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Abstract: We show that the global nonlinear stability threshold for convection in a couple-stress
fluid with temperature and pressure dependent viscosity is exactly the same as the linear instability
boundary. This optimal result is important because it shows that linearized instability theory has
captured completely the physics of the onset of convection. It has also been found that the couple-
stress fluid is more stable than the ordinary viscous fluid and then the effect of couple-stress pa-
rameter (F) and variable dependent viscosity (Γ) on the onset of convection is also analyzed.

1. INTRODUCTION

Convection hydrodynamic stability theory is mainly concerned with the determi-
nation of critical values of Rayleigh number, demarcating a region of stability from
that of instability. The potentials of the linear theory of stability and of the energy
method are complementary to each other in the sense that the linear theory gives con-
ditions under which hydrodynamic systems are definitely unstable. It cannot with cer-
tainty conclude stability. On the other hand, energy theory gives conditions under
which hydrodynamic systems are definitely stable. It cannot with certainty conclude
instability. Suffering from its basic assumptions, the validity of the linearized stability
theory becomes questionable. Hence, the nonlinear approach becomes inevitable to
investigate the effects of finite disturbances.

The oldest method of nonlinear stability analysis which can deal with finite distur-
bances is the energy method, originated by Reynolds [1], Orr [2] and then later Serrin
[3] and Joseph [4]–[6] reformulated the energy method. Despite the success of this
classical energy method in several stability problems, there is some skepticism about
its ongoing indiscriminate use. Situations have been encountered, for example, in
magnetic Bénard problem Rionero [7], Galdi [8] and in the rotating Bénard problem
(Galdi and Straughan [9]), where the classical energy theory did not produce expected
results. Rapid improvements of the classical energy theory have been made in recent
years (Galdi and Padula [10], Straughan [11]), and the Lyapunov direct method em-
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ployed by Rionero and Mulone [12], Mulone and Rionero [13], Qin and Kaloni [14]
appears to have been the most successful one. It is now generally believed that this
generalized energy method is definitely superior to the classical energy method.
A nonlinear stability analysis of fluids by using generalized energy stability theory has
been considered by many authors (Guo et al. [15], Guo and Kalon [16], Straughan and
Walker [17], Kaloni and Qiao [18]–[20], Straughan [21], Payne and Straughan [22],
Straughan [23]). Recently, Sunil and Mahajan [24]–[29] studied the nonlinear stability
analysis for magnetized ferrofluid by using energy method. They found that the non-
linear critical stability magnetic thermal Rayleigh number does not coincide with that
of the linear instability analysis, and thus indicates that the subcritical instabilities are
possible. However, it has been noted that, in the case of non-ferrofluid, global non-
linear stability Rayleigh number is exactly the same as that for linear instability. More
recently, Sunil et al. [30] studied the global stability analysis for thermal convection in
a couple-stress fluid.

With the growing importance of non-Newtonian fluid in modern technology and
industries, investigations of such fluids are desirable. The presence of small amounts
of additives in a lubricant can improve bearing performance by increasing the lubri-
cant viscosity and thus producing an increase in the load capacity. These additives in
a lubricant also reduce the coefficient of friction and increase the temperature range in
which the bearing can operate. Stokes [31] proposed a simplest theory called the
Stokes micro-continuum theory and which could be used for the simulation of the cou-
ple-stress fluid. This kind of couple-stress model is intended to take account of the par-
ticle-size effects, and it is also very useful in the scientific and engineering applications.
At normal operating conditions, the viscosity of an incompressible fluid is assumed to be
independent of the pressure. However, it is well known that the viscosity of a fluid can
change with pressure, and if the pressure range is significantly large the viscosity can
change by several orders of magnitude. Thus, one could consider such liquids as incom-
pressible fluids with pressure dependent viscosities. In his celebrated paper on the re-
sponse of fluids, Stokes [32] notes that the viscosity of a fluid could depend upon the
pressure. However, based on the experiments on the flow of water in canals and normal
operating conditions, Stokes suggested that the viscosity could be considered a constant
for flows. Stokes is however very careful to delineate the class of flows wherein viscos-
ity might be considered a constant and he also remarks that such an assumption would be
invalid under other flow conditions. As early as 1893, Barus [33] proposed an empirical
relationship between the viscosity and the pressure, namely

)](exp[)( 00 ppp −= δμμ .

