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Abstract

The composition of secondary cell wall determines the indust-
rially relevant wood properties in tree species. Hence, its bioge-
nesis is one of the most extensively studied developmental 
processes during wood formation. Presently, systems genetics 
approach is being applied to understand the biological net-
works and their interactions operational during secondary 
development. Genome-scale analyses of secondary cell wall 
formation were documented and gene regulatory networks 
were reported in Arabidopsis, poplar, pine, spruce, rice and sug-
arcane. In the present study, the expression patterns of 2651 
transcripts representing different pathways governing secon-
dary development was documented across four genotypes of 
E. tereticornis. A co-expression network was constructed with 
330 nodes and 4512 edges and the degree ranged from 11 to 
53. The network documented 75 (22 %) transcription factors 
with high degree of interaction. Secondary wall associated 
NAC domain transcription factor (SND2) was identified as the 
top hub transcript with 53 interactions. The present study 
revealed that functional homologs regulating secondary cell 
wall formation are conserved among angiosperms and gym-
nosperms. 

Keywords: : Cell wall, Eucalyptus, Expression, Network, Regulati-
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Introduction

Eucalyptus tereticornis Sm., commonly known as forest red gum 
has an extensive natural distribution from southern Papua 
New Guinea to southern Victoria of Australia. It ranks among 
the most extensively planted Eucalyptus species in the tropics 
and subtropics (Florence, 1996) and has been introduced as 
plantation crop in several countries due to its rapid growth and 
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desirable wood properties when grown in a wide range of 
environmental conditions. Since Eucalypt species are preferred 
for paper and pulp production, intensive research has been 
conducted in the past two decades to understand the molecu-
lar regulation of wood formation in this genus (Kirst et al., 2004; 
Barros et al., 2009; Salazer et al., 2013; Thavamanikumar et al., 
2014; Hefer et al., 2015; Shinya et al., 2016; Mizrachi et al., 2017). 

Plant cell wall is composed of polysaccharides which 
determine its structural and functional properties. The secon-
dary cell wall (SCW) biosynthesis occurs after cessation of cell 
growth and is chemically composed of cellulose, hemicellulo-
ses and lignin and the proportion of each varies among diffe-
rent species (Zhong and Ye, 2014a). In tree species, the compo-
sition of SCW determines the industrially relevant wood quality 
traits and hence physiological, biochemical and molecular pro-
cesses governing wood formation has been extensively revie-
wed in woody perennials (Andersson-Gunneras et al., 2003; Du 
and Groover 2010; Zhong and Ye, 2010; Wang and Dixon, 2012; 
Hussey et al., 2013; Zhong and Ye, 2014a, b; Hefer et al., 2015; 
Shinya et al., 2016; Mizrachi et al., 2017; Jokipii-Lukkari et al., 
2018). 

It is well documented that a large array of structural and 
regulatory genes are expressed during radial growth in woody 
stems. However, most of the studies have focused either on 
single gene or selected gene families from functionally charac-
terized pathways, limiting understanding on the role of entire 
pathways or biological sub-networks which are essential, red-
undant, auxiliary or unique to wood formation (Mizrachi and 
Myburg 2016; Mizrachi et al., 2017). Hence, with the introduc-
tion of high throughput genomics technologies along with 
comprehensive computational pipelines, a holistic systems 
genetics perspective to comprehend the molecular architec-
ture of complex trait like wood formation has emerged. Pre-
sently, genome-scale analyses of SCW biogenesis are reported 
and gene regulatory networks specific to SCW formation is 
documented in Arabidopsis, poplar, pine, spruce, rice and sug-
arcane (Yang et al., 2011; Palle et al., 2011; Ruprecht and 
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Persson, 2012; Wang et al., 2012; Vanholme et al., 2012; Hirano 
et al., 2013; Cai et al., 2014; Taylor-Teeples et al., 2015; Lamara et 
al., 2016; Liu et al., 2015; Chandran et al., 2016; Davin et al., 
2016; Ferreira et al., 2016; Zinkgraf et al., 2017; Shi et al., 2017; 
Jokipii-Lukkari et al., 2018). 

