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Abstract

To assess the genetic and environmental components of 
gene-expression variation among trees we used RNA-seq 
technology and Eucalyptus urophylla x grandis hybrid clones 
tested in field conditions. Leaf and xylem transcriptomes of 
three 20 month old clones differing in terms of growth, 
repeated in two blocks, were investigated. Transcriptomes 
were very similar between ramets. The number of expressed 
genes was significantly (P<0.05) higher in leaf (25,665±634) 
than in xylem (23,637±1,241). A pairwise clone comparisons 
approach showed that 4.5 to 14 % of the genes were diffe-
rentially expressed (false discovery rate [FDR]<0.05) in leaf 
and 7.1 to 16 % in xylem. An assessment of among clone 
variance components revealed significant results in leaf and 
xylem in 3431 (248) genes (at FDR<0.2) and 160 (3) (at 
FDR<0.05), respectively. These two complementary approa-
ches displayed correlated results. A focus on the phenylpro-
panoid, cellulose and xylan pathways revealed a large majo-
rity of low expressed genes and a few highly expressed ones, 
with RPKM values ranging from nearly 0 to 600 in leaf and 
10,000 in xylem. Out of the 115 genes of these pathways, 45 
showed differential expression for at least one pair of geno-
type, five of which displaying also clone variance compo-
nents. These preliminary results are promising in evaluating 
whether gene expression can serve as possible ‘intermediate 
phenotypes’ that could improve the accuracy of selection of 
grossly observable traits.
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Introduction

Advances in the knowledge and understanding of the genoty-
pe-phenotype relationship are fundamental goals for all bree-
ding programs. In populations, the genotype-phenotype rela-
tionship is largely addressed by association studies like QTL or, 
more recently, genome-wide association studies (Huang and 
Han, 2014) and genomic selection (Lorenz et al., 2011). Howe-
ver, this highly complex relationship has long been like a biolo-
gical black box. Indeed, from the architecture of the genome, 
the production of the phenotype is a multi-step process sub-
jected to many endogenous and environmental interactions. 
Being the main intermediate between genetic makeup and 
phenotype, transcriptome reflects many mechanisms of the 
activation and regulation of gene expression such as genetic 
variation, epigenetics, and environmental factors. In an effort 
to fill the gap between genotype and phenotype, Jansen and 
Nap (2001) proposed a joint analysis of genotype and transcript 
abundance, considered as an intermediate phenotype bet-
ween DNA variants and phenotypes of interest. The promising 
field of e-QTL (Druka et al., 2010) has thus emerged within the 
global concept of genetical genomics. This methodology assu-
mes that transcript abundance is a quantitative trait with a 
heritable component. The question of identifying the extent to 
which gene expression is a genetically controlled trait remains 
crucial. Understanding the genetics of transcript abundance 
certainly holds a lot of potential in inferring the genetic contri-
butions to complex traits in populations. Soon after the deve-
lopment of microarrays, the genotypic effects of gene expres-
sion were investigated first in animals and humans (Brem et al., 
2002; Cheung et al., 2003), then in plants (Kirst and Yu, 2007; 
Druka et al., 2010; Lukens and Downs, 2012). These studies 
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have highlighted important patterns of heritability and popu-
lation differentiation in gene expression (Gibson and Weir, 
2005; Gilad et al., 2008). 

These fundamental advances are now reaching the limits 
of microarray technology. The recent advances in sequencing 
of RNA with RNA-seq opened up new opportunities (Martin et 
al., 2013; Zhao et al., 2014). Compared with hybridization-
based transcriptome studies, RNA-seq allows analysis of geno-
me-wide transcription without any prior knowledge of the 
genome, with higher sensitivity, better dynamic range of 
detection, lower technical variations and by-transcript quanti-
fication. The increasingly reasonable cost of this technology 
makes it affordable for most studies. However, while RNA-Seq 
is extensively used in plants to uncover transcriptomic chan-
ges between two contrasted growing conditions or develop-
mental stages, analysing differential expression, its potential 
for studying the genetic determinism of gene expression 
remains under-explored. RNA-Seq based differential expressi-
on between several genotypes or within populations, and its 
suitability for the determination of the genetic part of gene 
expression level, especially of plants grown in poorly cont-
rolled environments that are actual plantation conditions has 
been poorly investigated.