Later, Andrade [34] suggested the following expression for the viscosity
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based on experiments. More recently, Laun [35] modeled the viscosity of polymer
melts through

)]()(exp[),( 00 UTTppTp −−−= γδμμ . (1)

There have been numerous other experiments by Laun [36] that show that the de-
pendence of the viscosity on the pressure is exponential. Mention must also be made
of the work of Martin-Alfonso et al. [37], [38], wherein an intricate relationship be-
tween the temperature, viscosity and pressure is provided for bitumen. Ramanaiah [39]
applied the couple-stress fluid model to analyze the long slider bearing. Gupta and
Sharma [40] also used the couple-stress fluid model to carry out a hydrostatic thrust
bearing. Shehawey and Mekheimer [41] applied the couple-stress model to analyze the
peristalsis problem for its relative mathematical simplicity. Das [42] proposed the
analysis of elastohydrodynamic theory of line contacts. Das [43] studied the slider
bearing lubricated with couple-stress fluids in magnetic field and observed that both
the values of the maximum load capacity and the corresponding inlet–outlet film ratio
depend on couple-stress, magnetic parameters and the shape of bearings. Abdallah and
Lotfi [44] proposed an efficient numerical scheme to solve the direct lubrication
problem for journal bearing lubricated with couple-stress fluids, which consists of the
modified Reynolds equation, the film thickness equation, and the boundary for the
pressure field. Hsu et al. [45] studied the short journal bearings lubricated with the
non-Newtonian fluid which combined the effects of couple-stresses and surface
roughness. It was found that the combined effects of couple-stress and surface rough-
ness can improve the load carrying capacity and decrease the attitude angle and fric-
tion parameters. Lahmar [46] also found that the lubricants with couple-stress would
increase the load carrying capacity and stability, and decrease the friction factor and
the attitude angle. Recently, Rajagopal et al. [47] extended the approximation due to
Oberbeck and Boussinesq to the case of a fluid whose viscosity, specific heat and
thermal conductivity depend on both the temperature and pressure. When the material
parameters depend only on the temperature, the result established by Rajagopal et al.
[47] reduces to the classical Oberbeck–Boussinesq approximation. Using this approxi-
mation, Rajagopal et al. [48] studied the problem of Rayleigh–Bènard convection and
assuming that the viscosity is an analytic function of the temperature and pressure they
studied both the linear as well as the nonlinear stability corresponding to the Rayleigh–
Bènard problem. They showed that the principle of exchange of stabilities holds and that
the critical Rayleigh numbers for the linear and nonlinear stability coincide.

The purpose of the present paper is to study the nonlinear stability as well as linear
instability analysis of couple-stress fluid with temperature and pressure dependent
viscosity heated from below. Here, we establish the optimal result, that is, the linear
instability and nonlinear stability Rayleigh numbers are the same. We also find that
the critical value of thermal Rayleigh number for the couple-stress fluid is higher than
the critical value of thermal Rayleigh number for the ordinary fluid hence the couple-
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stress fluid is more stable than the ordinary fluid. This problem, to the best of our
knowledge, has not been investigated yet.

2.  MATHEMATICAL FORMULATION OF THE PROBLEM

Here, we consider an infinite, horizontal layer of thickness “d” of incompressible
thin couple-stress fluid with temperature and pressure dependent viscosity heated from
below. The fluid is assumed to occupy the layer Vd = ú2 × (0, d) (d > 0). The tem-
perature T at the bottom and top surfaces z = 0 and d = z is TL, TU, respectively, and

a temperature gradient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dz
dTβ  is maintained. The gravity field g = (0, 0 –g) per-

vades the system in the negative z-direction.
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Fig. 1. Geometrical configuration of the problem

