Development and validation of *Acacia koa* and *A*. *koaia* nuclear SSRs using Illumina sequencing

Shaneka S. Lawson^{1*}, Aziz Ebrahimi²

¹ USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), Purdue University, Department of Forestry and Natural Resources, 715 West State Street, West Lafayette, IN 47907 ² Purdue University, Forestry and Natural Resources, Pfendler Hall, 715 West State Street, West Lafayette, Indiana 47907

* Corresponding author: Shaneka S. Lawson, Email: sslawson@fs.fed.us

Abstract

Koa (*Acacia koa*) and sub-species koaia (*A. koaia*) are two of more than 1,200 species from the genus *Acacia* within the *Leguminosae* (also designated Fabaceae) family. In the past, koa and koaia forests were found throughout the Hawaiian archipelago but populations have dramatically decreased. Comprehensive analyses of simple sequence repeats (SSRs) have not been published previously. Here we use genome sequencing and bioinformatics tools to report development of 100,000+ nuclear SSR (nuSSR) markers for use in koa and koaia genome studies with transcriptome SSR information was included for comparison. Over 10,000 high-value SSRs (40-60 % GC content) were isolated with 3,600+ further validated by ePCR. SSRs generated in this work can assist current efforts to sustainably increase in koa and koaia populations.

Key words: Acacia koa, Acacia koaia, ePCR, Hawaii, SSRs, tropical hardwood tree

Introduction

Koa (*Acacia koa*) and koaia (*A. koaia*) are native Hawaiian hardwood trees sacred to the Hawaiian culture and members of the *Leguminosae* family. The primary factor limiting molecular marker use in these species is absence of publicly available genome sequences and lack of high density linkage maps. Simple sequence repeats (SSRs) can be used in construction of genetic linkage maps and identification of quantitative trait loci (QTL), in marker-assisted selection (MAS), structure analysis, and as primers to amplify genomic regions between SSR loci. Some of the earliest uses of these technologies in plants are Morgante and Olivieri (1993) and Young (1996). These markers provide effective means for investigating genetic diversity and accelerating genome studies. Construction and development of SSRs provide a valuable resource for researchers and are essential for subsequent studies of breeding and genetic diversity. The majority of marker-based research employed microsatellites for analysis of genetic differentiation within koa and koaia populations (Fredua-Agyeman et al. 2008) and amplified fragment length polymorphisms (AFLPs) or quantitative reverse-transcriptase PCR (qRT-PCR) for pathogenicity studies (Shiraishi et al. 2012; Rushanaedy et al. 2012). Fredua-Agyeman et al. (2008) and Adamski et al. (2012, 2013) first reported use of SSRs in koa and presented 31 primer pairs for further utilization in genetic diversity and disease resistance studies. Recent publications on SSR development for other Acacia spp. have generated a genetic linkage map for A. mangium (Butcher and Moran 2000), polymorphic microsatellite loci for the hybrid A. mangium × A. auriculiformis (Ng et al. 2005), A. brevispica (Otero-Arnaiz et al. 2005), A. mellifera (Senegalia) (Ruiz-Guajardo et al. 2007), A. saligna (Labill.) (Millar and Byrne 2007), A. karina, A. stanleyi, and A. jibberdingensis (Nevill et al. 2010), A. dealbata (Guillemaud et al. 2015), A. mangium, A. auriculiformis, and A. mangium × A. auriculiformis (Le et al. 2016), comparisons to 454 and pyrosequencing in A. harpophylla F. Muell. Ex Benth (Lepais and Bacles 2011), A. atkinsiana (Levy et al. 2014), A. montana (Hopley et al. 2015), and paternity analyses in A. saligna (Saligna) (Millar et al. 2008).

We present development of a wealth of nuSSR markers for koa and koaia to supplement the shortage of molecular marker data currently available. Past efforts in this arena required use of magnetic beads and the 454 sequencing platform however, following Staton *et al.* (2015), we demonstrate a newer method to improve upon numbers of markers generated. We have described significantly more SSR primer options than those presented in studies of other *Acacia spp*. The nuSSRs identified here were characterized by motif and provide amplification points within both genomes. Future koa and koaia work can use these data for in-depth genomic studies like marker-assisted selection (MAS) or linkage maps as numbers of publically available SSRs are sparse.

Material and Methods

Plant materials

Phyllode samples were collected on Hawaii Island from 10 mature healthy koa, 10 koaia, and a single aberrant koaia phenotype koaia-A. These tissues were taken from the most outward facing branch in the middle of the tree and immediately frozen on dry ice before being shipped to the Plant Tissue and Genomics laboratory at Purdue University (https://ag.purdue.edu/fnr/Pages/labtissue.aspx) for nucleic acid extraction.

DNA / RNA extraction

DNA was extracted from phyllodes using the DNeasy Plant Maxi kit (Qiagen[®]) according to manufacturer's instructions except the following two modifications: (1) frozen phyllodes from each species were ground into powder, pooled, and suspended in 500 μ L of chilled 100 % ethanol for 15 min before adding the lysis buffer and (2) extracted DNA was eluted in 20 μ L of sterile water. DNA quantity and quality were determined by measuring the absorbance at 260 nm and the 260/280 nm ratio using a UV spectrophotometer. RNA was extracted from phyllodes using the RNeasy[®] Plant Mini Kit (QIAGEN[®], Germany) and quantified using the Nanodrop 8000 (Thermo Fisher Scientific Inc., USA) after addition of 1 μ l DNase[®] (Promega Corporation, USA). RNA quality was ascertained by a RNA 6000 nano chip (Agilent Technologies, USA) with final quality confirmed by electropherogram.

