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Abstract: The paper deals with the comparison of Biot’s model for saturated, porous soils with other
simplified models used in dynamic analysis. The purpose of this paper is to determine some limits of
validity of the various models. In order to do this a full set of governing, dynamic equations of Biot
model and a series of simplifying models such as u-p simplification and quasi-static consolidation
models are considered. These formulations are applied to a simple soil layer under periodic surface
loading. A displacement of skeleton and a displacement of fluid are shown and compared with each
model for various formulations.

1. INTRODUCTION

The response of saturated porous media under the dynamic load is of high interest
in many fields ranging from geomechanics to biomechanics. Problems like transient
phenomena during impact loading, earthquakes, water wave loading and consolidation
are of significant interest in geomechanics. The nature of response of the saturated
porous media depends not only on the nature of loading but also on the flow and de-
formation characteristics of the media. The response is said to be fully drained when
the rate of loading is much smaller than the rate of pore fluid flow. The problem is
said to be static if the steady-state pore fluid pressures depend only on the hydraulic
conditions and are independent of the porous skeleton response leading to uncoupled
flow and deformation problem. One-phase media for all the calculations are adequate
then. On the other extreme, if the rate of loading is much faster than the rate of flow,
the fluid follows the motion of the solid. This is an undrained condition, where the
single-phase solution is also adequate.

Depending on the rate of loading and the characteristics of flow and deformation
there are three idealizations possible:

– exact solution (fully dynamic or Biot’s one [1])
– u-p formulation (partly dynamic [2])
– the consolidation equations (quasi-static [3] )
In the first case, the coupled equations of flow and deformations are formulated in-

cluding an acceleration of both the solid skeleton and the fluid. In the case of the u-p
formulation the coupled equations consider only the acceleration of solid skeleton. The
governing equations are represented only in terms of the solid displacement u and the
pore fluid pressure p. When it comes to quasi-static case, all inertial terms are ignored.
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2. EQUILIBRIUM AND MASS BALANCE RELATIONSHIP

The effective stress for saturated porous media is defined by

pijijij αδσσ +=′′ , (1)

pTmσσ α+=′′ , (2)

where σij is the total stress, ijσ ′′  is the effective stress and σij is the Kronecker delta,
p is the pore fluid pressure and m = {1, 1, 1, 0, 0, 0,}T. In soils where the average ma-
terial bulk modulus of the solid components of the skeleton Ks p KT (KT is the tangen-
tial bulk modulus of an isotropic elastic material) the factor α = 1 and as a result the
equation simplifies to

pijijij δσσ +=′ , (3)

pTmσσ += , (4)

and is responsible for the major part of the deformation.
Constitutive equations using the incremental definition can be written as

)( 0
klklijklij ddDd εεσ −=′ , (5)

)( 0εεDσ ddd −=′′ , (6)

where Dijkl is the tangent coefficient matrix and 0
klε  is the initial strain. We define

strain increments as
T

yzxzxyzyx ddddddd },,,,,{ γγγεεε=ε .

In plane strain the stress-strain relationship in terms of Lame’s coefficients λ and
G is written as

ijijkkij Gεδλεσ 2+=′ (7)

where εkk is volumetric strain. In the above equation and for the rest of calculations
we assume small strains. The strain εij is then defined as

)(5.0 ),(),( ijjiij uu +=ε . (8)

In the two-phase model of soil there are three main equations in vectorial notation:
a) The overall equilibrium or momentum balance relation [2]

0)( =+∇+−− bwwwuσS ρρρ T
f

T (9)



Influence of inertia forces on soil settlement under harmonic loading 247

where
ρf – fluid density (water), ρ = n * ρf + (1 – n)ρs – total density,
ρs – skeleton density,
b – body force per unit mass (generally gravity),
n – porosity,
w – the average Darcy velocity of percolating water,
S is the strain matrix
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b) The momentum balance of the fluid
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where R represents viscous drag forces which, assuming the Darcy seepage law, can
be written as kR = w. The permeability k is used with dimensions of [length]3

[time]/[mass] which is different from the usual soil mechanics convention k′ which
has the dimension of velocity, i.e., [length]/[time]. Their values are related by

g
kk
fρ
′

= , where ρf and g are fluid density and gravitational acceleration at which the

permeability is measured.
c) The flow conservation equation

01
0 =++++∇ snp

Q f

fT

ρ
ρ

εαmw (11)

where

sfsf K
n

K
n

K
n

K
n

Q
−

+≅
−

+=
11 α , (12)

f

fn
ρ
ρ

– change of density,

0s – rate of volume expansion of the solid in the case of thermal change,
Kf – bulk modulus of the pore fluid.
The last equation is one accounting for mass balance of the flow. It balances the

flow divergence by the augmented storage in the pores of a unit volume of soil occur-
ring in time dt.