The equations governing the flow of an incompressible couple-stress fluid (utiliz-
ing the Boussinesq approximation) are given as follows (see Rajagopal et al. [48],
Stokes [32])

00 =+∇ kgp ρ , (2)
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(3)

0=⋅∇ q , (4)
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TT
t
T 2∇=∇⋅+
∂
∂ κq . (5)

Here, ρ, ρ0, q, g, t, p, P, μ, μ ′, κ and α are the fluid density, density at the reference
temperature TU, velocity, acceleration due to gravity, time, pressure field due to grav-
ity, pressure due to thermal expansion of the fluid, coefficient of viscosity, coefficient
of viscoelasticity, thermal diffusivity and coefficient of thermal expansion, respec-
tively, and assume that the TL and TU are the constant temperatures of the lower and
upper surfaces of the layer. The appropriate boundary conditions to append to equa-
tions (2)–(5) are

0),,,(,),,,(,),0,,( ptdxxpTtdxxTTtxxT UL === , (6)

where p0 is the reference pressure. Our aim is the study of stability of the steady static
conduction solution to equations (2)–(6)

00 )( pdzgp +−−= ρ , (7)

0q = , (8)
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⎠
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⎜
⎝
⎛ −−= ρ . (10)

In order to study the stability of the conduction solution, we introduce the pertur-
bations q′ = ui + vj + wk, θ, p′ and P′ to ,q  ,T  ,p ,P  respectively, i.e.,

PPPpppTT ′+=′+=+=′+= ,,, θqqq . (11)

The nonlinear equations for the perturbations q′ = (u, v, w), θ, p′, P′, ρ0 which rep-
resent velocity, temperature, pressure field due to gravity, pressure due to thermal
expansion and density, respectively, are given

0=′∇p , (12)
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in ú2 × (0, d) × (0, ∞) and setting D = [∇q + (∇q)T]/2. To the previous system, we
append the initial conditions

)()0,(,)0,( 00 xxx θθ == qq , (16)

and the boundary conditions

dzwvutdyxp zz ,0at0,0,0),,,( ======′ θ . (17)

In equation (16), q0 and θ0 are regular fields, q0 being divergence free. From equa-
tions (12) and (17) it follows that p′ ≡ 0.

Equations (12)–(15) in non-dimensionalised form (dropping*) can be written as

),,(][2),( 42 θμθθμ +∇++∇−∇++−∇=∇⋅+
∂
∂ TpRFTpP

t
Dkqqqqq (18)
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with the following non-dimensional quantities and parameters
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Here, μ 0 = μ ( p0, TU) is the viscosity at the reference state ( p0, TU), ℜ is the Rayleigh
number and F  is the couple-stress parameter.

The functions q, θ  must be subject to boundary conditions and we suppose that q,

θ are periodic in x, y with periods ,2and2

yx aa
ππ  and the surfaces are stress free. Hence,

the boundary conditions are given as

dzwvu zz ,0at0,0,0,0 ===== θ .

To exclude the rigid motion we assume that the mean values of u, v are zero (see
Kloeden and Well [49]), i.e., we require

0== ∫∫
VV

vdVudV , (22)
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where ]1,0[2,02,0 ×⎟
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yx aa
V ππ  is the typical periodicity cell and let a = (ax + ay)1/2

be the two dimensional wave number.

3. NONLINEAR STABILITY ANALYSIS

Since we have assumed that the viscosity is an analytic function of the temperature
and pressure, for sufficiently small disturbances, we can expand the viscosity in the
following manner

qqq 22

0

2 )(),(
!

1),( ∇≈∇⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

=∇+ ∑
+∞

=

zTp
Tn

Tp
n

n
n

n

μθμθμ ,

and

,2)(

),(
!