DNA sequencing, Read quality and Mapping

Genomic *A. koa* and *A. koaia* DNA samples were sequenced at the Purdue Genomics Core Facility (https://www.purdue.edu/ hla/sites/genomics/) using MiSeq (Illumina®) after paired-end library generation (Illumina® TruSeq DNA PCR-Free Library Preparation Kit). Trimmomatic software was used to trim low quality data. Quality control was carried out using FastQC. FastQC (v.0.11.2) and the FASTX toolkit (v.0.013.2) were used to assess sample quality and to execute quality trimming. Bases with Pfred33 scores below 30 were removed. Reads with greater than 50 bases (99 % of total reads) were kept for further downstream analysis. Bowtie2 (v.2.2.6) was used to map quality trimmed reads against the de novo assembled transcriptome for koa using default parameters.

RNA library construction, De novo assembly and annotation

The cDNA library was generated using the Illumina RNA TruSeq kit (Illumina[®], USA) and 2 μ g of high quality RNA. Library

quality was determined with the Agilent Bioanalyzer 2100 (Agilent Technologies, USA) before reverse transcription and sequencing on the Illumina HiSeq2000 platform. *De novo* assembly using Transcriptome Assembly By Short Sequences (Trans-ABySS, v.1.5.3) was employed to generate a reference transcriptome. The *de novo* transcriptome was assembled using Trinity (v.3.0) was performed on the short RNA sequences to generate a reference transcriptome containing reference contigs.

SSR development and validation

SSR primers for koa and koaia were designed according to the Perl pipeline described in Staton *et al.* (2015). A total of 130,000 SSR motifs were found for the koa and koaia genomes and 5,300 for the koa transcriptome. Primers were sorted by repeat number (>10 repeats) and GC content (40-60 %). Designed primers were validated using ePCR and parameters set forth by Shyu *et al.* (2002) (Figure 1).

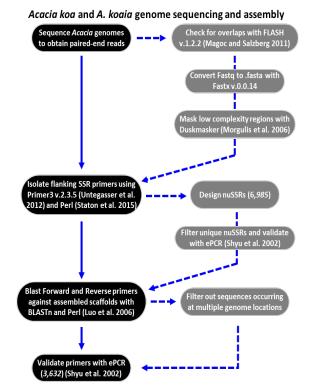


Figure 1

Flow chart. Steps in sequencing the *A. koa* and *A. koaia* genomes. Major steps (solid line); Supporting steps (dotted line)

Estimate of divergence between flanking region sequences

Raw read data were converted from FASTQ to .fasta format following previously established protocols from Staton *et al.* (2015). Forward and reverse reads were evaluated for overlap in the expected orientation and FLASH (v.1.2.2) software was used to reconstruct the original fragment (Magoc and Salzberg 2011). SSR flanking regions of koa and koaia were obtained from genomic analyses and compared to Glycine max data downloaded from the soybean genome database (http:// www.plantgdb.org/GmGDB/). Flanking region SSRs were aligned and pairwise distances were computed with MEGA6 (v.6.0) software (Tamura *et al.* 2013). Based on pairwise distances a phylogeny tree was constructed with NTSYS (v.2.2) software (Rohlf, 2000).

Results

SSR motifs in koa and koaia genomes

Nearly 1.4 % of koa and 0.9 % of koaia sequences exhibited SSRs during analyses of 7.1 million koa and 2.9 million koaia genome sequences (Table 1). A total of 102,656 SSR motifs from koa and 28,275 SSR motifs from koaia were identified after assembly of the koa and koaia genomes. There were 6,985 nuSSRs elucidated from both species. (Table 2).

Table 1

A. koa and *A. koaia* metadata. Read information from initial NextGeneration Sequencing and assembly.

	Raw Reads		Clipped Reads		De novo assembly (ABySS)				
	Total Reads	Max Length	Quality Reads	% Passing QC	Sequences	Min Length	Max Length	% Complete Genes	
A. koa	534,840,500	101	522,220,850	97.62	589,165	500	91,206	83	
A. koaia	179,313,476	101	174,303,956	97.21	308,744	500	25,333	87	
Average	357,076,988	101	348,262,403	97	448,955	500	58,270	85	

Table 2

SSR motif information obtained from paired-end A. koa and A. koaia sequences.

	Motif Information	Species I	nformation
Mei	tadata	Acacia koa	Acacia koaia
	Total number of sequences analyzed	7,123,041	2,906,140
	Number of sequences with >1 SSR	98,119	27,083
	Total numbers of SSRs	102,656	28,275
	Number of nuclear SSRs	5,566	1,419
	Number of SSRs with primers	8,482	2,587
Din	ucleotides		
1	AT TA	73,381	3,910
2	GC CG	11	-
3	AC CA TG GT	10,139	1,128
4	AG GA CT TC	4,888	1,267
Trir	nucleotides		
1	GGC GCG CGG GCC CCG CGC	35	29
2	ATG TGA GAT CAT ATC TCA	190	99
3	AGT GTA TAG ACT CTA TAC	724	103
4	AGG GAG GGA CCT CTC TCC	180	103
5	AAT ATA TAA ATT TTA TAT	3,747	1,214
6	CCA CAC ACC TGG GTG GGT	170	49
7	AGC GCA CAG GCT CTG TGC	26	20
8	AAG AGA GAA CTT TTC TCT	774	454
9	AAC ACA CAA GTT TTG TGT	247	184
10	ACG CGA GAC CGT GTC TCG	10	54
Mo	tif Length Excluding Compound SSRs		
	2 bp	88,419	23,516
	3 bp	6,103	2,309
	4 bp	2,568	1,031
SSR	s with Primers Excluding Compound SSRs		
	2 bp	7,797	2,277
	3 bp	583	248
	4 bp	102	62

