equation of
motion, similar to Darcy’s equation. Darcy’s law in its
original form is expressed by the formula

V=kJ (1)

where k — a filtration coefficient, v —a vector field of
seepage velocity, and J — a hydraulic gradient defined
by the formula

J =grad(H) )

where H stands for a hydraulic head expressed by the
simplified Bernoulli formula

H=L x5, (3)
Pg

where p — pressure, p — bulk density and g — accelera-

tion due to gravity.

In many papers [15], [26], [27] critical comments
on Darcy’s law have been made, which can be sum-
marized as follows:

e Darcy did not take into account the fact that the
sense of hydraulic head gradient H is opposite to
that of seepage velocity v and so basic Darcy’s
law should have the form

V=—kJ 4)

e In 1884, G. Krober (acc. to Wieczysty [27]) raised
the issue of the limits of the applicability of
Darcy’s law.

e In 1901, Forchheimer [15] presented the following
relation defining the filtration flow equation in the
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case when the motion of the liquid flowing
through pores has a turbulent character

J =av +biv . (5)

All the aspects and comments relating to Darcy’s
law can be found in the works by Polubarinov-
-Koczina [22], A. Wieczysty [27], T. Strzelecki et al.
[26], and many others.

The problem of laminar flow through the pores of
the soil medium was also analyzed by the asymptotic
homogenization method consisting in mathematical
upscaling of the processes taking place at the pore
scale. On the heterogeneity scale the laminar flow of
a liquid is described, in accordance with the works of
Bensousan et al. [7], Auriault et al. [1], [3], Strzelecki
et al. [25], Lydzba [19], [20], by the Navier—Stockes
equations in conjunction with the equation for the
continuity of the flow of an incompressible liquid for
which div(v) = 0. Taking into account boundary con-

dition (v) = 0 at the liquid/solid interface and the

periodicity conditions for the vector velocity field and
the function of the pressure in the liquid one gets
a system of differential equations which is the starting
point for the homogenization process. The solution
leads to Darcy’s linear law with a mathematical de-
scription showing how to numerically determine the
value of the permeability tensor if one can determine
the porous medium structure and knows the viscosity
of the liquid flowing through the pores of the medium.
The solution obtained in the works cited above is
a significant achievement of theoretical physics. Us-
ing only mathematical tools by making the passage
from the microscopic scale to the macroscopic scale
a completely different character of the equations de-
scribing the flow in the two scales was obtained and
the order of magnitude of the permeability tensor in
the macroscopic scale was determined. It should be
noted that the obtained result fully agrees with the
experimental results, and the dependence between the
filtration coefficient and ratio /*/x, where/ defines the
size of the representative volume element (RVE) and
w1 stands for the viscosity of the liquid flowing through
the pores of the medium, has been confirmed by nu-
merous experiments.

1.2. CLASSIC MATHEMATICAL MODEL
OF FILTRATION THEORY

The equations of the hydrodynamics of under-
ground waters were determined under the following
assumptions:

e a porous medium forms the structure of a solid
body, considered to be a continuous medium, in-
side of which there exists a network of intercon-
nected pore channels;

e closed pores, containing a liquid or a gas, do not
occur;

o the network of pore channels is regular enough for
determining a representative volume element
(RVE) to represent an isolated cuboid with infi-
nitely small dimensions;

o the pores of the medium are filled with water;

e the flow of the liquid takes place at a constant
temperature;

o neither the Earth’s electric field nor its magnetic
field has an influence on the filtration process;

¢ the influence of the chemical potential is not taken
into account;

e the motion of the liquid is analyzed with respect to
fixed reference system x;, i.e., in the Lagrangian
coordinate system.

The behaviour of the liquid is described by:

e constitutive equations of state,

e cquations of flow continuity,

e cquations of the motion of the liquid through the
porous medium.

As will be shown, the above system of equations
made it possible to create a mathematical model of the
flow of the liquid through the porous medium. The
equations derived must be completed with boundary
and initial conditions.