12),(2
0

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂′≈

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∇⋅=+∇⋅ ∑
∞

=

kji

dd

z
w

y
w

z
v

x
w

y
uz

Tp
Tn

Tp n
n

n

n

μ

θμθμ

(23)

where

),()( Tpz μμ = . (24)

Let || ⋅ || denote the L2(V ) norm. In order to establish a nonlinear stability result, we
commence by multiplying equation (18) by q, equation (20) by θ, and we then inte-
grate over V to find
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Hence, by summing equations (25) and (26), we get
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where

212 ||||
2

||||
2
1 qλθ +=E (28)

is the sum of the kinetic and thermal energies associated with the perturbations.
We now state a maximum principle (see Temam [50] page 136 for its proof) which

will be very useful for our nonlinear stability analysis.

Lemma. Let the disturbances q, P, θ satisfy equations (18)–(20) with boundary con-
ditions

.1,0at0 === zw θ

Then, if

Vxx ∈∀Θ≤ 0|)0,(|θ ,

for constant Θ0 > 0, it follows that
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As an immediate consequence of Lemma, if the initial disturbance to the tempera-
ture field T  satisfies the inequality
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by the analyticity of μ, we can write
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Therefore, for initial thermal disturbances satisfying equation (29), by equations
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(30) and (31), we have
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W  being the set of the kinematically admissible perturbations
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The existence of the maximum of the functional I1/D1 in the linear space of the
kinematically admissible disturbances W  can be proved as in Rionero [51].

By assuming

R < RE(a),

and by choosing Θ0, such that
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Integrating equation (34), we have
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The number RE(a) is found from the variational problem equation (33) and the
Euler–Lagrange equations corresponding to this are
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where ϑ is a Lagrange multiplier associated with the divergence constraint. This eigen-
value problem is exactly the same as the one of linear stability theory and hence the
critical Rayleigh numbers for the linear and nonlinear stability problems coincide.
Finally, by Lemma and by equation (35), we may state the following:

Theorem 1. Assume that
ℜ < ℜc

with ℜc and

∈∀Θ≤ xx ,|)(| 00θ ú2 × [0, 1],

for constant ,00 >Θ  such that
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Variational problem
We now return to equation (33) and use calculus of variation to find the maximum

problem at the critical argument RE(a) = 1. Using equation (23) and the associated
Euler–Lagrange equations after taking transformations qq 1ˆ λ=  (dropping caps) we have
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where η is the Lagrange multiplier introduced, since q is solenoidal.
On taking the curl curl of equation (39) and then taking the third component of the

resulting equation, we find
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Now, we assume a plane tiling form
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The wave number is found a posteriori to be non-zero, so from equations (41) and
(40), we see that W, Θ satisfy

,01)1())((2

)(2))((2)()(4

2
2/1

1
1

22

32222222

=Θ+−−′′+

−−−+−′

aRWaDz

WaDFWaDzaDDWz

λ
λμ

μμ
(43)

01)1()(2 2/1
1

1
22 =++Θ− WRaD

λ
λ , (44)

subject to the boundary conditions

1,0at,0,0,0,0 42 ==Θ=== zWDWDW . (45)

4. NUMERICAL RESULTS

We consider the pressure–temperature–viscosity relationship equation (1), non-
dimensionalised as indicated in equation (21), and obtain the dimensionless viscosity

)]1(exp[)( −Γ= zzμ (46)

with Γ = γ (TL – TU) – δρ0gd.
Using (46) in equations (43) and (44),

,)(21)1()1(exp[

)(2)(2)(4

3222
2/1

1
1

222222222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+Θ+−Γ−=

−Γ+−+−Γ

WaDFaRz

WaDWaDWaDD

λ
λ (47)

01)1()(2 2/1
1

1
22 =++Θ− WRaD

λ
λ , (48)

together with boundary conditions equation (45).
By using the Galerkin-type method developed by Chandrasekhar [52], we find ap-

proximations to the critical thermal Rayleigh number for different values of the vari-
able dependent viscosity Γ, couple-stress parameter F. For this, we choose W and Θ,
satisfying the boundary conditions equation (45) as given by

zBzAW ππ sin,sin 00 =Θ= , (49)

where A0 and B0 are constants. Substituting solution equations (49) in equations (47)
and (48), we get the equations involving the coefficients of A0 and B0. For the exis-
tence of non-trivial solutions, the determinant of the coefficients of A0 and B0 must
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vanish. This determinant on simplification yields