In our earlier publication, we had reported that the expres-
sion variation of EYE [EMBRYO YELLOW] could presumably 
govern the phenotypic variation in wood properties across 
Eucalyptus tereticornis. Further, gene clusters discriminating 
the phenotypes were also reported (Dharanishanthi and 
Ghosh Dasgupta, 2016). However, the differentially expressed 
transcripts selected for the previous study did not include 
major transcripts regulating secondary cell-wall biogenesis, 
necessitating the present study, wherein a specific secondary 
cell wall related co-expression network was developed to iden-
tify major transcripts regulating secondary cell wall biogenesis 
in wood tissues of E. tereticornis.  

Materials and Methods

Four genotypes of Eucalyptus tereticornis (SWMG-6, CW-8, KUP-
14, NKR-49) were selected for expression profiling based on 
their holocellulose and klason lignin content which was deter-
mined by NIR spectroscopy. Percent klason lignin was 20.07 %, 
21.57 %, 30.94 % and 25.27 % in SWMG-6, CW-8, KUP-14 and 
NKR-49 respectively, while their corresponding holocellulose 
content was 72.9 %, 73.15 %, 63.13 % and 69.36 % respectively. 
Wood core samples (in duplicate) of approximately 2.0 cm 
length were collected at a height of ~1.3m using increment 
borer (Haglof Inc., Sweden) from nineteen year-old standing 
trees available in the seed orchard established at Karunya 
Research Station, Coimbatore, India.

RNA isolation, Microarray Design and Hybridizati-
on
Total RNA was extracted from developing xylem tissues of all 
the four genotypes using Spectrum™ Plant Total RNA Kit (Sig-
ma Aldrich, USA). The quality of RNA was checked NanoDrop 
ND-1000 UV-Vis Spectrophotometer (Thermo Scientific, USA) 
and integrity was determined using 2100 Bioanalyzer (Agilent 
Technologies Inc., Santa Clara, CA). Total RNA from duplicate 
samples was pooled in equimolar concentration prior to labe-
ling and hybridization. A 8x60K microarray chip was custom-
designed in Agilent platform (AMADID: 059849) consisting of 
44,817 probes representing 18,987 transcripts (Dharanishanthi 
and Ghosh Dasgupta, 2016). The size of the probes was sixty 
base pairs and a minimum of two probes per transcript was 
designed. RNA sample preparation, labeling and hybridization 
was done using one-color microarray-based gene expression 
analysis with Tecan HS Pro protocol (Agilent Technologies, CA, 
USA) as per manufacturer’s protocol. Hybridization was con-
ducted at 65°C for 16 hours and the slides were scanned using 
Agilent Microarray Scanner G2505C and the features were ext-
racted with the Feature Extraction Software (Agilent Technolo-
gies, v12) (Dharanishanthi and Ghosh Dasgupta, 2016).

Selection of secondary cell wall related transcripts 
and functional annotation
A total of 2651 transcripts involved in cell wall biogenesis were 
manually mined from the expression datasets of 18,987 
transcripts (Accession number GSE73030). Transcripts were 
functionally annotated and their position in chromosome, pro-
tein domains, biological pathways and gene ontology were 
defined based on the genome assembly of E. grandis using 
Phytozome v10. Further, Eucalyptus nucleotide sequences 
were used to search the complete protein sequences of Arabi-
dopsis using BlastX with (e-value cutoff of 1e-5) in the non-red-
undant database of NCBI and TAIR (v10) and the best hits 
(lowest e-value) was selected as Arabidopsis orthologs. Over-
representation of gene ontology (GO) terms for the 2651 
transcripts was conducted in AgriGO v2.0 (Tian et al., 2017). 

Documentation of differentially expressed 
transcripts and hierarchical clustering
Feature extracted data was analyzed using GeneSpring GX Ver-
sion 12 software (Agilent Technologies, CA, USA). After back-
ground correction, the data was log transformed and norma-
lized. Global normalization of the data was done in GeneSpring 
GX using the 75th percentile shift and normalization across 
samples was done using median values. Transcripts expressed 
in all genotypes were used for analysis. The log2 fold expressi-
on data was filtered for significantly regulated (up and down 
regulated) transcripts across all genotypes and transcripts 
exhibiting ±2.0 fold difference in expression with a statistical 
significance of p<0.05 were considered as differentially regula-
ted. The differential expression of transcripts across all possible 
pair-wise combination was performed. Hierarchical clustering 
was conducted with the CIMminer (http://discover.nci.nih.gov/
cimminer/home.do) software using Euclidean distance 
method, average linkage cluster algorithm and distance repre-
sented as the average of all pairs from each cluster group (Dha-
ranishanthi and Ghosh Dasgupta, 2016).