Characterization of SSRs in koa and koaia genomes Dinucleotide repeats were most abundant, with AT/TA motifs accounting for 71.4 % of all koa SSRs and 13.8 % of all koaia SSRs within the genome (Figure 2). The 2 bp dinucleotide repeats represented 86.1 % of all koa and 83.2 % of all koaia SSRs. The AAT|ATA|TAA|ATT|TTA|TAT| trinucleotide repeat was the most represented of the 3 bp repeats and accounted for 61.4 % of koa and 52.6 % of koaia SSRs. Tetranucleotide motifs accounted for 2.5 and 3.6 % of koa and koaia SSRs, respectively. Primers were generated for 7,797 koa and 2,277 koaia dinucleotide and 583 koa and 248 koaia trinucleotide motifs. Interestingly, with 9.5 and 10.7 %, a greater percentage of primers could be designed for koa and koaia trinucleotide motifs. This higher success rate corresponded to 1 % for 2 bp motifs and 5.6 and 3.7 % for 4 bp motifs in koa and koaia, respectively.

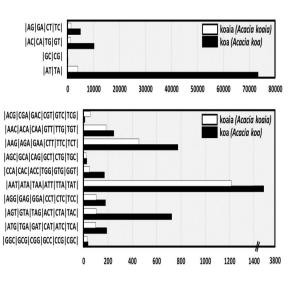


Figure 2

nuSSR counts. Numbers of dinucleotide and trinucleotide nuSSRs found in *A. koa* and *A. koaia* genomic sequences.

SSR development and validation

Approximately 130,931 SSRs were designed in this study, 78 % of them from koa. Greater than 10,000 nuSSR markers were successfully designed for this study however, after removal of duplicates and overlaps, 6,985 remained. As expected, the koa genome had 77 % of the SSRs with primers. The koaia genome resulted in 2,587, or 23 %, of SSRs with primers. Validation by ePCR restricted high-quality primers to 3,632 markers with specific amplicons and multiple binding site locations. (Table 3). Of these, 90.2 % of high-quality primers were from the koa genome and 9.8 % from the koaia genome (Table S1). Comparison of nuSSRs and EST-SSRs generated from the koa transcriptome indicated that significantly lower numbers of analyzed sequences (7,123,041 versus 667,025) can produce similar SSR numbers for most motif patterns. Surprisingly, the trinucleotide motif pattern |AGC|GCA|CAG|GCT|CTG|TGC| was identified 82 and 77 % more within the koa transcriptome than the koa or koaia genomes (Table 4; Table S1).

Table 3

Validated SSRs. nuSSRs with the greatest numbers of repeats from A. koa and A. koaia with e-PCR. Full list of primers. (see Supplemental Table 1)