1

2
1

2

22232222222

1)1)(2(

)](8))(2(4)(8)[(

λ
λ

ππππ

+Γ+

+−Γ++Γ++++
=ℜ

a

aaFaa . (50)

The maximum value of λ1 is determined by the condition ,0
1
=

ℜ
λd

d  and is found to be

11 =λ . (51)

Using equation (51) in equation (50), we have

)2(
)](2))(2()(2)[(

2

22232222222

Γ+
+−Γ++Γ++++

=ℜ
a

aaFaa ππππ . (52)

As a function of a, ℜ given by equation (52) attains its minimum when

.0])2(244[

])2(12412[])2(168[)2(6
8624

4422628

=Γ+−−Γ+

Γ++Γ++Γ+++Γ+

F

aFaFaF

πππ

πππ
(53)

The thermal Rayleigh number ℜ is minimized with respect to a and we use the
Newton–Raphson iterative scheme to obtain the value of critical wave number and the
corresponding critical thermal Rayleigh number ℜc (see Table 1).

As regards the nonlinear energy stability analysis, Theorem 1 may be re-stated as
follows:

Theorem 2. Assume that

ℜ < ℜc

and

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Γ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ℜ
ℜ

−+
−
ℜ

<Θ≤ |)|exp(11ln
)(

|)(| 00
cUL TT

x
γ

θ ,

for almost every ∈x ú2 × [0, 1]. Then the conduction solution is nonlinearly stable
with respect to the energy of the perturbations E(t), and

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
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⎡
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ℜ

−−≤ tvEtE
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1exp)0()( ,

where },,min{2 22
0 ππ Av =
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⎪
⎪
⎪
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⎪
⎪
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ℜ
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ℜ
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5. LINEAR STABILITY ANALYSIS

In order to illustrate the linear instability analysis, the governing equations are ob-
tained from equations (18)–(20) by omitting the nonlinear terms and we arrive at the
linearized form

 kkjiqqq θμμ R
z
w

y
w

z
v

x
w

z
uFzP

t
+⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂′+∇−∇+−∇=

∂
∂ 2)( 42 , (54)

0=⋅∇ q ,  (55)

θθ 2∇=−
∂
∂ Rw

t
. (56)

On taking the vertical component of the curl of equation (54), we eliminate the
pressure P and obtain the coupled system in w and θ

θμμμμ 2
1

2
12

2
64

22

)()()()(2 ∇+∇′′−
∂
∂′′+∇−∇+

∂
∂∇′=

∂
∂∇ Rwz

z
wzwFwz

z
wz

t
w , (57)

θθ 2∇=−
∂
∂ Rw

t
, (58)

where

yx ∂
∂

+
∂
∂

=∇
22

2
1

denotes the two dimensional Laplacian. Since the coefficients in equations (57) and
(58) depend only on z, the equations admit solutions the depend on x, y and t expo-
nentially. We therefore consider solutions of the form
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])(exp[)(),,,( ctyaxaizWtzyxw yx ++= , (59)

])(exp[)(),,,( ctyaxaiztzyx yx ++Θ=θ , (60)

in which it is understood that the real parts of these expressions must be taken into
consideration to obtain physical quantities. The wave speed c may be complex, i.e.,
c = cr + ici, and the expressions equations (59) and (60) thus represent waves which
travel in the x and y co-ordinate directions with phase speed 2/122 )/( yxi aac +  and which

grow or decay in time given by exp(crt). Such a wave is stable if cr ≤ 0, unstable if
cr > 0, and naturally stable if cr = 0.