1.2.1. CONSTITUTIVE EQUATIONS OF STATE

A fluid with high volumetric compressibility (e.g.,
a gas or a mixture of a liquid and a gas) or a liquid
characterized by very low compressibility can flow
through the pores of a porous medium. Let us limit
our considerations to two cases of the equation of
state: (1) when there is a liquid in the pores of the
two-phase medium, and (2) when the pores are filled
with a gas.

In both cases the pressure prevailing in the fluid
or its increase causes volume strains in both the
fluid and the solid phase of the medium.The process
in which volumetric changes of the skeleton are
taken into account, is referred to as an elastic re-
gime of the filtration flow. The so called rigid fil-
tration regime is associated with the case in which
the effects of the elasticity of the skeleton are not
taken into account.

It is assumed that the solid phase of the medium
does not undergo deviatoric deformations and only volu-
metric changes, manifesting themselves in a change in
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the porosity of the solid body matrix, are assumed at
this stage of the analysis.

The volume elastic change of the fluid is described
by a relation according to which a change in fluid bulk
density p is proportional to the change in the pressure
prevailing in the fluid

4 _ g dp (1.6)
Yol

where [, — a coefficient of the volumetric compressi-
bility of the fluid, defined as a relative change in the
volume of the fluid by 1 bar. For example, for water
f3,, amounts to 107'°1/Pa.

Equation (6) leads to the following nonlinear de-
pendence between fluid density and liquid pressure:

p=p,exp(B,p) (7

where p, stands for the density of the fluid in atmos-
pheric pressure conditions.

At small pressures (up to 100 bar) one can assume
that the changes in density are small enough and so
p = const.

1.2.2. EQUATION OF FLOW CONTINUITY

Let Q stand for an elementary domain filled with
a two-phase medium. Let us denote the boundary sur-
face through which the filtration flow of the liquid
takes place with S. Let n stand for a versor normal
to S and directed outside of area 2.

The flow of the liquid through surface S bounding
the volume Q (Fig. 1) is defined by the equation

P) 1y _
lpvl.ds +£7dg =0. (8)

Fig. 1. Flow of medium through surface S bounding volume
— after Bartlewska [4]

Using the Gauss—Ostrogradsky theorem one can
replace the surface integral with a volume integral.
Thus one gets

Ia(pvi) o J P ey — o ©)
;5 oy ot

Thanks to the above equation one can write the
following local relation

id—’o+div(\7)=0 (10)
P P

where
d :8 +v, 0 (11)
dt ot ox

i

defines the material derivative of the bulk density of
the fluid.

1.2.3. CLASSIC MATHEMATICAL MODEL
OF FILTRATION PROCESS

Assuming in the first case that the soil medium is
an ideally rigid body and the liquid flowing through
the network of filtration channels is incompressible,
the system of equations describing the laminar flow
comes down to the equations of state: p = const, the
flow continuity equation: div(v) = 0 and the motion

equations expressed by Darcy’s law: v = —k grad(H)

where k denotes a permeability tensor. Substituting
the equations of motion into the flow continuity equa-
tion one gets the following differential equation de-
scribing the flow of an incompressible liquid through
a non-deformable isotropic homogenous porous me-
dium

div(kgrad(H))=0 (12)

Equation (12) is the basic equation of the theory of
filtration for the case when the soil medium is an ide-
ally rigid body.

In the second case, it is assumed that the soil me-
dium exhibits volumetric deformability as regards both
its solid phase and liquid phase, but it does not exhibit
deviatoric deformability. The flow continuity equation
in this case is expressed by equation (10). Substituting
Darcy’s equation of motion into equation (10) and tak-
ing into account the fact that p = pf one gets the fol-
lowing classic equation of the non-steady flow

divip, f Fegrad(r) =220 a3

where p. — specific density of fluid, f —porosity.
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The derivative on the right side of equation (13) is
the product of the two functions and so

0pS)_, o, op.