In the discussion below the convective term of the fluid acceleration w∇Tw = 0 and
the acceleration itself 0≈w , because it is generally small. The body forces ρb = 0 and
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terms 00 ≈= sfρ  are also omitted. We use ρf, ρ instead of ρ11, ρ12, ρ22 like in typical
Biot’s formulation. This is because of the fact that we analyze the issue on a macro-
scopic scale, where the density can be defined as ρ = n*ρf +(1 – n)ρs [6]. As a result
we obtain three equations written below in general form, which together with appro-
priate constitutive relations, define the behavior of the solid together with its pore
pressure in both static and dynamic conditions. The so called Biot’s equations are

0, =−− ifijij wu ρρσ , (13)

01
1, =−−−−

n
w

uRp f
fii

ρ
ρ , (14)

011, =++
Q
pw ji εα . (15)

The unknown variables in this system are:
– pressure of the fluid (water), p,
– velocities of fluid flow, wi,
– displacements of the solid matrix, ui.
The boundary condition imposed on these variables will complete the problem. We

have to define them for both solid and fluid phase. They are generally divided into two
groups. For the solid phase we have the part of the boundary Γt on which we specify
the total traction ti(t) (or in terms of the total stress σijnj with ni being the i-th compo-
nent of the normal at the boundary) and we also have Γu where the displacement ui is
given. When it comes to the fluid phase the boundary conditions are again divided into
two parts – Γp where the values of p are specified and Γw where the normal outflow wn

is prescribed (it would be a zero value for the normal outward velocity on an imper-
meable boundary). Having this in mind we can write

ut Γ∪Γ=Γ , (16a)

t = σijnj    on    tΓ , (16b)
uu =      on     tΓ . (16c)

Further

wp Γ∪Γ=Γ , (16d)

pp =     on    pΓ (16e)

on wΓ=Γ (16f)

As we analyze harmonic excitation with a constant frequency as well as an ampli-
tude, initial conditions are not considered.
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3. DIFFERENT FORMULATIONS FOR ONE DIMENSIONAL PROBLEM

3.1. FULLY DYNAMIC IDEALIZATION – BIOT MODEL

For the one-dimensional case we assume u1 = u, u2 = u3 = 0 and 1/Q = n/Kf . For an
isotropic material, D is given by and for small strains the stress relation is σ = σ″ – p =
Dε – p = Du,x – p, in the next relation we introduce w = v  where v is the displacement
of fluid.

From equation (15) we have relation p = )( ,, xx
f vu

n
K

+ .

Substituting the above relation into a) and b) we obtain

vuv
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For a periodic applied surface load q = Qeiω t a periodic solution arises after the dis-
sipation of the initial transient in the form u = U(x)eiω t, v = V(x)eiω t.

With the following notations

n
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D
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K
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f

f
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Lg

L 2
πβπβα == ,    

L
xz = ,

where
L – depth of soil layer,

ρ
n

K
D

V

f

L

+
=  – compression wave velocity in porous soil,

π
ω
2

=f  – frequency of excitation,

L
Vf L

4
=  – reference frequency,

LV
L

f
f

π
ωη

2
==  – frequency ratio as proportion of excitation to reference fre-

quency,
one can obtain Biot’s equations in the form
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VUKVU zzzz βπηπη 2222
,, −−=+ , (19)

Vi
n

UKVKU zzzz ⎥
⎦

⎤
⎢
⎣

⎡
−−−=+ αηβπηβπη

22
22

,, . (20)

3.2. PARTLY DYNAMIC IDEALIZATION – U-P FORMULATION

In this case, the coupled equations of flow and deformation consider only the ac-
celeration of solid skeleton and not that of pore fluid. It is called u-p formulation as in
this case the governing equations can be represented only in terms of solid displace-
ment u and pore fluid pressure p.