Development of Co-expression network
A correlation matrix of differentially expressed transcripts was 
made by calculating pair-wise Pearson correlation coefficient 
using normalized expression value across all genotypes using 
Co-Express 1.5 software (http://www.bioinformatics.lu /CoEx-
press/) with default parameters (threshold >0.9). Edges were 
made based on results from Co-Express and network was con-
structed with 330 nodes and 4512 edges using Cytoscape soft-
ware (http://www.cytoscape.org) using default parameters 
(Shannon et al., 2003). Duplicated edges and self loops were 
removed manually from the network. Assessment of over-
representation of gene ontology (GO) was performed using 
ClueGO Cytoscape plugin (http://apps.cytoscape.org/apps/
cluego). The statistical significance for all GOs for biological 
process, molecular function and cellular component was eva-
luated with default parameters (kappa score 0.4). GO annotati-
on terms were considered significant if the corrected P-value 
(False discovery rate) was < 0.05 and if there were at least 4 
transcripts associated with the same annotation (Bindea et.al., 
2009).
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Results

The customized array representing 2651 secondary cell wall 
related transcripts were categorized into different functional 
pathways including primary and secondary cell wall biosyn-
thesis pathway represented by 481 transcripts; 383 transcripts 
belonging to cell wall related protein/ enzymes; 125 cell expan-
sion related transcripts; programmed cell death/ senescence 
related pathways was represented by 214 transcripts and hor-
mone signaling pathways consisted of 258 transcripts. A total 
of 1190 transcription factors related to cell wall biogenesis 
were included in the array for expression analysis. The functio-
nal annotation of the transcripts, their position in chromoso-
me, protein domains, biological pathways and gene ontology 
is presented in supplementary table 1. The GO terms for biolo-
gical process (Supplementary Figure 1), molecular function 
(Supplementary Figure 2) and cellular component (Supple-
mentary Figure 3) revealed that the major GO terms represen-
ted in the analyzed transcript sets included metabolic process, 
organic substance metabolic process, primary metabolic pro-
cess, cellular process, macromolecule metabolic process, nitro-
gen compound metabolic process biosynthetic process and 
cellular biosynthetic process (Figure 1).

The fold expression across all genotypes ranged from 
10.42 to -8.9. In phenotypes with high holocellulose content 
(SWMG-6 and CW-8), the transcript expression ranged from 
5.66 to -8.9, while in phenotypes with high lignin content (KUP-
14 and NKR-49), the expression ranged from 10.42 to -8.39. All 
pair-wise comparison of differentially expressed transcripts is 
given in Figure 2 and the hierarchical clustering of differentially 
expressed transcripts is represented in Figure 3. The total num-
ber of transcripts differentially expressed across all genotypes 
(after removal of overlapping transcripts) was 394. 

Co-expression network of major cell wall related 
transcripts
The number of significantly co-expressed transcripts (threshold 
>0.9) was 330 and the co-expression network was constructed 
with 330 nodes and 4512 edges and the degree ranged from 
11 to 53 (Figure 4). Gene ontology enrichment confirmed that 
the network was significantly enriched with cell wall 

biosynthesis related GOs including cell wall biogenesis 
(GAUT12, XYL1, FLA12, PER64, LAC17, IRX3 and IRX1), glucosyl 
transferase activity (UGT74F2, UGT87A2, UGT76E2, UGT84A1, 
CslG3 and GoIS2), starch and sucrose metabolism (BGLU17, 
BFRUCT1, XYL4 and PME3) and phenylpropanoid metabolic 
process (COMT1, PAL2, HCT, 4CL1,4CL3, FAH and CYP42C4) (Figu-
re 5). The network documented 75 transcription factors with 
high degree of interaction including SND2, WRKY23, SUVR2, 
SPT5L, AP2/B3 like, C3HC4 type (ring finger), NAC044 and HB6. 