. . 14
ot Pe ot ot (14)

Then it is assumed that the rate of the change in
fluid density over time depends on the product of the
density and the rate of the change in pressure

P _ , 5P
Py P Py

(15)

which can be recognized as consistent with consti-
tutive relation (6), assuming that the change in den-
sity is a change in density over time. Assuming
further that the rate of the change in porosity is
directly proportional to the rate of the change in the
pressure of the liquid (as in the classic filtration
theory), the following constitutive relation is intro-
duced

T _p2 (16)
ot ot

It is difficult to substantiate the above relation by
means of any phenomenological relation belonging to
soil and rock mechanics. Biot’s consolidation theory
directly assumes that porosity in the soil skeleton de-
formation process is a constant quantity, which is not
consistent with reality, but it does not significantly
affect the validity of this theory’s solutions. Using
formulas (15) and (16) one can present relation (14) in
the form

opf) _
ot

oH oH
pLeh, §+fp3g -

Py a7

In the classic mathematical model it is then as-
sumed that

(18)

which obviously is inaccurate since adopting as valid
the definition of hydraulic head for the filtration flow

H=_2"
/p.g

+x,0;3

(19)
the derivative over time is

Ap.feH) _

- a—H+Hgf%+Hpcgg, (20)

P8, ot ot

hence the rate of pressure variation is expressed by the
formula

op OH op., of op.
£ = 4 <+ oHp 02 —x.00. €
ot fpc‘g ot ng ot g pcg ot X;80;3 ot
21)
which leads to a following relation
OH)
Peg—"
P o . (22)

at - l_pcgﬂwa_pcgﬂsH+xi5i3pcgﬁw

Yet despite the significant inconsistency, the clas-
sic equation of the non-steady flow is assumed in the
form

o~ OH
div(pkgrad(H)) = pn,,, —

Py (23)

where 7, is referred to as elastic capacity and
amounts to

nspr = pcgﬁs + fpcgﬂw * (24)

Assuming that the changes in the density of the

liquid depending on the spatial variables were small,

they were assumed to be independent of the spatial
variables. Then the equation simplifies to a form

div(kgrad(t) = 1, 2L

Py (25)

Despite the mathematical and physical inconsisten-
cies demonstrated the above equation is regarded as the
fundamental equation of the underground water hydro-
dynamics for a compressible medium through which
a compressible liquid flows, and it is the basis for nu-
merical computations performed using professional
hydrogeological software, such as ModFlow [21].

2. PROPOSED MATHEMATICAL MODEL
OF FILTRATION THEORY

2.1. ASSUMPTIONS

The assumptions for the theory of filtration, pre-
sented in the preceding section will be completed with
additional definitions, stemming from Biot’s consoli-
dation theory [8], [9] and also based on Coussy’s
works [10], [11], for a two-phase medium. Using
denotations consistent with works [25], [26] by
Strzelecki et al.,

e Let Q be a cuboidal space with infinitely small
edges filled with a two-phase medium consisting
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of a porous elastic skeleton and a liquid filling its
pores; let us denote the boundary of spatial ele-
ment Q with S while vector 7 is a unit vector
normal to surface S, directed outside of element Q;

v and v* stand for respectively fluid seepage
velocity and medium skeleton velocity and

v/ =v! —v’ defines the components of the relative

velocity of the filtration flow of the liquid through
the porous medium; if p,; and p; stand for the spe-
cific density of respectively the skeleton and the
liquid, then the volumetric density of the skeleton
(1) and the liquid (p,), each of them related to the
total volume of area Q), can be determined; denot-
ing volumetric porosity with f one can calculate
the densities: p, = (1 — ), and o, = fp;; p denotes
two-phase medium density equal to the sum: p =
P+ p; p stands for the density of the fluid

flowing through S: p = f,0, where f; stands for

surface porosity.
e The kinetic energy of the two-phase medium can
be expressed by the formula