Type Land CARCINE NIMID Constraint Land Tun Size km CARCINCTAGTGTCAGTCCA GGTGAACTGGTGCAGGATACC af 40 21 10 61.0 58.7 148 km GGTGAACTGGTGCAGTAGC GGCGTCTCACCATGCAGATCC af 39 23 101 61.0 59.9 159 km GTTGTGACATAGGCATACC ACCCATTACACACTTTAACCC tg 39 61 141 56.7 55.5 164 km GTGTGACATAGGCCAAACCCAACACCACACAGATCC at 35 21 101 59.9 59.1 139 km TCTAAGCTTCATATTCC GTAACACCAAAGAAGGATCCAACAGCC at 36 71 143 60.1 60.2 113 km TCGACGAAAGAAGGATCCAAGG GCGCTCATGCAACACCCACCAAGAGC at 35 31 101 63.9 99.9 59.1 137 km TGGCGAAAGACACACAAAGAGGAGC CCTCATGACACACACACACAAGAGAGGA 35 24 94 55.7 58.9 116 km <th>Туре</th> <th>Forward Primer</th> <th>Reverse Primer</th> <th>Motif</th> <th>#</th> <th>Start</th> <th>End</th> <th>Forward</th> <th>Reverse</th> <th>Fragment</th>	Туре	Forward Primer	Reverse Primer	Motif	#	Start	End	Forward	Reverse	Fragment
kaa GGTGACTGGGTGACTAGC GGGTGTCCATTTAAGGTGC at 39 23 101 61.0 59.9 192 kaa GTTGTGACTAGGCCAATACC ACCCATTACACACTTTAACCC tg 39 63 141 56.7 55.5 164 kaa GTGTGCACTTGGTGGTGTGG ACCCATTACACCACCACAGATCC at 37 27 101 57.5 163 kaa TCGAAGCTACCACCAACGGCC GCTAGTGGGTAAACATGACCACCACCAGATCC at 36 29 101 57.5 59.1 139 kaa TGCGAAAGAGGATCTAGG GCGCTCATGACACAAGCC at 36 30 102 60.1 60.2 113 kaa TGCGAAAGAGGATCTAGG GCGCTCATAGCACAAGCC at 35 31 101 60.3 59.9 150 kaa TGGAGACAACACACATAGG GCGCTCATAGCACAACCACCATAGACACAC at 35 31 101 60.3 59.9 153 kaa TGGAGACAACACATAGAGGAG CATGACCAACACACACACACACACACACACACACACACAC	Type			Moth	Repeats		LIIU			Size
kas GTIGTACALTACGCCATIACC ACCCATTACACCACITIATACCC ig 39 63 141 55.5 164 kas GTGTACACTACGCTATACC ACAGTAGACACATTATACCC at AGAATAAGCACCAAGATCC at 38 25 101 60.6 131 kas TCTAAGCTCATCATCATCACTCC AGAATAAGCACCAAGATCC at 38 25 101 60.1 59.2 101 59.9 101 59.9 103 59.1 119 kas TCTAAGCTCACGTACCCAAAGACCC at 36 71 143 60.1 59.2 162 kas TCCAAAGAGAAGGAGTCAGC GCCCCTATAATCCAAAGACACACCC at 35 31 101 59.2 59.1 131 kas CTCATAATGGAAGAGATTAAG at 35 31 101 59.3 19.1 131 kas CTCATAAGCTAAGACAAATTAACACACACACCA at 35 24 94 59.1 137 kas TCGAGCAACACATAGAGAGA at 35 25 29.1 25.8 112	koa			at						
kaa GTGTTCGGTTCGGTTGTGG ATGTGTGATGTGGCCTGTGG at 38 25 101 60.0 60.6 131 kaa TCGAAGCTCCATCCATCCCC AGAGATAAGCACCACAGAGTCC at 37 27 101 57.5 56.6 163 kaa TCGAACGCTCAATCCCAAAGCGC GCTAGTGGTGAGTAAGCAACCATCACCCT at 36 29 101 57.5 59.1 139 kaa TCCGAACACCCAAAGCGGACTCAGG GCCACTCATGAACAACACC at 36 30 102 60.0 60.2 113 kaa ATTAGCAGCAAGACGGTCC GACCTCATATTCACAACACC at 35 31 101 60.3 99.9 150 kaa TCGATCAGGGACGTACAACAGAGGAGC CATGACCACACATAGAGGAG CATGATGGGTGCAACACACATAGAGGAG 35 31 101 60.3 99.9 150 kaa TGGAGGACACACATAGAGGAGGA CATGCCCTCTGTGACACACAG at 35 24 94 59.4 52.2 112 kaa TGGAGGCACACATAGAGGGACGACACA ATGAGCGCGTGACCACAGTGGAGGAGGACC CATGGAGCACACATAGGGAGGCA	koa			at						
kaa TCTAACCITCATCCCATCCC AGAGATAAGCCCACAGAGATCC at 37 27 101 57.5 57.6 163 kaa TCCATCAGGTGACGTAATTTGC GGTAAACCTAACCTAACCTAACTCAACTCACTC at 36 29 101 59.9 103 59.1 139 kaa TACCAGTGACGTAACCCCAACGC GCTAGTGGGTGAAACCAACTGAATCC at 36 30 102 60.1 59.2 162 kaa ATTACACGACAAGCGGGC GCATCATTTCACAACACACCC at 35 31 101 60.3 59.9 154 kaa TCGATCAGGTGAGTCAATTCC GGTAAACCAACACACACACCC at 35 31 101 60.3 59.9 158 kaa TGGATCAGAAGAGAGTTAAGG GGTAACACTATCAACCTACTGC at 35 28 152 59.8 59.2 112 kaa TGGAGACACACATAGAGAG CCTGTGGAGAAAATTGTGCC at 35 28 19.8 178 kaa TGGAGACACACATAGAGAGGCC CCTGGGAAAGAGAGTCC at 35 21 28 99.3 </td <td>koa</td> <td>GTTGTGACATAGGCCAATACC</td> <td>ACCCATTACACACTTTATACCC</td> <td>tg</td> <td>39</td> <td>63</td> <td>141</td> <td>56.7</td> <td></td> <td>164</td>	koa	GTTGTGACATAGGCCAATACC	ACCCATTACACACTTTATACCC	tg	39	63	141	56.7		164