We addressed this issue with Eucalyptus. This genus has a 
great economic importance as it is one of the most widely 
planted trees in the tropical and subtropical regions, for pulp, 
paper, energy, timber, and possibly biofuel production. The 
present study focused on the highly valuable Eucalyptus uro-
phylla x Eucalyptus grandis hybrid, being prominent in humid 
tropics due to its superior adaptation to a humid climate and 
poor soils, its rapid early growth, its ability to resprout and its 
wood, which is suitable for solid wood and pulp production 
(Vigneron and Bouvet, 2001). Indeed, cellulose and lignin con-
stitute respectively 48.6 % and 26.7 % of it biomass (Evtuguin 
and Pascoal Neto, 2007). Two different tissues that are impor-
tant for production of lignocellulosic biomass were investiga-
ted: leaf, which by ensuring photosynthesis and transpiration 
provides plants with energy to grow and allows upwards 
movement of water and minerals, and developing xylem which 
contributes to wood formation. Aside from its high commercial 
value, Eucalyptus is also a pivotal genus for genomic research in 
forest trees. From the past 15 years, many genomic resources 
have been produced, culminating with the recent sequencing 
of the Eucalyptus grandis (Myburg et al., 2014) which provides 
the research community a reference sequence. Transcripto-
mics in Eucalyptus, including E. grandis and its hybrids, has also 
increased exponentially with many recent studies on different 
tissues, at different maturity stages and between contrasted 
conditions (Camargo et al., 2014; Hefer et al., 2015; Liu et al., 
2014; Mizrachi et al., 2010; Salazar et al., 2013; Villar et al., 2011; 
Vining et al., 2014). It generated a wealth of knowledge in 
terms of annotation and expression features. 

Studies of genetic control of gene expression have already 
be conducted on Eucalyptus with microarrays (Kirst et al., 2004; 
Kirst et al., 2005; Kirst and Yu, 2007) using eQTL and based on a 
limited number of genes. Although those studies have 
demonstrated that gene expression is controlled by genotype 

through significant QTLs, they did not separate the genetic the 
environmental components in gene expression variation. 
Based on an experimental design mimicking the environmen-
tal conditions of eucalyptus plantations, our objective was to 
assess the magnitude of the genetic part in the control of gene 
expression in the whole genome and within the lignin, cellulo-
se, and glycan pathways. From RNA-Seq assessment of 
transcript abundance, we used a combined approach of diffe-
rential expression tests and dissection of the determinants of 
gene expression levels. To this end, we first compared the 
transcriptome profiles between biological replicates (i.e.  
ramets on eucalyptus clones) through correlation testing bet-
ween read counts. Then, we performed the pairwise differenti-
al expression tests classically used to identify the differentially 
expressed genes in RNA-Seq studies. Lastly, we examined the 
variance component related to the genotype effect in a linear 
mixed modelling of the total variance of transcript abundance.

Materials and Methods

Plant material and growing conditions
Trees were selected from a genetic field trial established in the 
humid tropical conditions of the Republic of the Congo, east of 
Pointe-Noire (11°59‘ 21“ E, 4°45‘ 51“ S). It consists in 69 full-sib 
families of the hybrid Eucalyptus urophylla (as female) crossed 
with Eucalyptus grandis (as male) tested for their growth perfor-
mances (Makouanzi et al., 2015). All trees were grown under 
the same environmental and cultivation conditions, but were 
subject to micro-environmental variations that exist under 
field conditions. Three clones, G198, G204 and G309, were 
selected from three different families, on the basis of their con-
trasted growth during the juvenile stage. For each clone, two 
ramets were sampled in two different blocks, so that they had 
approximately the same height as a proxy for similar growth 
trajectories. They constitute two biological replicates (1 and 2). 
Different variables related to growth, leaf morphology and 
wood chemical content were measured: mean, coefficient of 
variation and heritability were calculated for each trait (Supple-
mentary Table 1), as described by Makouanzi et al. (2015). 
Twenty months after planting, samples for RNA-seq analyses 
were collected. They consisted of mature leaves (L) and imma-
ture xylem (X). Mature leaves were collected on branches loca-
ted at the bottom of the first third of the crown. Developing 
xylem was collected scratching the stem after bark removal, 20 
cm above the ground. In total, 12 samples were collected, cor-
responding to all combinations of genotype (G), replicate (1 or 
2) and tissue (L or X). 