2K = J‘(pllvisvf +2p,V V] + ppviv)dQ (26)
Q

with conditions:

PutPL=p>0; py+py=p,>0v p,<0,

where pp; is a new parameter with a density di-
mension, defining the dynamic coupling between
the two phases of the medium.

e The dissipation function is a quadratic form de-
pendent on the relative velocity of the filtration
flow, which can be expressed as

20, = [bv}vded @7)
Q

where b is a filtration resistance coefficient satis-
fying condition b > 0.

e Using equation (261) one can determine the inter-
nal volume forces resulting from the viscous re-
sistance of the liquid flowing through the pores of
the medium; the forces acting on the skeleton of
the medium are

ow, _

M} =" =[] dQ (28)
ov; o
and the forces acting on the liquid are
m! = [, 29)
Vi g

e The components of the local vector of skeleton
momentum can be calculated from the formula

P = J‘(pllvis + plzvil)dQ ) (30)
Q

P = I(pIZViS + PV )dQ. (31)
)

2.2. EQUATIONS OF FLOW CONTINUITY
FOR TWO-PHASE MEDIUM

2.2.1. TOTAL FLOW

According to work [17] by Kisiel et al., the total
(skeleton + fluid) flow through the representative
volume element (RVE) has the form

[ pvinds + [ PO} —v)nds +ja—pd9 =0. (32)
) ) o

Hence, using the Gauss—Ostrogradsky theorem,
the equation of the continuity of the flow through
a two-phase medium consisting of a fluid and a skele-
ton has the form

d'p
ot

+pé=—pv; ], (33)

d’ : L
where % stands for a material derivative expressed
t

by the formula

" _0 +v 0 (34)
dt o ' ox

1

and ¢ denotes the rate of the change in skeleton dila-
tation, amounting to v; .

2.2.2. EQUATION OF FLUID FLOW CONTINUITY

The mass balance of the fluid flowing through the
RVE has the form

j pv;‘n,.ds+jaﬁd9=o. (35)
! o

Hence, using the Gauss—Ostrogradsky theorem,
the equation of fluid flow continuity becomes

r

24 p,(0-£)=0,
o P (0-¢)

(36)
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I

where 7 is a material derivative expressed by the
t

formula d—=g+(vf —vf)i and € is the rate of
dt ot Oox,
variation of liquid dilatation.
Assuming that the solid phase is stationary

i

(v/ =0) and a compressible liquid flows through

the pores, the equation of flow continuity is valid
for only the liquid phase of the medium and comes
down to

a(p,)

div(p,v')=—22.

o 37

This form of the equation of continuity was ob-
tained in the preceding section (formula (10)) for
the classic hydrodynamic model of the filtration
flow.

2.3. EQUATIONS OF MOMENTUM
CONSERVATION FOR LIQUID PHASE

For the medium’s liquid phase the momentum
conservation law comes down to
oP'

[onds + [b(; =vhaQ+ [ p,x,d@=[Lda, (38)
S S Q Q at

where on; stands for the diffused stress acting on total
surface S of RVE. Stress o amounts to

o=-pf (39)

where p is the effective pressure in the fluid.
After taking into account the Gauss—Ostrogradsky

theorem, equation (38) can be used to obtain the fol-

lowing local equation of the motion of the medium’s

liquid phase

ov; !

Lty ——.
a P2y

o, +X,py=bv] +p, (40)

For the quasi-static flow the terms representing the
inertial forces of the liquid and skeleton can be omit-
ted and the equations of motion for the liquid phase

can be written as
0+ Xipy =bv;. (41)

The above equation leads to the following classic
form of Darcy’s law

7= kgrad( g —x,.ai}] : (42)

P Jg

Equation (42) leads to Darcy’s equation where
k stands for the Darcy’s coefficient of filtration

V = —kgrad(H) (43)

where k = p, fg/b.