The list of top hub transcripts in the network is presented 
in table 1. Secondary wall associated NAC domain protein 2 
(SND2) was found to be the major hub transcript in the net-
work with 53 interactions. It co-expressed with functional 
genes like cellulose synthase (CesA), 4-coumarate: CoA ligase 
(4CL), fasciclin-like arabinogalactan (FLA12), beta-galactosida-
se (BGAL8), pectin methyl esterase (PME), ubiquitin (UBQ9), 
ascorbate peroxidise (APX) and eukaryotic aspartyl protease 
(ASP). Additionally, it interacted with ten transcription factors 
including homeodomain containing transcription factors 
(HB6), WRKY (WRKY23), AP2/B3-like TF (Eucgr.K02305) and 
C3HC4 type (RING finger) (Eucgr.I00623; Eucgr.D00969). 

Two new TFs, SUVR2 and SPT5L were also documented as 
top hub transcripts with 45 and 44 interactions. SUVR2 co-
expressed with 45 transcripts including 4CL1, 4CL3, IAA22, 
LEW2, NAC044, COMT1, PME, SND2, WRKY23 and XTH9, while 
SPT5L co-expressed with SND2, CesA8, F3H, AAE14, ACO1, 4CL1, 
4CL3, BGAL8 and FLA12.

Discussion

It is well documented that a large array of structural and regu-
latory genes are expressed during radial growth in woody 
stems, but a comprehensive understanding of how these 
genes interact to influence wood formation is currently limited 
(Liu et al., 2014). The reductionist genetics approaches have 
focused on either single gene or group of genes from functio-
nally characterized pathways to ascertain their role during 
wood formation. The recent approach of systems genetics has 
enabled a deeper understanding on secondary development 
with an insight into the critically essential genes, pathways and 
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Figure 1 
Major GO categories of transcripts involved in secondary cell 
wall biogenesis in E. tereticornis

 

KUP-14: Kupiano 14, SWMG-6: SW Mt.Garnet 6, CW-8: Cardwell 8, NKR-49: N Kenedy R 49.

Figure 2 
Venn diagram showing differentially expressed cell wall rela-
ted transcripts across E. tereticornis genotypes
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networks which are unique to wood formation in tree species 
(Mizrachi and Myburg, 2016; Mizrachi et al., 2017).

Gene networks for secondary cell wall formation are 
reported in several species like Arabidopsis (Yang et al., 2011; 
Ruprecht and Persson, 2012; Taylor-Teeples et al., 2015; Davin 
et al., 2016), poplars (Yang et al., 2011; Cai et al., 2014; Liu et al., 
2015; Lamara et al., 2016; Zinkgraf et al., 2017; Shi et al., 2017), 
Pinus taeda (Palle et al, 2011), sugarcane (Ferreira et al., 2016), 
rice (Guo et al., 2014; Chandran et al., 2016).  Recently, in E. 
grandis × E. urophylla hybrid population, a network based eQTL 
analysis tagging biomass and bio-energy related traits was 
reported. Molecular networks associated with wood density, 
DBH, glucose released, and lignin content were generated to 
understand the complex trait (Mizrachi et al., 2017). However, a 
comprehensive SCW related network is not reported in Euca-
lyptus species and hence the present investigation was under-
taken to document the expression profiles of cell wall related 
transcripts and develop the co-expression network to identify 
major regulators of SCW in E. tereticornis. 

Co-expression networks for cell wall biogenesis have been 
reported in Arabidopsis by several research groups. Yang et al. 
(2011) reported a network encompassing 694 cell wall related 
genes and the major gene families represented in the network 
were cellulose synthases, glycoside hydrolases, glycosyl trans-
ferases, exostosin, kinase/LRR superfamily, plastocyanin-like 
and TF from MYB family. Subsequently, Wang et al., (2012) 
documented cellulose synthases, glycosyl transferases, xylo-
glucan endotransglucosylase/hydrolases, expansin and COB-
RA- families in the cell wall related network. They also reported 
the presence of 45 TF families including MYB, NAC, HB, and 
WRKY. Transcriptional regulatory networks controlling secon-
dary wall biosynthesis was also reported in Arabidopsis (Cas-
san-Wang et al., 2013; Hussey et al., 2013; Taylor-Teeples et al., 
2015; Davin et al., 2016) and these networks documented the 
major cell wall associated gene families mentioned earlier. 
Populus genome wide co-expression network and 
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Figure 3 
Hierarchical clustering of differentially expressed transcripts

 

Nodes: Represented in pink-purple to color (based on degree)Edges: Depicted in green color 

Figure 4 
Gene co-expression network of secondary cell wall related 
transcripts in E. tereticornis



76

transcriptional network related to cell wall biosynthesis was 
reported by Yang et al. (2011), Cai et al. (2014) and Liu et al. 
(2015). These networks also comprised of members from cellu-
lose synthases, glycoside hydrolases, glycosyl transferases, 
exostosin, kinase/LRR superfamily, plastocyanin-like family 
and xyloglucan endotransglucosylase/hydrolases (XTH) and TF 
families like MYB, NAC and HB, as reported in Arabidopsis.

