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Abstract: This study presents the results of calculations of the of thermo consolidation process of
porous medium with the rheological Kelvin—Voigt skeleton, obtained numerically with the use of
Flex.PDE. It is a continuation of the discussion on the phenomenon of thermal consolidation. A 3D
problem considered boils down to solving the problem of the porous column filled with a liquid and
treated by applying uniaxial compression load through a porous plate, allowing free flow of liquid
from the center. To the sample affected by external lateral pressure. Numerical solution assumes
compressing the sample at properly defined boundary conditions. The aim of this study was to de-
scribe the influence of external load and temperature gradient in the deformation tests for the case
when the lateral surface is a good conductor of heat, and where the lateral surface of the sample does
not conduct heat. The results obtained, in the context of further research, can also be used to deter-
mine the influence of other parameters of the state and model parameters on the process of thermo
poroelasticity of the Biot model with rheological skeleton.

1. INTRODUCTION

The consolidation of the two-phase medium is the subject of numerous scientific
publications. In these publications, each phase of the medium is assigned to the spe-
cific rheological model. The impact of temperature gradient on the process of de-
formation of porous medium can be called thermal consolidation process. The basic
assumptions of the mechanics of soils and rocks were defined by Kisiel in [14].
Based on the mathematical model of creep of porous medium of Biot [8], [9] de-
fined as the two-phase body, a number of studies were conducted. In a very general
way, this model has been analyzed based on the theory of asymptotic homogeniza-
tion method of periodic structures, where two-phase medium pores are filled with
fluid that is just slightly compressible (Auriault [1], Bensoussan, Lions Papanicolau
[10], Sanchez-Palencia [21]), or when it is filled by gas (Auriault, Strzelecki, Bauer
and He [3]). The problem with the use of statistical methods was solved by Kroner
[19], Rubinstein and Torquato [20].
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Based on the fundamental postulate of the mechanics of porous medium that im-
plies continuity of porous medium, it can be observed that, in fact, both models are
proper for the mapping of the process of the center deformation, composed of discon-
tinuous skeleton, (due to the different size and shape of the soil particles in the case of
cohesive soils such as clay soils, clay, silts). Experimental studies indicate an impor-
tant role of water layers — related to electric field forces which occur in this type in
soils. The presence of water causes that within a significant temperature range, the
particles of a skeleton interact with each other via this water. This issue has been dealt
with by Bartlewska in her PhD thesis [5], as well as Bartlewska and Strzelecki in [6],
[7], [26]. The problem of an impact of temperature field in the situation of adiabatic
processes in the deformation process of two-phase medium composed of elastic
skeleton and slightly compressible fluid was studied by Coussy. Based on the thermo-
dynamics of irreversible processes, he developed a mathematical model of thermal
consolidation in [12] and Kowalski and others in [16], [17]. The problem of adiabatic
processes was also discussed by Strzelecki in [23], [24].

This work is a continuation of the numerical deliberation [6] about the impact of
temperature on the deformation process. It includes a generalization of Biot’s non-
isothermal process equations including the rheological characteristics of the skele-
ton. The process of the displacement change as a function of time was analyzed
according to different boundary conditions of numerically solved problem. In the
first variant, an impact of external load and temperature gradient of the deformation
process, the distribution of tensions and heat flow in the case of good heat conduc-
tion through the side wall of the sample was considered; the second variant involved
isolating the sides of the sample by assuming a constant temperature of 20 °C.

2. THERMO COLSOLIDATION PROCESS EQUATIONS

The mathematical equations presented below of the thermal consolidation process for
the Biot body with rheological skeleton have been derived based on the fundamental
laws of Newtonian mechanics for continuous center and thermodynamics of irreversible
processes. The starting point are the initial assumptions of the theory of two-phase me-
diums composed from an elastic-viscous compressible skeleton and a viscous fluid
filling the pores of this center. Assumptions are described in detail in [6].

Let Q be the space defining element RVE (representative volume element) filled
with a two-phase medium and limited by the surface S. Vector 7 is a unit vector nor-

mal to the surface S facing the outside of the element Q. If ¥’ and ¥* are respectively
the vectors of the speed of liquid and skeleton, then v" =¥’ —v* specifies a relative
speed of the filtration flow of the liquid through the porous medium. If p, and p,
stand for the specific density of the skeleton and the fluid, respectively, we can
make a volumetric density of the skeleton p; = (1 — f)p, and of the fluid p, = fp,,
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where p is the volumetric density of the two-phase medium equal in value to the
total sum of p; + p». The value of p is the density of the liquid flowing through the

surface S: p =f;p.
The continuity equation of the two phases center is

! pvindS + JS’ ovIndS + i Z—fm:o. (1)

Taking into consideration in the above equation the Gauss—Ostrogradski theorem,
we can write down the above equation in the form of a local relationship
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The equation of the continuity of the fluid flow through the skeleton of medium is
given by

! pvindS + ! PV ndS + i Z—’?dg =0. 3)

Considering the Gauss—Ostrogradski theorem we can write down the above equa-
tion in the form of a local relationship

