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Abstract: In this paper, the thermal instability of compressible Walters’ (Model B′) rotating fluid
permeated with suspended particles (fine dust) in porous medium in hydromagnetics is considered.
By applying normal mode analysis method, the dispersion relation has been derived and solved ana-
lytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity in-
troduce oscillatory modes. For stationary convection, Walters’ (Model B′) elastico-viscous fluid be-
haves like an ordinary Newtonian fluid and it is observed that rotation has stabilizing effect,
suspended particles are found to have destabilizing effect on the system, whereas the medium perme-
ability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic
field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic
field has stabilizing or destabilizing effect under certain conditions.

NOMENCLATURE

q – velocity of fluid,
qd – velocity of suspended particles,
p – pressure,
g – gravitational acceleration vector,
g – gravitational acceleration,
k1 – medium permeability,
T – temperature,
t – time coordinate,
cf  – heat capacity of fluid,
cpt – heat capacity of particles,
mN – mass of the particle per unit volume,
k – wave number of disturbance,
kx, ky – wave numbers in x and y directions,
p1 – thermal Prandtl number,
Pl – dimensionless medium permeability
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GREEK SYMBOLS

ε – medium porosity,
ρ – fluid density,
μ – fluid viscosity,
μ′ – fluid viscoelasticity,
υ – kinematic viscosity,
υ′ – kinematic viscoelasticity,
η – particle radius,
κ – thermal diffusitivity,
α – thermal coefficient of expansion,
β – adverse temperature gradient,
θ – perturbation in temperature,
n – growth rate of the disturbance,
δ – perturbation in respective physical quantity,
ζ – Z-component of vorticity
Ω – rotation vector having components (0, 0, Ω)
μ e – magnetic permeability

1. INTRODUCTION

A detailed account of the thermal instability of a Newtonian fluid, under varying as-
sumptions of hydrodynamics and hydromagnetics has been given by Chandrasekhar [1].
Chandra [2] observed a contradiction between the theory and experiment for the onset of
convection in fluids heated from below. He performed the experiment in an air layer and
found that the instability depended on the depth of the layer. A Bénard-type cellular
convection with the fluid descending at a cell centre was observed when the predicted
gradients were imposed for layers deeper than 10 mm. A convection which was different
in character from that in deeper layers occurred at much lower gradients than predicted if
the layer depth was less than 7 mm, and called this motion “Columnar instability”. He
added an aerosol to mark the flow pattern.

Bhatia and Steiner [3] have studied the thermal instability of a Maxwellian visco-
elastic fluid in the presence of magnetic field while effect of rotation on thermal insta-
bility of a visco-elastic fluid has been studied by Sharma [4].

The medium has been considered to be non-porous in all the above studies. Lapwood [5]
has studied the convective flow in a porous medium using linearized stability theory. The
Rayleigh instability of a thermal boundary layer in flow through a porous medium has been
considered by Wooding [6] whereas Scanlon and Segel [7] have considered the effect of
suspended particles on the onset of Bénard convection and found that the critical Rayleigh
number was reduced solely because the heat capacity of the pure gas was supplemented
by the particles. The suspended particles were thus found to destabilize the layer.

Sharma and Sunil [8] have studied the thermal instability of an Oldroydian vis-
coelastic fluid with suspended particles in hydromagnetics in a porous medium. There
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are many elastico-viscous fluids that cannot be characterized by Maxwell’s constitu-
tive relations or Oldroyd’s constitutive relations. One such class of fluids is Walters’
(Model B′) elastico-viscous fluid having relevance in chemical technology and indus-
try. Walters’ [9] reported that the mixture of polymethyl methacrylate and pyridine at
25 °C containing 30.5 g of polymer per litre with density 0.98 g per litre behaves very
nearly as the Walters (Model B′) elastico-viscous fluid. Walters’ (Model B′) elastico-
viscous fluid forms the basis for the manufacture of many important polymers and
useful products.

When the fluids are compressible, the equations governing the system become
quite complicated. Spiegel and Veronis [10] simplified the set of equations governing
the flow of compressible fluids under the assumption that the depth of the fluid layer
is much smaller than the scale height as defined by them, and the motions of infini-
tesimal amplitude are considered.

A porous medium is a solid with holes in it, and is characterized by the manner in
which the holes are imbedded, how they are interconnected and the description of their
location, shape and interconnection. However, the flow of a fluid through a homoge-
neous and isotropic porous medium is governed by Darcy’s law which states that the
usual viscous term in the equations of motion of Walters’ (Model B′) fluid is replaced

by the resistance term q⎥
⎦
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1 , where μ  and μ ′ are the viscosity and vis-

coelasticity of the incompressible Walters’ (Model B′) fluid, k1 is the medium perme-
ability and q is the Darcian (filter) velocity of the fluid.

Sharma and Rana [11] have studied thermal instability of incompressible Walters’
(Model B′) elastico-viscous fluid in the presence of variable gravity field and rotation
in porous medium. Sharma and Rana [12] have also studied the thermosolutal insta-
bility of incompressible Walters’ (Model B′) rotating fluid in the presence of magnetic
field and variable gravity field in porous medium.

