NUMERICAL CALCULATION OF DEFORMATION OF THREE DIMENSIONAL SAMPLE IN TRIAXIAL APPARATUS UNDER EXTERNAL LOAD AND TEMPERATURE FIELD

Open access

Abstract

This study presents the results of calculations of the of thermo consolidation process of porous medium with the rheological Kelvin-Voigt skeleton, obtained numerically with the use of Flex.PDE. It is a continuation of the discussion on the phenomenon of thermal consolidation. A 3D problem considered boils down to solving the problem of the porous column filled with a liquid and treated by applying uniaxial compression load through a porous plate, allowing free flow of liquid from the center. To the sample affected by external lateral pressure. Numerical solution assumes compressing the sample at properly defined boundary conditions. The aim of this study was to describe the influence of external load and temperature gradient in the deformation tests for the case when the lateral surface is a good conductor of heat, and where the lateral surface of the sample does not conduct heat. The results obtained, in the context of further research, can also be used to determine the influence of other parameters of the state and model parameters on the process of thermo poroelasticity of the Biot model with rheological skeleton.

[1] AURIAULLT J.L., Dynamic behaviour of porous media, Transport Processes in Porous Media, Kluver Academic Publishers, 1991, 471-519.

[2] AURIAULT J.L., SANCHEZ-PALENCIA E., Etude de comportement macroscopique d'un milieu poreux sature deformable, Journal de Mecanique, 16(4), 1977b, 575-603.

[3] AURIAULT J.L, STRZELECKI T., BAUER J., HE S., Porous deformable media by a very compressible Fluid, Eur. J. Mech. a/Solid, 9, 4, 1990, 373-392.

[4] BARTLEWSKA-URBAN M., STRZELECKI T., One-dimensional consolidation of the porous medium with the rheological Kelvin-Voigt skeleton, Studia Geotechnica et Mechanica, Vol. XXX, No. 1/2, 2008, 115-122.

[5] BARTLEWSKA M., The doctoral dissertation on the theme: Determination of effective parameters of rheological models of cohesive soils, Politechnika Wrocławska, Faculty of Geoengineering, Mining and Geology, Wrocław, 2009, (in Polish).

[6] BARTLEWSKA M, STRZELECKI T., Equations of Biots consolidation with Kelvin-Voight rheological frame, Studia Geotechnica et Mechanica, Vol. XXXI, No. 2, 2009, 3-15.

[7] BARTLEWSKA M., STRZELECKI T., One-dimensional consolidation of the porous medium with the Rheological Kelvin-Voight skeleton, Studia Geotechnica et Mechanica, Vol. XXX, No. 1-2. 2008.

[8] BIOT M.A., General theory of three-dimensional consolidation, J. Appl. Phys., No 12, 1941, p. 155.

[9] BIOT M.A., General Solutions of the Equations of Elasticity and Consolidation of a Porous Material, J. Appl. Mech., 1956, 23.

[10] BENSOUSSAN A., LIONS J.L., PAPANICOLAU G., Asymptotic analysis for periodic structures, North Holland Publishing Company, Amsterdam, 1978, [11] COUSSY O., Mechanics of Porous Continua, John Wiley & Sons, 1995.

[12] COUSSY O., Mechanics and physics of porous solids, John Wiley & Sons, 2011.

[13] KISIEL I., DERSKI W., IZBICKI R.J., MRÓZ Z., Soils and rocks mechanics, series Mechanika Techniczna, Vol. VII, PWN, Warszawa, 1982, (in Polish).

[14] KISIEL I., Rheological state equation of quasilinear medium, Polish Academy of Sciences - Wrocław Branch, Wrocław, 1980, (in Polish).

[15] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of Fluid Saturated Porous Materials, J. Theoretical and Applied Mechanics, 36, 3, 1998.

[16] KOWALSKI S.J., MUSIELAK G., Drying Processes in Aspect of the Theory of the Fluid Saturated Porous Materials, Proceedings of the Fifth International Conference on Composities Engineering, ICCE/5, ed. D. Hui, 1998, 487-488.

[17] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Theory of Drying Processes as an Aspect of Poromechanics, “Poromechanics - A Tribute to Maurice A. Biot”, J.F. Thimus et al. (ed.), A.A. Balkema, Rotterdam-Brookfield, 1998, 433-437.

[18] KRÖNER E., Effective elastic moduli of periodic and random media: a unification, Mechanics Research Communication, 7(5), 1980, 323-327.

[19] REINER M., Deformation, strain and flow, H.K. Lewis, London, 1960.

[20] RUBINSTEIN J., TORQUATO S., Flow and random porous media: mathematical formulation, variational principles and rigorous bounds, J. Fluid Mech., 206, 1989, 25-46.

[21] SANCHEZ-PALENCIA E., Non homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin, 1980.

[22] STRZELECKI T., Loi de comportement dans la theorie de la consolidation electrohydrodynamique, Stud. Geotech., Vol. 1, No. 3/4, 1979.

[23] STRZELECKI T., Model of thermo-consolidation processes of clay soil taking into account electrokinetic processes, Współczesne problemy naukowo badawcze budownictwa lądowego i wodnego, Oficyna Wydawnicza Politechniki Wrocławskiej, 2007 (in Polish).

[24] STRZELECKI T., KOSTECKI S., ŻAK S., Modelling of flow through porous media, Dolnośląskie Wydawnictwo Edukacyjne, 2008, (in Polish).

[25] SZEFER G., Non-linear Problems of consolidations theory, Mat. III Kolokwium Polsko-Francuskiego, 22-24 April 1980.

[26] STRZELECKI T., BARTLEWSKA-URBAN M., Numerical calculations of the consolidation of flotation waste landfill "Żelazny Most" based on Biot’s model with the Kelvin-Voight rheological skeleton, Archives of Civil Engineering, Vol. 57, Iss. 2, 2011, 199-213.

[27] Flex PDE v.6 : www.pdesolutions.com.

Studia Geotechnica et Mechanica

The Journal of Wrocław University of Science and Technology and AGH University of Science and Technology

Journal Information

CiteScore 2017: 0.14

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.448

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 7
PDF Downloads 61 61 15