kas TGATCAGCTGACGTTANTTEC GGTAACCCTATCACCTCACCTCACTCC at 36 29 101 99.9 99.1 192 kas TACCGATAACCCAAACGCC GGTAGTGGGTAGACAAGTACC at 36 71 143 60.1 59.2 162 kas TGCACAAAGAGGACTCAGG GCCCTCATGACACACACC at 35 31 101 57.5 59.1 141 kas TCGACACAGAGAGGTC GACCTCATATCACACACACG at 35 31 101 60.3 59.9 136 kas TCGATCACGTGAAGGAGTCATAGC GGTAACCTATCACCACACG at 35 31 101 69.3 59.9 136 kas TCGATCACGTGAAGGTATAGC GGTAACCTATCACCCACACG at 35 24 94 55.7 58.9 116 kas TGAGAGACACCACATAGAGAGG CACTGCCACTCATTGACGCACACG at 35 24 94.4 57.2 122 84.8 184 184 86.8 84.5 122 84.8 184 184 86.6 141<	koa	GTGTTCGGTTCGGTTGTTGG	ATGTGTGATGTGGCCTGTGG	at	38	25	101	60.0	60.6	131
kas TACCGATLANCCAAACGECC GCTAGTGGGTGAAACAATGATCC at 36 71 143 60.1 60.2 162 kas TGGCGAAAGAAGGATCCAAG GCGCTCATGACAACAAGC at 36 30 102 60.1 60.2 113 kas ATTAGCACAAAGAGGATC GCGCTCATGACACCAAGCG at 35 31 101 60.3 99.9 156 kas TCGATAAGCGAGGATCTAAGG CTCGAGCAAATACACACG at 35 31 101 60.3 99.9 151 kas TGGAGACACACATAGGGAGG CACTGCACAATACACACG at 35 24 94 55.7 58.9 115 kas TGGAGACACACATAGGAGG CACTGCACAAATTGCTGACC at 35 24 94 59.4 58.0 115 kas TGGAGACACACATTGGATGAGGA CACTGGACAAATTGCTGACC at 35 25 10.2 58.3 58.9 115 kas TCGAGACACACATTGGGTGATGGG CACTGGACACAATTGGGTGAGGAGACATCC at 35 25 10.2	koa			at	37		101			163
kaa TGCCCAAAGAAGGATCTAGG GCCCCTATATCGCAAACAAGC at 36 30 102 61.1 62.2 113 kaa ATTAGCAGCAAGCAGGCTC GACCTCATATTCACAAGTCGG at 35 31 101 61.5 59.1 141 kaa CCCTTATATGGTTGGTCTAGTC CTCGCGGCAAATACACAG at 35 31 101 69.3 59.9 136 kaa TGGATGAGTGAAAGGATTAAG GGTAAACATTACACCTCACCTCACCTCC at 35 21 96 98.8 59.2 112 kaa TGGAGACACACATAGAGAGG CACTGGCAAAGATACACTTGCCC at 35 24 94 55.7 153 101 99.3 60.5 143 kaa ACTGCACACAAGAGAGGGCC CCGTGGAAAGGAGAGGGCC at 35 29 99.4 55.1 12 kaa ACTGCACAGAGAGAGGGCTCAGGTAAAGGTGAGGTAACAGCAGAAGC at 35 30 100 84.8 59.1 143 kaa ACTGCACAGAGAGAGGGCTCAGGTAAAGG GGTAAAGGTGAGAGAACACTACACACA 35 32	koa	TCGATCAGCTGACGTTAATTTGC	GGTAACACTATCAACCTCACTGC	at	36	29				139
kma ATTAGCAGCAMAGGGTCC GACCTCATATTCACAMATCCACG at 35 31 101 97.5 99.1 141 kma CCCTTATATGGTICGGTCTAGTCC CTGGGGCAATACACACG at 35 31 101 60.3 99.9 136 kma TGGGTTGAGAGGGATCTAAGG AATGCCTCATGCACCTCC at 35 31 101 60.3 99.9 137 kma TGGGTGTGAGAGGGATCTAAGG AATGCCTCATGCACCTCC at 35 24 94 55.7 58.9 116 kma TGAGGGGTGTTAAGGGGGC CATGCCCTCTTGTATGCC at 35 24 94 59.4 57.2 128 kma ACTGCACACAATACTGGGGGC ACTGGCCACACATGCATGCAGGGCC at 35 23 10.0 58.5 59.2 128 kma ACTGCACACACATATGGGGGC ACGGGCAAGCACAGTAGGGAGGCAGCACCAT at 35 30 100 58.6 59.1 168 kma ACGCACACATAGGGGGCAGGGG TGGGCGAGTAGGGAGGGAGGGAGC at 35 30 100	koa	TACCGATAACCCAAACGGCC	GCTAGTGGGTAGAACAATGAATCC	at	36	71	143	60.1		