The Bénard problem (the onset of convection in a horizontal layer uniformly heated
from below) for incompressible Rivlin–Ericksen rotating fluid permeated with sus-
pended particles and variable gravity field in porous medium was studied by Rana and
Kumar [13]. Recently, Rana and Kango [14] have studied the effect of rotation on ther-
mal instability of compressible Walters’ (Model B′) fluid in porous medium. In the pres-
ent paper, the study is extended to the compressible Walters’ (Model B′) rotating fluid
permeated with suspended particles in the presence of magnetic field in porous medium.

2. MATHEMATICAL MODEL AND PERTURBATION EQUATIONS

Consider an infinite horizontal layer of an electrically conducting compressible
Walters’ (Model B′) rotating fluid of depth d in a porous medium bounded by the
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planes z = 0 and z = d in an isotropic and homogeneous medium of porosity ε and
permeability k1, which is acted upon by a uniform rotation Ω(0, 0, Ω) and uniform
vertical magnetic field H(0, 0, H), (Fig. 1). This layer is heated from below such that a

steady adverse temperature gradient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dz
dTβ  is maintained. The character of equi-

librium of this initial static state is determined by supposing that the system is slightly
disturbed and then following its further evolution.
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Fig. 1. Schematic sketch of physical situation

The hydromagnetic equations in porous medium (Chandrasekhar [1], Walters’ [9])
relevant to the problem are
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Here, qd ),( tx  and ),( txN  denote the velocity and number density of the particles
respectively, cf and cpt, denote the heat capacity of pure fluid, heat capacity of the par-
ticles, respectively, and ptf cc ′′ ,  heat capacities analogous to solute. K′ = 6πηρυ,

where η is the particle radius, is the Stokes drag coefficient, qd = (l, r, s) and x  =
(x, y, z). κ and κ′ denote the thermal diffusivity and solute diffusivity, respectively.

Assuming uniform particle size, spherical shape and small relative velocities be-
tween the fluid and particles, the presence of particles adds an extra force term pro-
portional to the velocity difference between particles and fluid and appears in the
equation of motion (1). The force exerted by the fluid on the particles is equal and
opposite to that exerted by the particles on the fluid, there must be an extra force term,
equal in magnitude but opposite in sign. The buoyancy force on the particles is ne-
glected. Interparticle reactions are not considered, since we assume that the distances
between the particles are quite large compared with their diameters.

If mN is the mass of particles per unit volume, then the equations of motion and
continuity for the particles are
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The state variables pressure, density and temperature are expressed in the form
(Spiegel and Veronis [10])

),,,()(),,,( 0 tzyxfzfftzyxf m ′++= , (8)

where fm denotes for constant space distribution f,  f0 is the variation in the absence of
motion, and f ′(x, y, z, t) is the fluctuation resulting from motion. The basic state of the
system is

p = p(z), ρ = ρ(z),    T = T(z),   q = (0, 0, 0),    qd = (0, 0, 0)  and   N = N0 (9)
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Here, pm and ρm denote a constant space distribution of p and ρ, while T0 and ρ0 de-
note temperature and density of the fluid at the lower boundary.

Let q(u, v, w), qd(l, r, s), θ, δp and δρ denote, respectively, the perturbations in
fluid velocity q(0, 0, 0), the perturbation in particle velocity qd(0, 0, 0), temperature T,
pressure p and density ρ.

The change in density δρ caused by perturbation θ temperature is given by

θαρδρ m−= . (11)

Following the assumptions given by Spiegal and Veronis [10] and the results
for compressible fluid, the flow equations are found to be the same as that of in-
compressible fluid except that the static temperature gradient β is replaced by the
excess over the adiabatic (β – g/cp), cp being specific heat of the fluid at constant
pressure.

The linearized perturbation equations governing the motion of fluids are
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fm

pt

C
mNC

b
ρ

=  and w, s are the vertical fluid and particles velocity.

3. DISPERSION RELATION

Analyzing the disturbances into normal modes, we assume that the perturbation
quantities have x, y and t dependence of the form
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)exp()](),(),(),(),(),([],,,,,[ ntyikxikzXzKzZzzSzWhsw yxz ++Θ=ξζθ , (18)

where kx and ky are the wave numbers in the x and y directions, k = 2/122 )( yx kk +  is the
resultant wave number and n is the frequency of the harmonic disturbance, which is, in
general, a complex constant.

Using expression (18) in (12)–(17), we get
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Equations (19)–(23) in non dimensional form become
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Eliminating K, Θ and Z between equations (24)–(29), we obtain
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Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is
confined between two boundaries and adjoining medium is electrically non-conducting.
The boundary conditions appropriate to the problem are (Chandrasekhar [1])

W = D2W = DZ = Θ = 0   at    z = 0  and  1 (31)

and the components of h are continuous. Since the components of the magnetic field
are continuous and the tangential components are zero outside the fluid, we have

DK = 0 (32)

on the boundaries. Using the boundary conditions (31) and (32), we can show that all
the even order derivatives of W must vanish for z = 0 and z = 1, and hence, the proper
solution of equation (30) characterizing the lowest mode is

W = W0 sinπz,     W0    is a constant. (33)

Substituting equation (33) in (30), we obtain the dispersion relation
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Equation (34) is the required dispersion relation accounting for the effect of sus-
pended particles, magnetic field, medium permeability, variable gravity field, rotation
on thermal convection in Walters’ (Model B′) elastico-viscous fluid in porous me-
dium.