RNA-seq, mapping and annotation
Total RNA was isolated from all samples using PureLink® Plant 
RNA Reagent (Invitrogen, USA) followed by an additional puri-
fication step using the RNeasy Plant Mini Kit (Qiagen, USA), 
according to the manufacturer‘s specifications. Total RNA puri-
ty and concentration were determined using a BioSpec-mini 
spectrophotometer (Shimadzu, Japan) equipped with a 
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Hellma TrayCell (1 mm optical path). The integrity of RNA mole-
cules was checked using the Agilent RNA 6000 Nano kit on a 
2100 Bioanalyzer (Agilent, USA). Messenger RNA molecules 
were purified from 3 µg of total RNA, and used to construct 12 
tagged random primed cDNA libraries. Libraries were multi-
plexed in 2 pools and sequenced on 2 Illumina HiSeq 2000 
lanes, generating 180,000,000 single reads of 50 bases per 
pool. Pre-processing of RNA-Seq data, mapping and counts 
were performed using Galaxy (Goecks et al., 2010). Adapters 
were removed using Cutadapt (Martin, 2011) and quality of 
reads was evaluated by FastQC (Andrews, 2010). Reads were 
then filtered by minimum read lengths (35b) and by minimum 
quality scores (Phred-score ≥30) with Filter FastQ (Blankenberg 
et al., 2010). They were then mapped on Eucalyptus grandis 
exome v1.1, downloaded from Phytozome 10 (Goodstein et al., 
2012; http://www.phytozome.net). Read alignments were 
generated with Bowtie for Illumina (v1.1.2), allowing 1 possible 
location per read in the genome, with 2 possible mismatches, 
as we were mapping a hybrid genome. As quantitation of 
expression at transcript level was not accurate enough with 
the sequencing technology, transcript counts across all iso-
forms were summed to compute abundance at gene level. 
Gene annotations were retrieved from Uniprot Knowledgeba-
se, available as the Eucalyptus grandis reference proteome (Pro-
teome ID: UP000030711).

Genome-wide analysis of differential expression
Analyses were performed using R system (version 3.0.3) (R 
Development Core Team 2014) and its dedicated software 
package EdgeR (Robinson et al., 2010). To conduct appropriate 
statistical tests, genes that cumulated fewer than 50 counts for 
all libraries were discarded. Counts were then normalized 
using the relative log expression (RLE) method, which has pro-
ved to be one of the most efficient (Kvam et al., 2012). Repeata-
bility of transcriptome profiles between replicates was explo-
red examining correlations between libraries. A first 
comparison was made on pseudocounts (log2(counts + 1)) pro-
ducing a heatmap of the distance matrix with MixOmics Packa-
ge (Lê Cao et al., 2009) of R Software. Then, similarities were 
investigated in normalized libraries by multidimensional sca-
ling analysis of log2 fold changes (log2FC), using MDS plot from 
edgeR.

The differential expression of genes between the three dif-
ferent genotypes at the two different tissue levels was studied 
using the EdgeR package. Given our experimental design, we 
used the generalized linear model (GLM), which takes into con-
sideration the relationship between mean and variance for 
read counts (McCarthy et al., 2012). A set of six conditions (3 
genotypes x 2 tissues) was defined. Conditions were compared 
pairwise according to contrasts based on genotypes for each 
kind of tissue. Differential expression was determined for each 
gene using the GLM likelihood ratio test, which fits negative 
binomial GLMs with the Cox-Reid dispersion estimates (McCar-
thy et al., 2012). Genes were considered as differentially 
expressed (DE) at false discovery rate (Benjamini and Hoch-
berg, 1995) of p < 0.05.