kas CCCTTATATTGGTTCGGTCTAGTCC CTGCGGGCAAATACACACG at 35 31 101 60.3 59.9 136 kas TCGATCAGTGACGTTAATTGCC GGTAAACCTATCAACTCAACTCACTGC at 35 31 101 69.3 59.9 136 kas TGGATCAGTGAAAGGATCTAAGG GGTAAACCTATCAACCCACCC at 35 26 96 98.8 59.2 112 kas TGGAGACAACATAGAGGGC CATCGCCCTCATGTAACGACACACG at 35 24 94 55.7 58.9 116 kas TGGAGACACACATAGGGC CATCGCCCATTGTATCCC at 35 24 94 59.4 59.2 123 kas TGGAGACACACATTGGACGC CATGGCGAAATTGTATCCC at 35 21 92.3 60.5 143 kas TCGAGACACAGTCAGTCAACG GGTGAACTGGGTGAATCACTTACCC at 35 31 00 86.8 59.1 168 kas TCGAGACACATTCATCGG GGTGAACTGAGTAACG GGTGAACTGAGTAACG CTTTCCAAGAACACATTACATCC at 35 <td>koa</td> <td>TGCGCAAAGAAGGGATCTAGG</td> <td>GCGCCTCATGACAACAAGC</td> <td>at</td> <td>36</td> <td></td> <td>102</td> <td>60.1</td> <td>60.2</td> <td></td>	koa	TGCGCAAAGAAGGGATCTAGG	GCGCCTCATGACAACAAGC	at	36		102	60.1	60.2	
kaa TCGATCAGCTGACGTTAATTEC GGTAACACTATCACCCACTCACC at 35 31 101 99.9 99.1 137 kaa TGGGTTGAGAGAGGGATCTAAGG AATGCCTCATGACACCACACC at 35 24 94 95.7 58.0 115 kaa TGGGAGACACACATAGAGAGGAGC CACTGCCCTCTTGTAGTCC at 35 24 94 95.7 58.0 115 kaa TGGACACACATACATGATGACGC CACTGGAGGAATTATTGCCC at 35 24 94 99.4 57.2 123 kaa AATTAGCACACATATGATGCC CACTGGAGGAATGATGTGGC at 35 32 102 58.3 59.8 179 kaa AATTAGCACACAATTAGTGCC CCTGGAAGAATGGGTGCAGGAGGATCC at 35 30 100 58.6 60.0 117 kaa TCGAGGGAATCAGTTTAGG GGTTATACCACATACAGTAGGGGGCAGACACC at 35 30 100 58.5 112 kaa ACCTTACACATATAGGTGGAACACTTACCAGACACATACAGATACAGATAGAGGAAGACATTACGTGGCAATCACAC at 21 28 99<	koa	ATTAGCAGCAAGACGGTCC	GACCTCATATTTCACAAGTCCGG	at	35	31	101	57.5	59.1	141
kan TGCGTTGAAAGGGATCTAAGG AATGCCTCATGACAGCAAGC at 35 25 96 98.8 59.2 112 kan TGGAGACACACATGAGAGGG CACTGCCCTCTTGTATGCC at 35 24 94 55.7 58.9 116 kan TGAGACACACATGGGAGC CACTGCACAAATGTGGCC at 35 24 94 55.7 58.0 116 kan ACTGCACACAATTGTGACGC CACTGGAAAAATGTGGCC at 35 24 94 59.8 59.2 122 kan ACTGCACACAATTGTGACTGC ACGTGGAAGAAATGCATTGCACATTC at 35 23 102 61.6 61.0 117 kan TCGGAGGAAATCAGGTAACG GGGTGAACTGAGGTAAGC at 35 35 10 86.5 59.1 168 kan TCGGAGGTGAATTCCGGGT CGTTACCACAATACCTGGAGGAACGAGCC at 35 51 125 58.8 57.4 132 kania TCGGACATCATGTTATACTGCG TCATGCACAACAACTCCC at 19 48 86 85.7 <td>koa</td> <td>CCCTTATATTGGTTCGGTCTAGTCC</td> <td>CTGCGGGCAAATACACACG</td> <td>at</td> <td>35</td> <td>31</td> <td>101</td> <td>60.3</td> <td>59.9</td> <td>136</td>	koa	CCCTTATATTGGTTCGGTCTAGTCC	CTGCGGGCAAATACACACG	at	35	31	101	60.3	59.9	136
kaa TGGAGACACACATAGAGAGG CACTGCCTTGTTATACC at 35 24 94 55.7 58.9 116 kaa TGATGCACACATAGAGAGGC CACTGGACAATCATTGCCC at 35 82 152 95.1 58.9 115 kaa ACTCGACACATTCGACTGC ACGTGGAGAAATCTTTGCCC at 35 24 94 95.7 58.9 112 kaa AATTACCAGCACATTGGACTGC CCGTGGAAGAAATTGGTGC at 35 24 94 95.7 58.8 172 kaa ACTGCAGACACATTCACG GCGGAAAGGTGCAGATACG at 35 29 102 84.8 172 kaa TCGAGACACATTACGG TGGTGAAAGGTGTGAGTACATACG at 35 35 102 61.6 101 117 kaa TCGCAGACAATATCTACTCTG GGTGAATGCATTACACATACAATACATACATACATATAGAGACAAAAGACAAACAA	koa	TCGATCAGCTGACGTTAATTTGC	GGTAACACTATCAACCTCACTGC	at	35	31	101	59.9	59.1	137