By performing the divergence operation on equa-
tion (41) one can write the momentum conservation
equation in the form

div(grad(c)) = (0-¢€)/k, (44)

which is known as the Darcy-Biot equation. In the

latter, @ is the rate of variation of liquid dilatation,
¢ — the rate of variation of skeleton dilatation, and %,
is expressed by the formula

k k

LS — 45
" I;e fpg )

2.4. CONSTITUTIVE EQUATIONS

Constitutive relations for the two-phase medium can
be derived using the irreversible thermodynamics laws.
The first law of thermodynamics can be written as
0

L+0=—(U+K) (46)
ot
where L denotes the power of the surface forces, the

body forces and the viscous resistance of the liquid,
O — the amount of thermal energy flowing through
the body, U — internal energy and K — kinetic energy.
Having carried out procedures consistent with the
principles of thermodynamics one gets for the iso-
thermal process, on the basis of [11], [26], the fol-
lowing constitutive relations for the soil skeleton and
the fluid flowing through the soil

Oy =Cyuén + ﬂijﬂ,
(47)
o—-0,= ,b’lje”. + 70,

where ¢ is a fourth-order tensor related to the de-
formations of the two-phase medium, f; — the tensor
of the coupling resulting from the mutual interac-
tion of the medium’s solid phase and liquid phase,
y — a coefficient of fluid compressibility, o; — the
tensor of the stress in the skeleton, o — stress in the
fluid, o, — atmospheric stress equal to 1 bar, g; — the
tensor of skeleton deformation and € — the dilatation
of the fluid.

After simplifications (skeleton isotropy is assumed)
the above constitutive equations become
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Cyr = A0y + N(630;, +8,0 ), (48)

and assuming that second-order tensor f; of the mu-
tual interaction between the medium’s skeleton and
the fluid is expressed by

By =00,

as well as assuming after Biot the denotation of the
liquid compressibility constant one gets

V=R

(49)

(50)
and the constitutive relations proposed by Biot in [8], [9]
o, = 2Ngl.j +(4e+Q060)o

i
(51)
c-o0,=0s+R0,

where: N, A — Lame’s elasticity constants according to
Biot’s denotations [8], [9], R — a modulus of the vol-
ume compressibility of the fluid and Q — a coefficient
of the mutual interaction of the phases.

2.5. EQUATION OF MOTION
OF COMPRESSIBLE FLUID
THROUGH NON-DEFORMABLE SKELETON
OF TWO-PHASE MEDIUM

Assuming that the medium’s skeleton is non-
deformable, i.e., ;= 0 and so &= 0, physical relations
(51) come down to the single relation:

oc-o,=R0. (52)

Substituting the above physical relation into liquid
motion equation (44) one gets the following relation
for the non-steady flow of the fluid through the non-
deformable two-phase medium

div(grad(c)) = 228 97

. 53
kR ot (53)

If the flow of a compressible gas through a porous
medium is considered, after the Boyle—Mariotte law is
taken into account constitutive relation (52) becomes

c

oc-0,=—""2-0.
(1+80)

(54

Under the assumption of the incompressibility of
the soil skeleton the equation of the flow of the gas
through the soil comes down to the following equation
of the filtration flow

2
div(grad(o)) =L 289 99

55
ko? ot (55)

As opposed to the equation which determines the
flow of the liquid through the non-deformable porous
medium, the equation of the flow of the gas is non-
linear.

2.6. EQUATIONS OF FILTRATION
OF COMPRESSIBLE FLUID
THROUGH COMPRESSIBLE SKELETON
OF TWO-PHASE MEDIUM

Let us consider the filtration process in a two-
phase medium whose skeleton undergoes dilatational
deformations, but no deviatoric deformations. In the
case of the flow of a liquid through the pores of
a two-phase medium, constitutive relations (52)
come down to

o, Z%% =K e+080,

(56)
o-o0,=0s+R0,
or converse relation
&= K 20m ™~ Q (G —0, )7
KSR - Q KS‘R - Q
(57)
0 K