Detection and assessment of the genetic control of 
gene expression
Although the number of genotypes was very small we used 
the concept of heritability to complete the among genotype 
differential expression analysis by assessing the ratio of the 
variance among clones to the total variance. To estimate pro-
perly the variance components we first normalize the raw data 
by log2 transforming the number of reads using the voom 
function of the Limma R package (Ritchie et al., 2015). A linear 
mixed model was then implemented with the clone as the ran-
dom effect following a normal distribution N ~ (0, σ²cId) where 
σ²c is the among-clone variance, which is supposed to model 
the total genetic variance, and a residual effect corresponding 
to environment, N ~ (0, σ²e Id) where σ²e is the environmental 
variance and Id the identity matrix.

The variance component estimation was done using the 
ASReml version 3 package (Gilmour et al., 2006) implemented 
in R software (R Development Core Team 2014). The variance 
component ratio (VCR) was defined as VCR= σ²c/(σ²c + σ²e), 
based on broad sense heritability concept (Falconer and 
McKay, 1996). Standard errors of estimates were calculated 
with a delta method function in the ‘car‘ package in R (R Deve-
lopment Core Team, 2014). A statistical test to decide if σ²c, and 
in consequence VCR, was different from zero was done using 
the likelihood ratio test (Neyman and Pearson, 1993). To avoid 
the Type I error due to the numerous tests the false discovery 
rate (FDR) correction was used to define the threshold of signi-
ficance. 

Genes of the secondary cell wall formation pa-
thways
The list of genes involved in the phenylpropanoid pathway 
was taken from Myburg et al. (2014), with a focus on the core 
lignification toolbox as defined by Carocha et al. (2015). Genes 
of the cellulose and xylan pathways were selected as described 
previously by Hefer et al. (2015). Differences of expression of 
genes between genotypes were examined comparing their 
relative expression levels (FPKM) and analysing their individual 
results from the genome-wide differential expression tests 
described above. Estimates of the genetic control of gene 
expression were retrieved from the global analysis described in 
this specific paragraph.

Results and discussion

Libraries and detection of expressed genes
The number of reads per library varied from 41,808,259 (G309-
1-L) to 9,680,836 (G204-1-X) (Supplementary Figure 1a), of 
which 70.68 to 80.86 % were used for mapping. Out of the 
36,376 genes present in the reference transcriptome, 23,445 
(G204-1-X) to 29,970 (G198-2-L) were expressed in samples, 
with an average of 27,432.2 (Supplementary Figure 1b). The fil-
tered number of expressed genes was significantly higher in 
leaf than in xylem, with values of 25,665±634 and 23,637±1,241, 
respectively (P<0.05). Comparison of the number of reads in 
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libraries with the number of detected genes across all the sam-
ples showed that efficiency in detection of expressed genes 
was not correlated with library size, as shown by the sample 
G204-1-X for which the number of detected genes was similar 
to the other samples despite a substantially reduced number 
of reads. Removal of low expressed genes (sum of reads for the 
twelve samples ≤50) had a moderate effect on the total num-
ber of genes detected, as 86.93 % (G-198-2-L) to 95.33 % (G204-
1-X) were retained. This suggested that whatever the library 
size, generated reads were evenly distributed across the 
transcriptome, and that the estimation of gene expression 
levels between samples should not be much affected by varia-
tions in the library size once normalized. 

Repeatability between replicates
The multidimensional scaling plot of log2 fold-change norma-
lized values (Figure 1) showed that biological replicates were 
very similar in terms of global gene expression. However, 
repeatability of transcript abundance within genotypes is not 
the same for every couple of replicates. The main difference is 
related to tissues, as repeats were closely correlated in leaf, but 
much less in xylem. This tissue-specific pattern could be due to 
a greater heterogeneity of the mix of cell populations collected 
in xylem between replicates (López de Heredia and Vázquez-
Poletti, 2016), where the active cell proliferation and the cellu-
lar differentiation can produce variations in transcriptome pro-
files.

Genotypic effect on transcript abundance between 
genotypes
Correlation analyses revealed some differences between clo-
nes as illustrated by the multidimensional scaling plot of log2 
fold-change (Figure 1). As seen above, those differences see-
med to be a function of tissue. In xylem, transcriptome profiles 
are much more identical than in leaves, the small existing diffe-
rences between all of them being explained as much by 

repeats as by genotypes. In leaf, the global gene expressions 
are more distinct and genotype driven, with a marked distinc-
tion between G309 and the other clones G198 and G204.