kaa TGATCGGTGTTAATGGGC CACTGGACAATCATTGCCC at 35 82 15.2 99.1 57.0 115 kaa ACTGCACACAATTCTGACGC ACGTGGAAGAATTGTGCC at 35 24 94 99.4 57.2 123 kaa AATTGCAGCAAGAGGGTC CCGTGGAAGGAATGCATCC at 35 22 10 58.3 59.8 179 kaa TCGGACACACTCTTACCG TCGGGCAAATCGGTGCAAGG at 35 23 10.0 8.6 6.0.0 117 kaa TCGGGCTGAAATCGGTGGCAGCGG GCTTATCCACATATCTTGCGGCG TGGACGAATAGGGGGCAGGGC at 35 51 125 8.8 60.0 145 kaa ACCCTCACATATCTTTCGCGG GCTTACCACATACCTCCTGGGG TGGACACATATGGGGCAGGC at 21 28 91 95.5 55.1 122 8.84 55.7 133 kaaia TCGACACATATCGTGCGGCGGGTGGTGTGTGTGG TGGAGACACATTAGGGCACACCC tag 16 8.84 55.7 133 kaaia TGGGCGTGTGTGTGTGTGG GAGATCCACA	koa	TGCGTTGAGAAGGGATCTAAGG	AATGCCTCATGACAGCAAGC	at	35	26	96	59.8	59.2	112
kaa ACTGCACACANTTCGACTGC ACCTGGAAGAAATTGTGGCC at 35 24 94 994 994 572 123 kaa AATTAGCAGCAAGACGGTCC CCTGTGAAGAGATGTCC at 35 24 94 994 994 594 572 123 kaa TICGAGACAGCATTCCCTACCG CCTGTGAAGGTAACAGCATTCC at 35 29 102 843 598 179 kaa TCGGAGCAAGTCAGTAACG GGTGAACTGGGTGAATCATTCC at 35 30 100 856 591 168 kaa TCCGAGCAATTCGTTCGG GGTGACTGGGGTGAAATCCTTTACCC at 35 35 100 856 591 112 kaai TCGAGAATTCATTCGGCTGG TGATGAACACATTAGAGCC at 21 28 91 95 55.1 112 kaai TCCAAATTCATGCTTACTGC TCATCCAACCACATCACCCC TCCTTCCAAGAACACACCC at 12 50 59.5 131 kaaia TGCAGCAATTCATTCGG TCAAAGCACATCACCCCC TCCTACACATCTCACCCCC TCCTCCAAC	koa	TGGAGACACACATAGAGAGG	CACTGCCCTCTTGTTATGCC	at	35	24	94	55.7	58.9	116
kaa AATTAGCAGCAAGAGCGTCC CCTGTGAAGGTAACAGCATTCC at 35 32 102 83 59.8 179 kaa TTGGAGAGCATCCTTACCG TCGGTCAAAGGTGAGCATCC at 35 29 99 99 50.3 60.5 143 kaa TCGGGCAAGCAGCAGTAAC GGTGAACTGGGTGACGACTAC at 35 32 102 84.3 59.8 101 kaa TCGGCGGAAATCAGTTCTGG GGTTAACCACATCAATCACTACATCAATACATCC ta 35 30 100 85.6 61.0 117 kaa ACCCTACCACTATCACTTTTAGC GGTGAACTGGGGTGACTACACATCATACATCC ta 35 55 15 55.1 112 kain TGCAACAATTAGTTCGTATACAACAC TCCTCCAAGAACCAATGCACCC ctTGAATCCAACACATGATGCC ctTGAATCCAACACATCCACCCC 17 48 85 55.7 133 kain TGGGCGTGTGTGCTCAGG GAATCCAACACCATACCCC tag 16 28 64 64.4 59.4 171 kain TGGGCGTGTGTGTCACCAGG GGTGTGTGTGTGGC ctTGCTGACACACACCCAATCCCACC </td <td>koa</td> <td>TGATGCGTGTTTAAGTGGGC</td> <td>CACTGGACAAATCATTTGCCC</td> <td>at</td> <td>35</td> <td>82</td> <td>152</td> <td>59.1</td> <td>58.0</td> <td>115</td>	koa	TGATGCGTGTTTAAGTGGGC	CACTGGACAAATCATTTGCCC	at	35	82	152	59.1	58.0	115
kaa TTCGAGAGCATCCTTACCGG TCGGTCAAAGGTCAGTACG at 35 29 99 99.3 60.5 143 kaa TCCGGCTGAAGTCAGGTAAGG GGTGAAATCAGGTCAGGTAAGG at 35 32 102 61.6 61.0 117 kaa TCCGGCTGAAGTCAGGTAAGG GGTGAAATCAGTACCAGTAACTC ta 35 30 100 85.6 59.1 168 kaa ACCCTTCACCTATTCTTCTTACG GGTGAAATCAATACTCGGGAGCC ta 35 55 125 58.8 59.1 122 koaia CCCGAATTCACTGACTTATTCGG TCAAGTCACAATACCTGGAGGACC at 21 28 91 95.5 55.1 112 koaia TGGGGGTGGTGTCTGTCTGAC TGAAGTCACAACACCCC at 19 48 86 58.4 57.4 132 koaia TGGGGGTGGTGTGTGTCTGCTC TGAAGTCACAACACCCACCCCC tgTGTGAAAACACATAGACACCCC 17 41 45.8 59.6 137 koaia TGTGGCGGTGGTGTGTGTGTGTC ta 16 28 60 59.1 <t< td=""><td>koa</td><td>ACTGCACACAATTCTGACTGC</td><td>ACGTGGAAGAAATTGTGTGC</td><td>at</td><td>35</td><td>24</td><td>94</td><td>59.4</td><td>57.2</td><td>123</td></t<>	koa	ACTGCACACAATTCTGACTGC	ACGTGGAAGAAATTGTGTGC	at	35	24	94	59.4	57.2	123
kaa TCGGGCTGAGTCAGGTAACG GGTGAACTGGGTGCAGTAGC at 35 32 102 61.6 61.0 117 kaa TCTGGCTGAATCAGTTCTGG GCTTATCCACATCCATACC ta 35 30 100 85.6 61.0 117 kaa ACCTTACCATTATCTTTAGG GGTGAACTGGGAAACC ta 35 30 100 85.6 61.0 145 kaai TCCAACATTACCATTATTTAGG GTGAAACCATTACC ta 21 28 91 95.5 55.1 112 koaia CCGAATCATTACTCAGCT TCCTTCACCCATAAATTCGG TCAAAGACACACCC tat 21 28 91 95.5 55.1 112 koaia CTGGAATCCATACTTAAATTCGG TCAAAGCACACCC tat 71 48 85 58.4 55.7 133 koaia TCGAAACATTACCC TGTGTGTGTGTGGTGGTGGCGTGCC ta 16 21 23 93 94.6 134 koaia TCAAACACACACCACCACC tag TGTGGGGTGTGTGGTGGTGGCGGC ta 16 91	koa	AATTAGCAGCAAGACGGTCC	CCTGTGAAGGTAACAAGCATTCC	at	35	32	102	58.3	59.8	179