4. OSCILLATORY MODES

Here we examine the possibility of oscillatory modes, if any, in Walters’
(Model B′) elastico-viscous fluid due to the presence of suspended particles, rota-
tion, magnetic field, viscoelasticity and variable gravity field. Multiplying equation
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(24) by W* the complex conjugate of W, integrating over the range of z and making
use of equations (25)–(28) with the help of boundary conditions (31) and (32), we
obtain
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where
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The integral part I1–I8 are all positive definite. Putting σ = iσi in equation (35), where
σi is real and equating the imaginary parts, we obtain
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Equation (36) implies that σi = 0 or σi ≠ 0, which means that modes may be non
oscillatory or oscillatory. The oscillatory modes are introduced due to the presence of
rotation, magnetic field, suspended particles, viscoelasticity.

5. THE STATIONARY CONVECTION AND DISCUSSIONS

For stationary convection putting σ = 0 in equation (34) reduces it to
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which expresses the modified Rayleigh number R1 as a function of the dimensionless
wave number x and the parameters 

1AT , B, P, Q1 and Walters’ (Model B′) elastico-
viscous fluid behave like an ordinary Newtonian fluid since elastico-viscous parameter
F vanishes with σ.

Let the non-dimensional number G accounting for compressibility effect be kept as
fixed, then we get

cc R
G

GR ⎟
⎠
⎞

⎜
⎝
⎛

−
=

1
, (38)

where cR  and Rc denote the critical number in the presence and absence of com-
pressibility, respectively. Thus, the effect of compressibility is to postpone the insta-
bility on the onset of thermal instability. The cases G = 1 and G < 1 correspond to
infinite and negative values of Rayleigh numbers due to compressibility, which is not
relevant to the present study.
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To study the effects of suspended particles, rotation and medium permeability, we

examine the behavior of ,1

dB
dR  ,

1

1

AdT
dR  ,

1

1

dQ
dR  and 

dP
dR1  analytically.

Equation (37) yields
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which is negative implying thereby that the effect of suspended particles is to destabi-
lize the system. This stabilizing effect is in agreement with the earlier work of Scanlon
and Segel [7] and Rana and Kumar [13].

From equation (37), we get
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which shows that rotation has stabilizing effect on the system. This stabilizing effect is
an agreement of the earlier work of Rana and Kumar [13] and Rana and Kango [14].

From equation (37), we get
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which implies that magnetic field stabilizes the system, if
22

1 )1(})1({
1

PxTPQx A +>++ε

and destabilizes the system, if
22

1 )1(})1({
1
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In the absence of rotation, magnetic field has stabilizing effect on the system.
It is evident from equation (37) that
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From equation (42), we observe that medium permeability has destabilizing effect
when {ε (1 + x) + Q1P}2 < 

1AT (1 + x)P2. and stabilizing effect when {ε (1 + x) + Q1P}2

> 
1AT (1 + x)P2. This stabilizing effect is an agreement of the earlier work of Sharma

and Rana [12], Rana and Kumar [13] and Rana and Kango [14]. In the absence of ro-



Hydromagnetic thermal instability of compressible Walters’ (Model B′) rotating fluid... 87

tation, 
dP
dR1  is always negative implying thereby the destabilizing effect of medium

permeability.

6. CONCLUSIONS

The thermal instability of Walters’ (Model B′) elastico-viscous rotating fluid per-
mitted with suspended particles in the presence of magnetic field in porous medium
has been investigated. The main conclusions are as follows:

(i) For stationary convection, Walters’ (Model B′) elastico-viscous fluid behaves
like an ordinary Newtonian fluid.

(ii) It is clear from equation (30) that the effect of compressibility is to postpone
the onset of thermal instability.

(iii) The expressions for ,1

dB
dR  ,

1

1

AdT
dR  ,

1

1

dQ
dR  and 

dP
dR1  are examined analytically

and it has been found that the rotation has stabilizing effect and suspended
particles are found to have destabilizing effect on the system whereas the me-
dium permeability has a stabilizing/destabilizing effect on the system for {ε (1
+ x) + Q1P}2 < 

1AT (1 + x)P2/{ε (1 + x) + Q1P}2 > 
1AT (1 + x)P2. The magnetic

field has stabilizing/destabilizing effect on the system for {ε (1 + x) + Q1P}2 >
1AT (1 + x)P2/{ε (1 + x) + Q1P}2 < 

1AT (1 + x)P2.
(iv) The presence of rotation, suspended particles, magnetic field and viscoelastic-

ity introduced oscillatory modes.
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