The cell wall specific networks from gymnosperms like 
Pinus taeda (Palle et al., 2011), Picea glauca (Lamara et al., 2016) 
and from monocots like Oryza sativa (Guo et al., 2014; Chand-
ran et al., 2016) and Saccharum Spp., (Ferreira et al., 2016) 

documented the presence of gene families like CesA, GH, FLA, 
EXPA and TFs like MYB, NAC, HB, WRKY and Znf in the network. 
Comparison of cell wall co-expression networks across Arabi-
dopsis, poplar, rice, barley, soybean, Medicago and wheat (Rup-
recht et al., 2011); Arabidopsis and rice (Hirano et al., 2013; Han-
sen et al., 2014) and Arabidopsis and poplar (Yang et al., 2011) 
were also reported. These studies revealed that the genes 
regulating cell wall biogenesis pathways are highly similar. 

In the present study, the co-expression network was cons-
tructed for major cell wall related transcripts with 330 signifi-
cantly co-expressed transcripts in E. tereticornis. Several gene 
families present in the cell wall biosynthesis network of Arabi-
dopsis, poplar, white spruce, pine, rice and sugarcane were pre-
sent in E. tereticornis including CesAs, GT, GH, COBRA-like, GATL, 
EXPA, TUB, CCR, OMT, O-fucosyl transferaser family and TF fami-
lies like MYB, NAC, WRKY, bHLH and Znf-C2H2. Genes reported in 
cell wall biosynthesis of other plant species were also found in 
Eucalyptus network including CesA7, IRX6 (COBL4), IRX15, XTH9, 
CCR, SND, MYB20 and VND7. The studies from both annual and 
perennial species including E. tereticornis indicate that biologi-
cal pathways functionally relevant to secondary cell wall deve-
lopment are conserved across species (Hansen et al., 2014).

Molecular studies in vascular plants have indicated that 
the expression of several families of TFs is associated with the 
secondary cell wall biosynthesis. The transcriptional network 
was described as a complex multi-leveled feed-forward loop 
regulatory system (Zhong and Ye, 2014 b). The secondary wall 
related NAC TFs (SND1, NST1/2 and VND6/7) act as the top level 
master regulators which activated the second-level master 
switches like SND3, XND and MYBs and they synergistically 
induced the expression of downstream TFs like BES1, SND2, 
C3H14, KNAT7 and lignin specific MYB and cell wall related 
structural genes involved in biosynthesis of cellulose, 

 

Number indicates the percent transcript in each GO term

Figure 5 
GO enrichment categories of secondary cell wall related net-
work in E. tereticornis

Table 1 
List of top hub transcripts represented in the secondary cell 
wall related co-expression network of E. tereticornis

Transcript 
ID 

E.grandis ID 
(Phytozome) 

Gene description Degree Major co-expressed 
transcripts 

 SND2 Eucgr.E03226 NAC domain containing 
protein 73 

53 CesA1, 4CL, FLA12, 
BGAL8, PME, UBQ9, 
APX, ASP, HB6, 
WRKY23 

Eucgr.A028
17 

Eucgr.A02817 Integrase-type DNA-
binding superfamily 
protein 

51 XTH5, 4CL, FLA12, 
CesA8, IAA17, UBQ9, 
UGT84A1, HB6, WRKY 

 PME Eucgr.E01468 pectin methylesterase  49 XTH9, 4CL1, 4CL3, 
BGLU17, IAA22, CesA8, 
NAC044, COMT1, F3H 

Eucgr.J0220
5 

Eucgr.J02205 HD domain-containing 
metal-dependent 
phosphohydrolase family 
protein 