Differential expression analyses between pairs of clones 
revealed that 4.5 to 14 % of the genes were DE in leaf and 7.1 to 
16 % in xylem. An increased FDR stringency (p<0.001) still 
reported hundreds of DE genes showing the reliability of DE 
genes discovery in this study despite the small number of 
genotypes and biological repeats. Combining the pairwise dif-
ferential expression results, the proportion of genes commonly 
differentially expressed between the 3 clones was dramatically 
reduced. Yet 0.7 % of the expressed genes in leaf and 0.6 % in 
xylem had significantly different levels of expression in each 
genotype (Figure 2). This shows that some genes have a higher 
potential of variation in expression within a population. By 
contrast, the number of commonly non-DE genes remained 
high, being 79.2 % in leaf and 79.1 % in xylem, which means 
that most non-DE genes are the same ones among all genoty-
pes. In total, 20,984±43 genes, that is about 58 % of E. grandis 
identified genes, were evenly expressed in the three E. urophyl-
la x E. grandis hybrid genomes. The much higher number of 
non-DE genes compared to DE genes is consistent with fin-
dings of Thavamanikumar et al. (2014) in xylem of E. nitens, and 
may be at least partly attributable to housekeeping genes that 
are constitutive genes required for the maintenance of basic 
cellular function and are expressed at relatively constant levels. 

Figure 1  
Similarity assessment of transcriptome expression profiles 
between samples by multidimensional scaling computed 
from normalized tables of counts of each library. Distances on 
the plot represent the two leading log2 fold-change differen-
ces between samples

Figure 2 
Number of genes differentially expressed (DE) and non-diffe-
rentially expressed (Non DE) between the three clones for leaf 
and xylem
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Nevertheless such a low proportion of DE genes in our 
experiment was not expected given the natural differential 
expression existing between the urophylla and grandis paren-
tal species (Salazar et al., 2013), the disturbance in the regulati-
on of gene expression often observed in interspecific hybrids 
(Hegarty et al., 2008) notably concerning the trans-regulatory 
mechanisms, the possible allele-specific expression mecha-
nism (Song, 2016), and the open field cultivation conditions. 

Variance component analysis showed that the value of the 
ratio of the variance among clones to the total variance (VCR) 
displayed roughly similar distributions in leaf and xylem (Figu-
re 3a and b). A large number of genes (around 7,000 in leaf and 
11,000 in xylem) presented a value smaller than 0.1. Then the 
frequencies dropped to about 1,000 genes and then increased 
slightly with variance values.  At FDR 5 %, values of VCR higher 
than 0.996 in leaf and 0.999 in xylem could be considered as 
significantly different from zero. It represents 160 genes in leaf 
and 3 in xylem (Table 1). As expected, the number of genes 
increased when loosening threshold stringency (FDR <0.10 
and <0.20), but this trend was much more marked for leaf. The 
lower number of genes showing significant VCR in xylem (Tab-
le 1) was consistent with the mean values of VCR for all genes: 
the mean value was smaller for xylem with marked standard 
error (0.35±0.42), compared with leaf (0.48±0.23). This lower 
value and higher standard error for xylem is congruous with 
the lower repeatability of transcriptome profiles for xylem in all 
libraries noted above. As previously hypothesised it could be 
due to a higher heterogeneity in cell populations in samples. 
Nevertheless, phenotypic analyses conducted on leaf and 
xylem of the 3 clones used in this study showed that wood che-
mical variables presented non-significant VCR compared with 
leaf morphology and mineral content (Supplementary Table 
1). 

This trend was confirmed extending this analysis to all the 
1480 clones of this field experiment (Makouanzi, 2015). This 
argues for a biological origin of the difference in the variance 
component due to genotype in transcript abundance between 
leaf and xylem, which could be attributed either to a smaller 
genetic variance, or to a broader environmental variance in 
xylem gene expression. This similar pattern of variation bet-
ween these complex traits and the transcript level of genes 
reinforces the assumption that, even though correlation bet-
ween transcript and protein abundance is disputed (Vélez-
Bermúdez  and Schmidt, 2014), gene expression could be rela-
ted to some traits in Eucalyptus and that the transcriptome is a 
promising intermediate phenotype to discriminate genotypes. 