- Opt . (O- -0, )
K,R-0’ K,R-0°
Assuming that in the two-phase medium the rate
of variation in pore pressure is equal to, with the op-
posite-sign, the rate of variation of mean stress in the
skeleton, one can assume that:

6=-6,, (58)
which leads to the system of equations
—6=K é+00,
, (39)
c=0&+R6.
Hence one gets the relation
&= _O+R 0, (60)
O+K,
which leads to the relation
0= S S (61)
B R-0 O0+R 7
O+K,

Ultimately one gets the following equation of the
unsteady flow
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div(grad(o)) = %

(RK, - O)k (62)

In the case of the flow of a gas through the two-
phase medium whose skeleton undergoes only dilata-
tional deformations, the constitutive equations come
down to

o, zéaﬁ =K.e+080,

(63)
O-a

—a 9.
1+6)

c-0,=0&—

Slightly simplifying, one can assume the unsteady
filtration equation in the form

(Ko, +0°)f°pog

div(grad(o)) = © 2K 0% Nk

(64)

3. ONE-DIMENSIONAL
CONSOLIDATION
OF OEDOMETER SAMPLE
IN TERMS OF BIOT’S THEORY

3.1. ADOPTED MATHEMATICAL MODEL

The one-dimensional problem was addressed by
Jasiewicz in [16]. He considered the consolidation of
a porous pillar filled with the Biot two-phase medium
liquid, modelling in this way the behaviour of a soil
sample filled with a liquid and subjected to uniaxial
compression in an oedometer. In the case considered
by Jasiewicz, the system of consolidation theory
equations comes down to this simple form

2
a—Zz—Kla—G, where KlzL,
ox Ox (R(M +2N)
(65)
Po_loo_H, Fu
“ox* ROt R oxot’

where H, = Q + R. Jasiewicz solved the above system
of equations assuming the following boundary condi-
tions

e boundary conditions

0l0=0 0oy o=~ (l f)
(66)
99— ul_,=0,
Oox

where 7(f) denotes Heaviside functions and py
defines the magnitude of the load applied at instant ¢ =
0;

¢ initial conditions for functions u and o

u |z=0: 0 o |z=0: 0. (67)

3.2. SOLUTIONS FOR OEDOMETER SAMPLE

By performing first the forward Laplace transfor-
mation and then, having obtained the solution in the
Laplace space, the inverse Laplace transformation one
gets the following solutions

o(x,t)= Apyatty

2k1

Z (2k D cos[a; (h— x)]exp[

jkwtj

K 9

k= : (68)
u(x,t) = p,aRk,

8H, K h cos(akx) atk,t
Z‘ (2k-1) ( K, ﬂ

o0
k=

x| (h—x)—

where a; = (2k — 1)7/2h and constant a = —-(M + N)/(M
+ 2N).

The obtained solution has non-zero initial values,
which means that the initial conditions are not satis-
fied. This problem was discussed at greater length in
[26]. By observing the evolution of oedometer sample
settlement one can determine the elasticity theory
model constants and filtration coefficient k. The fil-
tration coefficient determined in this way is consistent
with filtration flow model (64) presented in Section 2.

4. ONE-DIMENSIONAL
CONSOLIDATION OF OEDOMETER
SAMPLE IN TERMS OF TERZAGHI
THEORY

According to Lambe [18], soil consolidation is
mathematically described by the one-dimensional
Terzaghi consolidation model in the form

op o°p
—=c,—, 69
o Vot (69)
where p is the pressure of water in soil pores and c, is
a Terzaghi consolidation coefficient defined by the
relation
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kM

c,=—
P&

(70)

where M — an oedometric modulus.