The reduced system in general form when omitting inertia forces of the fluid be-
comes

0, =− ijij uρσ , (21)

01, =−−− uRp fii ρ , (22)

011, =++
Q
pw ii εα . (23)

The set of appropiate equations for one-dimensional problem (19), (20), after sub-
stituting new variables introduced in the previous section, becomes

UKVU xxxx
22

,, πη−=+ , (24)

ViUKVKU xxxx αηβπη +−=+ 22
,, . (25)

3.3. CONSOLIDATION PROBLEM

If we ignore all second time derivatives, in other words all inertial terms, the equa-
tions simplify to

0, =jijσ , (26)

0, =−− ii Rp , (27)

011, =++
Q
pw ii εα . (28)
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The resulting system corresponds to quasi-static case, which is used frequently in
soil mechanics. If the phenomenon is sufficiently slow the full set of equations is con-
siderably reduced and after similar transformations as in the previous cases, we obtain

0,, =+ xxxx KVU , (29)

ViKVKU xxxx αη=+ ,, . (30)

We solve all the aforementioned (see 3.1, 3.2, 3.3) differential equations analyti-
cally reducing them to two uncoupled differential equations of the fourth order.

4. BOUNDARY CONDITIONS

A one-dimensional soil layer subjected to a periodic surface force is considered as
shown in Fig. 1. To complete the solution, boundary conditions must be applied at
z = 0 and z = 1. These conditions are:

with z = 0: pore pressure p = 0, stress on external surface ,q=σ
with z = 1: displacement of skeleton u = 0, displacement of fluid v = 0.

Fig. 1. Soil layer subjected to periodic loading     

5. NUMERICAL EXAMPLE

Numerical analysis is performed with typical parameters for a wide range of sands:
porosity n = 1/3, coefficient K = 0.973, and β = 1/3. The calculations of skeleton dis-
placement – u and fluid displacement – v are carried out for three sets of models: FD-
exact solution (Biot’s model), PD – u-p model and QS – quasi-static model. All the
calculations are done using the dimensionless η parameter which is the ratio of the
excitation frequency to the comparative frequency which is 10 Hz in our case:

Hz10
f

f
f
==η . The value of 10 Hz is a typical excitation for soil vibrators. There are

generally considered five values of η: 0.1, 0.8, 1.0, 1.2, 5.0. These values comply with
soil vibrators, earthquake or wave induced excitation inter alia.
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Fig. 2. Displacement of the soil skeleton for FD analysis for five different η

Fig. 3. Displacement of the fluid for FD analysis for five different η
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Fig. 4. General variation of the fluid pressure for FD analysis for five different η

The three figures above (Figs. 2 through 4) show the displacement of the skeleton
and of the fluid and also the fluid pressure for Biot’s model. There are varied values and
shapes of the aforementioned unknowns for different η (or different excitation frequency
in other words).

Figures 5 through 7, on the contrary, present a comparison of the skeleton and the
fluid displacement for the formulations analysed and for three exemplary η.

a)  
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b)  

Fig. 5. Skeleton and fluid displacement for Biot’s, u-p and consolidation model for η = 0.1

a)  
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b)  

Fig. 6. Skeleton and fluid displacement for Biot’s, u-p and consolidation model for η = 1

a)  
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b) 

Fig. 7. Skeleton and fluid displacement for Biot’s, u-p and consolidation model for η = 5

a)  
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b)  

c)  

Fig. 8. Fluid pressure for Biot’s, u-p and consolidation model for: (a) η = 0.1, (b) η = 1, (c) η = 5

For η = 5 there is a different type of graph used, because it shows the oscillations
and the violent changes much better than the column graph.
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When it comes to the fluid pressure, the disparity between the models analysed is
also bigger for higher frequencies as shown in Fig. 8 presenting the pressure as
a function of depth.

6. CONCLUSION

The analytical study described helps us to determine the limits of applicability of
the various assumptions in the particular case of a linear one-dimensional and periodic
problem. An extrapolation of the conclusions can be made to other more realistic
problems of soil mechanics giving some quantitative basis for the recommended
analysis procedure and avoiding a priori assumptions.

The main question which is raised in this paper is when the PD or even QS model
is sufficient and whether FD analysis is necessary to conduct. There are three main
conclusions which can be made after calculations in the previous sections:

– for low excitation frequency (η ≤ 0.1) the three models analysed give similar re-
sults, so there is no point in doing expanded calculations accompanying the PD
or FD idealization;

– the influence of the fluid inertia forces is very low even for η = 1, so it is not an
error to neglect them for η ≤ 1 (PD idealization is sufficient);

– if the skeleton displacement is of main interest, it is possible to conduct the PD
idealization (which neglects the fluid inertia forces) even for relatively high ex-
citation frequency (η = 5).
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