Figure 3 
Relationship between gene expression and the variance 
component ratio in transcript abundance (VCR) for leaf (a) and 
xylem (b)

Table 1  
Variance component ratio in transcript abundance (VCR), and 
number of significant genes for leaf and xylem, according to 
different calculation methods of probability (p-value associa-
ted to the likelihood ratio test (LRT), false discovery rate (FDR)) 
and different thresholds 

Tissue VCR 
number of significant 

genes 

probability 

method threshold 

Leaf 0.934 5050 p-value LRT 0.05 

  0.955 3431 FDR 0.2 

  0.985 1022 FDR 0.1 

  0.996 160 FDR 0.05 

          

Xylem 0.929 2705 p-value LRT 0.05 

  0.99 248 FDR 0.2 

  1 3 FDR 0.1 

  1 3 FDR 0.05 

 

Figure 4 
Relationship between the variance component ratio (VCR) 
and the log likelihood ratio related to differential expres-
sion test (DE) for leaf (a) and xylem (b). The red line is the 
curve fitting the data calculated with the non-linear model 
y=a*exp(b*x²), (nls2 R package)
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By contrast, no relationship was detected between estimates 
of VCR and gene position along chromosomes or with gene 
expression levels, for both tissues. This last result differs from 
the findings of Yang et al. (2014) who noted that lower herita-
bility estimates (h2<0.2) were more likely to occur in genes with 
low expression levels. This absence of correlation in our study 
may be attributed to the limited sample size.

In our study, because there was very small number of 
genotypes, both DE and variance ratio methods were conduc-
ted to address the genetic control of the gene expression. In 
order to verify the consistency between these two comple-
mentary approaches, one considering clone as a fixed effect, 
the other as a random effect, the relationship between clone 
variance component and DE test likelihood ratios was ana-
lysed. A non-linear relationship was observed that was signifi-
cantly fitted by an exponential model for both leaf and xylem 
(Figure 4 a and b). This analysis reinforces the conclusion that 
differentially expressed genes among genotypes could result 
from a genetic control of gene expression.

Gene expression and genotypic effects within 
pathways of secondary cell wall formation
Expression levels in both tissues were highly heterogeneous in 
the phenylpropanoid, cellulose and xylan pathways, with 
RPKM values ranging from nearly 0 to 600 in leaf and 10,000 in 
xylem. But they displayed the same global trend, consisting in 
a large majority of very low to moderately low expressed 
genes, and a few highly expressed ones (Supplementary Figu-
res 2 and 3). 

Some differences of expression between clones were 
highlighted by ranking genotypes according to the level of 

expression of their genes (highest, intermediate and lowest). In 
xylem, the three genotypes exhibited a marked specific profile, 
whereas in leaf patterns were less pronounced (Figure 5). Tho-
se distinctions mainly relied on small differences in terms of 
level of expression, log2FC values between genotypes being 
≤1 for 75 % of genes in the phenylpropanoid pathway and 89 
% in the combined cellulose and xylan pathways. Nevertheless 
some genes displayed log2FC ≥2. It occurred in 6 % of genes in 
the lignin pathway, and in 1 % of genes of the combined cellu-
lose and xylan pathways. Filtering these RPKM-based differen-
ces with differential expression tests, significant differential 
expression (at FDR<0.05) was detected in 24 pairs of genes tes-
ted out of 214 (Supplementary Figure 2) in the phenylpropano-
id pathway and in 40 cases out of 486 in the cellulose and xylan 
pathways (Supplementary Figure 3), 80 % of which exhibited a 
log2FC ≥1.5. The number of genes displaying differential 
expression, the specific homologs within gene families and the 
enzymatic functions concerned differed according to tissue 
and pathways.

In leaf, differential expression was found in 19 genes. Eight 
belonged to the phenylpropanoid pathway (Supplementary 
Figure 2a), involving 6 enzymatic functions: PAL (1), C4H (2), 
F5H (2), COMT (1), CAD (2), and especially in HCT (1, 2 and 3). 
The cellulose pathway was rather evenly mobilized among 
genotypes (Supplementary Figure 3a). Log2FC values were 
mostly close to zero and no DE genes were found in the SUSY 
and CESA families. Only one gene of the alternative D-glucose 
route displayed significant DE, which was, however, based on a 
moderate level of expression and a rather low log2FC diffe-
rence. The 10 other DE genes found in the xylan pathway, GATL 
and DUF231 being the 2 most represented functions.