In the case of consolidation in an oedometer with
an outflow at both the sample’s top and bottom, the
solution of consolidation equation (60) has the form

p= ﬂZ 2k1+1 sin(4x;)exp(—¢, A1) (71)

T =0

where py — the value of the vertical stress applied
to the upper surface of the sample in the oedometer,
A — the eigenvalue given by relation (2k + 1)/h, and
h — the initial height of the sample in the oedometer.
Using the constitutive relations for linear elasticity,
but omitting the mutual interaction between the soil
skeleton strains and the fluid strains, relation (17.3)
leads to the following solution describing the settle-
ment of the upper surface of the sample

Poh 8 < 1 )
L0 - —c At 72
u M 72_2 Z(2k+1) eXp( cv k ) ( )

k=0

where u — stands for the displacement of the upper
surface of the soil sample in the oedometer.

By measuring the displacements of the sample one
can determine the value of consolidation coefficient ¢,
and knowing the value of oedometric modulus M and
the specific density of the liquid one can calculate the
filtration coefficient from formula (70). In the case of
the Terzaghi consolidation model, filtration consolida-
tion and rheological consolidation are distinguished.
The filtration coefficient is determined on the basis of
filtration consolidation, but the duration of filtration
consolidation is based on, in our opinion, questionable
assumptions. The rheological processes resulting from
the rheological properties of the soil skeleton were
investigated by Bartlewska et al. [5], [6].

5. CONCLUSION

The mathematical model of the filtration of a lig-
uid through a porous medium, presented in Section 2
differs from the commonly used equation of non-
steady filtration. It emerges from the basic differences
that:

e Proposed filtration flow equation (44) was derived
(in accordance with the principles used in me-
chanics) not from the equation of the continuity of
the liquid flowing through the soil, but from the
momentum conservation law.

The derived equation of the non-steady filtration

flow depends on the adopted assumptions con-

cerning the deformation of the two-phase me-
dium’s liquid and solid phases.

e In the case of the flow of a gas through a porous
medium, the equation of non-steady filtration is
nonlinear, as shown by equations (55) and (64).

e Continuity equation (10) adopted in the classic
model is approximatesince it assumes that the den-
sity of the liquid is a function of time and does not
depend on spatial variables x;, where by material
derivative dp/dt is equal to local derivative
dp/dt,which means that the convection term of the
material derivative is neglected.

e The adopted constitutive relation defining the de-
pendence between the rate of porosity variation
and the rate of pore pressure variation should be
regarded as incorrect.

e Another significant error is the adoption of the
linear dependence between the rate of pore pres-
sure variation and the rate of hydraulic head varia-
tion.

e [t is evident that from the mathematical point of
view the two consolidation theory solutions for the
oedometer sample, i.e., Jasiewicz’s solution based
on the Biot theory and the solution based on the
Terzaghi theory, are similar to the adopted as-
sumptions; because of the Biot model adopted for
describing the mechanical processes in a two-
phase medium Jasiewicz’s solution is clearly
closer to the non-steady filtration flow model since
it takes into account the mutual interactions be-
tween the liquid phase and the solid phase in the
basic constitutive relations.

e Due to the demonstrated inaccuracies the results of
the numerical consolidation calculations do not
agree with the results yielded by the classic filtra-
tion theory model.

There is still one more important argument for
rejecting the incorrectly, in our opinion, formulated
theory of the non-steady motion through the pores of
a two-phase medium. From the mathematical point
of view, it is difficult to add other terms to the fluid
flow continuity equation when the flow of a fluid
caused by the action of an electric field or by the
ionic concentration gradient in the fluid is consid-
ered. In order to construct such a model one must
define a function of electric current dissipation and
a function of dissipation in the osmotic flow and take
the functions into account in the momentum conser-
vation equations, i.e., using the proposed methodol-
ogy for defining equations of motion. It is also dif-
ficult to extend the classic mathematical model of
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filtration to non-isothermal processes. As shown by
Strzelecki [23], a non-isothermal flow model is de-
rived from the thermodynamics of irreversible proc-
esses through additional terms in the constitutive
equations. By including additional temperature-
dependent terms in the equations of motion one can
obtain a model of thermofiltration. In the case of the
classic model of filtration theory, there is no such
a possibility of extending the model to more phe-
nomena.
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