D'p
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The 6 and & mean accordingly the rate of change of dilatation fluid and soil skele-
ton. The equations of movement of the solid phase medium are

ja,.jn 1S + J' bvidQ+ j (p-P)X.dQ= j(p”v';' + p,9)dQ (5)
N Q Q Q

where b is the filtration coefficient of viscous resistance, and p;; + pj, = p> 0, p1 <O0.
Local relationship which defines the equation of laminar motion of skeleton for quasi-
static problems is reduced to the form

o, +X,(p—-p)=-bv. (6)

The equation of motion of the liquid phase in the case of laminar motion is ex-
pressed by the formula
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j onds —jbv[dQ + jX[de = j (P! + Py )dQ (7)
N Q Q Q

where p1, + p» = p» > 0. Local relationship which defines the equation of laminar
motion of fluid for the case of quasi-static issues is reduced to the form

o, +X,p=bv; ()

where X; = —dsg is the gravitational acceleration in the right-hand frame of reference,
o; the components of the stress tensor in the skeleton related to the total cross-
sectional area, o= —p * fthe diffuse tension of a liquid filling the center of a porous
medium.

Constitutive relationships for the Biot body with a rheological skeleton of Kelvin—
Voigt for the adiabatic processes are presented

0,; =2Ne; + Med; +2NT ¢, + (AT, + NT,)éS; +%U5g +B(T-T,)9; ©)
c=0s+RO+d(T-T,)

where N is the shear module of the skeleton, 4 — module volume deformations of the
skeleton, O — volumetric strain rate effect on the tension of the liquid in the shell or
vice versa, the volumetric strain rate effect on the skeleton of stress in the liquid,
R — module of volume deformations of the liquid filling the pores of the Biot body.
The parameter M is expressed by:

Constant d is given by
d =-30r" +r'R]

where # and # present accordingly the linear expansion of the skeleton and the volu-
metric expansion of the liquid.
Constant P, is calculated by the formula

_TQKr +0r")
y)

where A is the heat transfer coefficient of soil.
T, and T}, are the parameters of the skeleton expressed by the formulas

7= and sz’i
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a

1, A’ are the shear and volume viscosity of soil skeleton.
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The simultaneous equations of the linear theory of thermal consolidation in the
movements of the skeleton and the function of stress in the liquid, the filtration flow
equation and the heat conduction equation for the Biot body with a rheological Kel-
vin—Voigt skeleton consists of five differential equations

2
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where ¥, =1+T, 82’ Y, =1+ T,,aé are differential operators, k is the coefficient of
t t

filtration of fluid through a porous medium, g — gravitational acceleration, and coeffi-
cients P,, P;, P, and Ps are given by the equations

[’2:3}’5(K—HTQJ—R;’], P3:3rs%+rl, P, = RP,,
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¢, 1s the specific heat at constant volume. The above set of equations is a starting point
for the issue resolved in the study.

3. CONSTRUCTION OF NUMERICAL MODEL
FOR THERMAL CONSOLIDATION OF ISSUES TRIAXIAL

The process of thermal consolidation of porous media is described by the set of
equations (10), on the basis of which a three-dimensional model of the center was
created. Calculations were performed using the finite element using FlexPDE v. 6
Professional. Effective parameters of the model are constant and do not depend on the
stress nor temperature. The effective parameters adopted for the calculations are
shown in Tables 1 and 2.

For calculation purposes a sample in the shape of a cylinder was taken, with the
radius of base » = 0.025 m and height # = 0.076 m. The behavior of the samples was
observed in the time range from 10~ to 10'® s under the influence of the applied load



32 M. BARTLEWSKA-URBAN, T. STRZELECKI

2 * 10° N/m” to the upper part of the sample at the initial moment and the temperature
gradient between the lower and upper surfaces of the sample was 80 °C in the time
interval from 10° to 107 s. For the rest of the time it was assumed that the temperature
of the upper and lower surfaces of the sample is 20 °C. For calculation of non-
insulated wall side variant of the sample it is assumed that temperature of the wall side
is 20 °C. On the upper surface of the sample, horizontal components of the displace-
ment skeleton’s vector are assumed to be zero. The lower surface of the sample was
defined as impervious to water and on top of their value in water pressure equal to the
atmospheric pressure. A constant value of the pressure on the side walls of the sample
was assumed to be 5 * 10° N/m’.