If we now let ,
dz
dD =  then on substituting the expressions equations (59) and (60)

into equations (57) and (58), we obtain the following system of ordinary differential
equations

,)())((

)()(2))(()(
232222

2222222

Θ−−−−′′+

−′+−=−

RaWaDFWaDz

WaDDzWaDzWaDc

μ

μμ
(61)

,)( 22 Θ−=−Θ aDRWc (62)

to which we add the boundary conditions

1,0at042 ==Θ=== zWDwDW . (63)

Denoting by the superscript * the complex conjugate, multiplying equation (61) by W*,
equation (62) by a2Θ*, summing and integrating over the interval [0, 1], we have

.)||4|))(|(

)||||3|(|3|[|)|||(|

)()]|||(||[|

22222
1

0

2624222
1

0

2322
1

0

22

*
1

0

*2222
1

0

2

dzDWaWaDz

dzWaDWaWDaWDFdzaDa

dzWWRadzWaDWc

++−

+++−Θ+Θ−

Θ+Θ=++

∫

∫∫

∫∫

μ

θ

(64)

Thus the right-hand side of equation (64) is real and considering the imaginary part of
equation (64), we find

ci = 0.

Therefore, the linearized equations (54)–(56) satisfy the principle of exchange of
stabilities even in the case of couple-stress fluids with pressure and temperature vis-
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cosity. Thus, to find the instability boundary, the lowest value of ℜ for which c > 0,
we solve equations (61) and (62) for the smallest eigenvalue RL(a) with c = 0 (see
Chandrasekhar [52]), that is, we find the least eigenvalue RL(a) of the characteristic
value problem which gives the neutrally stable states

,)())((

)()(2))((
232222

2222

Θ=−−−′′+

−′+−

RaWaDFWaDz

WaDDzWaDz

μ

μμ
(65)

0)( 22 =+Θ− RWaD , (66)

together with boundary conditions as equation (45).
This eigenvalue problem is exactly the same as equations (43) and (44) for non-

linear stability theory with λ1 = 1, and hence the critical Rayleigh numbers for the
linear and nonlinear stability problems coincide, i.e., the linear instability ≡ the non-
linear stability boundary, and so no sub-critical instabilities are possible. This result is
equivalent to the result given by Joseph [4], [5].

T a b l e  1

The variation of the critical thermal Rayleigh number ℜc
with the couple-stress parameter (F) for different values of Γ

F = 0 F = 0.1 F = 0.2 F = 0.3
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Fig. 2. The variation of the critical thermal Rayleigh number ℜc
with the couple-stress parameter (F) for different values of Γ
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6. DISCUSSION OF RESULTS AND CONCLUSIONS

The critical wave number ac and critical thermal Rayleigh number ℜc depend on
the couple-stress parameter F and variable dependent viscosity Γ. The variation of Γ,
ac and ℜc with variation in F is given in Table 1 and the result is further illustrated in
Fig. 2, which represents the plot of critical thermal Rayleigh number ℜc versus the
parameter F. It is depicted in Fig. 2 that the couple-stress parameter F delays the onset
of convection because, as F increases, the value of ℜc increases. Thus, the couple-
stress parameter has the stabilizing effect on convection. Table 1 indicates that the
variable dependent viscosity Γ has the destabilizing effect on convection because, as Γ
increases (F = 0.2), the value of ℜc decreases. We observe that for Γ = 0, in particular,
for constant dynamic viscosity (δ = 0 = γ ), we obtain classical result. Chandrasekhar
[52] also notes that the linear instability and nonlinear stability Rayleigh numbers are
both the same and from Table 1, it is clear that for the couple-stress fluid the critical
value of Rayleigh number is higher than that of an ordinary fluid.

The principal conclusions from the above analysis are:
1. The result we establish is that the linear instability and nonlinear stability

Rayleigh numbers are both the same.
2. This result is equivalent to the result given by Joseph [4], [5] for the standard

Bénard problem.
3. The couple-stress has the tendency to slow down the motion of the fluid in the

boundary layer, thus reducing the heat transfer from bottom to top. The decrease in
heat transfer is responsible for delaying the onset of convection. Thus, the couple-
stress parameter F promotes stabilization.

4. For the couple-stress fluid the critical value of Rayleigh number is higher than
that of an ordinary fluid. Thus, couple-stress fluid is more stable than the ordinary
fluid.

5. The variable dependent viscosity Γ is found to have destabilizing effect on the
system.
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