48 XTH9, 4CL1, 4CL3, 
BGLU17, IAA22, CesA8, 
NAC044, COMT1, F3H 

 AAE14 Eucgr.D00173 Acyl-activating enzyme 14 47 FLA12, HB6, IAA17, 
CesA8, PME, SND2, 
UGT84A1, WRKY23, 
F3H,  XTH5 

 WRKY23 Eucgr.H00996 WRKY DNA-binding 
protein 23 

47 4CL1, 4CL3, BGLU17, 
IAA22, CesA8, NAC044, 
COMT1, F3H 

 CYP72A8 Eucgr.F01386 cytochrome P450, family 
72, subfamily A, 
polypeptide 8 

47 4CL, FLA12, CesA8, 
IAA17, UBQ9, 
UGT84A1, HB6, WRKY 

 F3H Eucgr.J02430 Flavanone 3-hydroxylase 45 4CL1, 4CL3, FLA12, 
CesA8, NAC044, UBQ3, 
UBQ9, UGT84A1, 
WRKY23 

 SUVR2 Eucgr.K01433 SET-domain containing 
protein lysine 
methyltransferase family 
protein 

45 4CL1, 4CL3, IAA22, 
LEW2, NAC044, 
COMT1, PME, SND2, 
WRKY23, XTH9 

 SPT5L Eucgr.J01043 kow domain-containing 
transcription factor 1 

44 SND2, CesA8, F3H, 
AAE14, ACO1, 4CL1, 
4CL3, BGAL8, FLA12. 
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hemicelluloses, lignin and signaling (Cassan-Wang et al., 2013; 
Hussey et al., 2013; Zhong and Ye, 2014 a, b; Ye and Zhong, 
2015).

In Arabidopsis, it was reported that SND1 is a master switch 
that regulated the secondary wall thickening in fibers (Zhong 
et al., 2006), while in poplar it was identified as a critical 
transcriptional switch of secondary wall biosynthesis (Cai et al., 
2014). SND1 is reported to regulate the expression of several 
other TFs in Arabidopsis and P. trichocarpa (Zhong et al., 2006, 
2007; Hussey et al., 2013; Zhong and Ye, 2014a, b; Ye and 
Zhong, 2015). In the gymnosperm P. taeda, SND1 was reported 
as the master regulator in cell wall related networks and inter-
acted with NST1, KNAT7, MOR1, PtMYB8, MYB85, XET2 and lignin 
biosynthetic genes (Palle et al., 2011), suggesting that SND1 
acted as master regulator in both gymnosperm and angio-
sperm. 

Recently, Zinkgraf et al (2017) reported the conservation 
of gene families in co-expression modules in poplars and 
documented NST1, VND1 as first-layer master regulators of 
ANAC075, GATA12, SND2, WRKY12 which in turn regulated 
second-layer switches like MYB46, MYB83 and several 
downstream TFs involved in cell wall formation. This module 
also included several major structural genes involved in lignin, 
cellulose and hemicellulose biosynthesis.  In another study in P. 
trichocarpa, PtrSND2/3-A2, PtrSND2/3-B1, and PtrSND2/3-B2 
was identified as major regulators of wood formation and co-
expressed with cell wall component genes (Shi et al., 2017).  
Further, they had also reported that cell wall biogenesis related 
transcripts were redundantly controlled by TFs during wood 
formation (Shi et al., 2017). The results in the present study is in 
consensus with the earlier reports, wherein SND2 was identi-
fied as a master regulator of cell wall biogenesis regulating the 
expression of 53 transcripts including CesA1, 4Cl, FLA12, BGAL8, 
PME, UBQ9, APX and ASP and other TFs like HB6, WRKY23 and 
C3HC4 type (RING finger) in E. tereticornis. 

Evolutionary studies have indicated that the ability to pro-
duce secondary xylem has been independently lost and gai-
ned several times in the angiosperm lineage, supporting the 
hypothesis that the key genes required for secondary growth 
are conserved among angiosperms (Kirst et al., 2004; Groover, 
2005; Dejardin et al., 2010; Spicer and Groover, 2010; Lens et al., 
2012) and between angiosperms and gymnosperms (Pavy et 
al., 2008). Additionally, reports suggest that the conservation 
of gene families involved in cell wall biogenesis and secondary 
development preceded the divergence of gymnosperms and 
angiosperms (Nairn et al., 2008; Del Bem and Vincentz, 2010). 
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