Table 1
Effective parameters of the Biot model with Kelvin—Viot skeleton
N 4 R 0 7 A
N/m? N/m? N/m? N/m? Pa*s Pa*s
2.5%107 5*10’ 1.5%10’ 2.7%107 2.2%10° 10
Table 2
Other effective parameters of soil
k f ¢y A 7 5
m/s - J/(kgK) J/(ms K) /K /K
10° 0.35 2%10°+8*%10° | 0.5+1.5 5%10° 107

4. RESULTS OF NUMERICAL CALCULATIONS

Flex PDE system has a module automatically generating finite elements. The fixed
network was used that took the split into 30 sections for each dimension, giving in
result 50592 elements. The second variable element in the case of the transient proc-
esses, like this one, is a time step df. The program starts running with the time step
starting dt = 107 s, and it ends with df = 2.96*%10° s. In Figs. 1 and 2, the distribution
of the finite elements at the starting stage of the calculation is presented to conduct the
comparative analysis; the following figures present the graphs: displacements, distri-
bution of temperature, heat flow and the z-axis — directed tension of the external load
accordingly for the two variants analyzed.
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Fig. 1. Finite element mesh Fig. 2. Calculational mesh
generated by the software
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Fig. 3. Displacement vectors in vertical plane at £ = 1¥10° s for wall side non-insulated sample

In the first variant considered, the lateral surface of the sample does not conduct the
heat and in the second one, it conducts the heat. All the graphs present the same moment
of the experiment = 1*10°s, taking ito consideration the time interval required for the
sample to be heated (from 10° s to 107), that is, the moment when the soil is exposed
in this experiment to the maximum temperature of 80 °C. In Figures 3 and 4, the
vectors of the displacements are presented for two variants of the heat conduct
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through the lateral surface of the sample for the same time of the simulation: ¢ =
1*10° s (heating time). The values of the displacements for the side wall non-insulated
sample are bigger than in the case where the walls are insulated. Both figures differ
also in the direction of the displacement vectors at the lower part of the sample that
stays heated. In this case, we can observe that for the non-insulated sample the biggest
displacements in the horizontal direction are in places of the highest temperature.
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Fig. 4. Displacement vectors in vertical plane at = 1*10° s for side insulated sample
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Fig. 5. Contours of temperature at £ = 1*10° s for side non-insulated sample
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Fig. 6. Contours of temperature at £ = 1*10° s for side insulated sample

Both temperature distribution (Fig. 5 and Fig. 6) and heat flow field are signifi-
cantly different for each variant. In the side insulated sample we can observe a regular
temperature distribution as well as homogeneous vertical flow from the warmer sur-
face. For the sample non-insulted laterally we can observe the outflow of the heat
through non-insulted surface which is a direct reason of the lower temperature (close
to the state before heating) in most part of the sample (Fig. 6).
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Fig. 7. Temperature flow field at = 1*10° s for side insulated sample
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Fig. 8. Temperature flow field at £ = 1¥10° s
for side non-insulated sample

Stress distribution in the vertical direction in the case of the sample with heat im-
permeable walls (Fig. 9) tends to regular distribution, the biggest tensions in the time
¢t =1*10° s are on the top side of the sample exactly in the place of the external load
and at the bottom where the sample is heated. The stress decrease towards the sam-
ple’s center after finishing the heating process achieves its minimal value at the sam-
ple’s bottom. Whereas in the case of the sample with heat (Fig. 10) conducting walls,
the vertical tensions take the biggest values at the sample’s bottom at its central point
radially decreasing towards the side wall to finally achieve its minimum in the corners
at the bottom. In the remaining parts of the samples they are constant. We can thus
observe significant differences in the distribution of vertical tensions for both variants.
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Fig. 9. Z-stress in vertical plane at 7= 1*10° s for side insulated sample
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Fig. 10. Vertical stress displacement for 1 = 1¥10° s
(for the sample with a lateral surface is a good heat conductor)

5. SUMMARY AND CONCLUSIONS

In this paper, the authors proposed to include in the soil consolidation process, the
impact of temperature in the process of evolution of the porous-medium including
changes of the shear and volume viscosity of the skeleton, as well as viscosity on the
flowing fluid influenced by the field of temperature. A mathematical model of thermal
consolidation presented in the study, which includes the rheological features of the
Kelvin—Voigt skeleton, is a more detailed approximation of real processes, as its im-
portant aspect is the lack of immediate displacements. The numerical solution has
assumed compressing the sample under the properly defined boundary conditions. The
process of the change in displacements as a function of time, temperature and tension
was analyzed in situation where the lateral surface of the sample is a good heat con-
ductor and in the situation when it is not. The results of the numerical simulation in
both cases differed significantly. Bigger vertical displacements were observed for the
sample with a well conducting lateral surface. The temperature distribution and the
direction on the heat vectors in the isolated sample had a regular character — the high-
est where the load worked or where the sample was heated. Whereas in the second
sample the heat drained away through the lateral surfaces so the fundamentally higher,
during heating, temperature was observed only at the bottom of the sample — the rest
of the material examined had a low starting temperature, practically not heating at all.
The graphs of displacements, tension distribution and field of the heat flow, were ob-
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tained directly from the FlexPDE v.6 program and are compatible with the experiment
assumptions as well as with the intuition and indicate the correctness of the model.
The model can be used to help resolving problems that are important from the engi-
neering perspective, especially the topics considering the tension—distortion states in
rocks at greater depths that require comprehensive analysis of the geothermal proc-
esses and their impact on the rocks in the field of a significant temperature gradient.
This may be important with regard to the plans of building generators of coal gasifica-
tion.
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