In xylem, differential expression affected only 3 enzymatic 
functions out of the 11 ones that constitute the phenylpropa-
noid pathway (Supplementary Figure 2b). Interestingly, 5 of 
the 8 DE genes belonged to the phenylalanine ammonia lyase 
(PAL) family and one corresponded to a cinnamate 4-hydroxy-
lase (C4H), which catalyzes the first and second common steps 
of the phenylpropanoid pathway respectively. The two other 
DE genes coded for some hydroxycinnamoyl-CoA shikimate/
quinate hydroxycinnamoyl transferases (HCT). It is noteworthy 
that the lignin specific PAL3, C4H2 and HCT5, which also dis-
play high levels of expression and log2FC values between 1 and 
2, were among those DE genes. The cellulose and xylan 
pathways exhibited 22 DE genes that were distributed in most 
families (Supplementary Figure 3b). Among them, sucrose syn-
thase (SUSY), one of the two vital enzymes able to mobilize 
sucrose in plant pathways exhibited differential expression in 3 
homologs out of the 7 known ones. The values of expression 
levels and log2FC associated with these statistically significant 
DE genes made these results particularly trustworthy. By cont-
rast, the large and key cellulose synthase (CESA) family was 
poorly represented, as only one homolog displayed some dif-
ferential expression.

The variance component due to genotype in transcript 
abundance within these secondary cell wall formation 
pathways followed the same pattern as for the totality of genes 
(Figure 6), as well as the same range of variation. Mean VCR of 

Figure 5  
Classes of clone expression based on the ranking of the level 
of expression of their genes, in the phenylpropanoid pathway 
(a), and the cellulose and xylan pathways (b), for leaf (1) and 
xylem (2)
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phenylpropanoid genes was higher in leaf (VCR =0.37) than in 
xylem (VCR =0.28), as for the totality of genes, but the opposite 
result was seen for cellulose and xylan (VCR =0.29 in leaf and 
VCR =0.40 in xylem). This result suggest that the genetic con-
trol in gene expression within these pathways were not related 
to the genes constituting these particular pathways but to 
regulation ones. Significant VCR (at FDR<0.20) was found in the 
level of expression of 5 genes of these lignin, cellulose, and 
xylan pathways, despite the small number of significant genes 
discovered at the whole transcriptome level. Only leaf tissue 
was concerned. Four of these 5 genes belonged to the phenyl-
propanoid pathway (PAL1, HCT2, HCT3, F5H2), but no lignin-
specific homolog was involved. DUF231/Eucgr.J00985 was the 
only gene of the cellulose and xylan pathways. All these 5 
genes displayed significant differential expression between 
one or two couples of genotypes. The high associated log2FC 
values and levels of expression supported a biological signifi-
cance of these differential expressions, apart from the low 
expressed PAL1.

Conclusion

Both differential expression and variance component ratios 
(related to the broad sense heritability) succeeded in detecting 
some genetic control in the levels of gene expression between 
three Eucalyptus clones. This result was in line with previous 
studies on Eucalyptus using eQTL approaches (Kirst et al., 2004; 
Kirst et al., 2005; Kirst and Yu, 2007). However, our RNA-seq 

based approaches brought new elements to these earlier fin-
dings, exploring the whole transcriptome without a priori 
instead of a restricted set of preselected genes, and separating 
the genetic from the environmental part in gene expression 
that were confounded in eQTL studies. Detection of genetic 
control in gene expression was not really expected given the 
poorly controlled experimental layout characterised by strong 
micro-environmental effects on trees and field sampling con-
ditions, and our limited experimental set-up. Nevertheless, this 
result is particularly sound as the majority of genes were found 
commonly non-differentially expressed while transcriptome 
replicates were repeatable. A detailed analysis of the seconda-
ry cell wall formation pathways detected some of the genes 
susceptible to genetic control in the key lignin and xylan 
pathways, more particularly in leaf tissue. 
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