kea TCTGGCTGAAATCAGTTICTGG GCTTIATCCACAATCCAATACAGT ta 35 30 100 58.6 59.1 168 kea ACCCTTCACCTATATCTTCTTTAGG GGTGATGAGAAATCCTTACCC ta 35 55 125 58.8 600 145 keani ACCCACAATATCTTCGGCGG GGTGACGATGAGACGAATGCGGGGGC ta 21 28 91 95.5 55.1 112 keani CCGACATCAGTCTTACACACC TCCTTCCCAGAACGAACGAAGG ett 21 28 91 95.5 55.1 133 keani TGGGCGTGTGTGTGTCTTTACG TCATAGACACATTAGACACCCC tg 17 64 152 57.4 132 keani TGGGCGTGTGTGTGTGTGC GAGATCCACACCCCCCC TGTGTGTGTGTGTGTGC tg 16 41 57.3 133 keani TGGGCGTGTGTGTGTGG GAGATCCACACCCCCCCC TGTGTGTGTGTGTGGTGC ta 16 28 60 9.1 161 keani TCCAAACACTCACCACCCCCCCC TGTGTGTGTGTGTGGGGC ta 15 61 91 91.	koa	TTCGAGAGCATCCTTACCGG	TCGGTCAAAGGTTGAGGTGC	at	35	29	99	59.3	60.5	143
kana ACCCTTCACCTTATTCTTTACG AGTGACTGAGAAATCCTTTACCC ts 35 155 125 58.8 60.0 145 komin TGCAACAATTATTCTGGCTGG TGATGAAAATCCTTTACCC ts 31 35 55 12.5 88.8 60.0 145 komin CAGGCATTCATTCGGCTGG TGATGAACACATTGAGGCGC att 21 28 91 95.5 55.1 112 komin CCGGAATTCATGCTTAATATTCGG TTAAGTCACAGAACG att 19 48 86 58.4 55.7 133 komin TGTGCAGAAACATGTATATCG TTAAGTCACAGCCAACCCG att 17 82 16 63.8 59.6 137 komin TCTAGCACAACTCCACCCCCCC TGTGTGTGTTCATGGGTGTGG att 16 91 12.5 51.9 178 komin CCCAACACTCTGTCGCCG TGTGTGTGTTCATGAGTGTGTG att 16 91 12.2 57.3 134 komin CCCAACACTCTGTCGCCG TGTGTGTGTGTGTGTGTGG att 16 91 10.9 0.0	koa	TCGGGCTGAGTCAGGTAACG	GGTGAACTGGGTGCAGTAGC	at	35	32	102	61.6	61.0	117
koaia TGCAACAATTACTTCGGCTGG TGATGAACACATTAGGAGGC ant 21 28 91 99.5 55.1 112 koaia CAGGCATTCATTCTTTACACACC TCCTTCCCAAGAACGAACGAAGG ett 21 28 91 99.5 55.1 112 koaia CCAGCATTCATTCTTACACACC TCCTTCCCAAGAACGAACGAAGG ett 21 93 93.8 55.7 133 koaia CTGACATTCATTCTTATTTTCG TGAAGCACCAATACCC tg 17 84 86 55.7 133 koaia TGTGCGAGAACTATGATCCC TGTGTGTGTTGTGC GAACTCCAACCACCACC tg 17 64 132 57.4 59.1 16 koaia TCTAACACCACTACCCACC tg 17 64 132 57.4 59.1 18 koaia CTAACACACTATCGTCACTAG TGTGTGTGTGTGTGGC ca 16 28 60 9.1 27.5 57.3 57.9 178 koaia CTAACACACATTGTGTCAGG TGTGTGTGTATAGGACGGG ca 15 70 100 60	koa	TCTGGCTGAAATCAGTTTCTGG	GCTTTATCCACAATCCAATACATGC	ta	35	30	100	58.6	59.1	168
	koa	ACCCTTCACCTTATTCTTCTTTACG	AGTGACTGGAGAAATCCTTTACCC	ta	35	55	125	58.8	60.0	145
koaia CCTGAATTICCATGCITAATATTCGG TIAAAGTCACGAGACGAACCATCC at 19 48 86 58.4 55.7 133 koaia TTGGGGGTGTGTCTTGC GAOATCCAACCCATACCCG tg 17 76 115 63.8 55.7 133 koaia TTGGGGGTGTGTGTCTGC GAOATCCAACACCACC tg 17 64 12 57.4 59.1 167 koaia TCCAAACCACCACCACC tg 17 64 12 57.4 59.1 167 koaia CCAACACCACCACCACCAC tg 16 28 64 60.4 59.3 134 koaia TCCAAACACTCACACATGCG TGTGTGTGTGAGAGGTGGGGAGGG ca 16 59 125 57.3 57.9 178 koaia GTATGAGAGAGTAGAGGCC GGCATCCCAATTAGAGTGGGAGGG ca 15 70 100 60.3 157 koaia CCCAACATCCAATACCACCC GTGTGTGTGGGGGGGGG ca 15 71 101 57.7 58.2 137 koaia	koaia	TGCAACAATTACTTCGGCTGG	TGATGAACACATTAGGAGGC	aat	21	28	91	59.5	55.1	112
koaia TTGGGCGTGTGTGTGTCTGCC GAATCCAACCCATACCCG tg 17 82 116 63.8 59.6 137 koaia TGTGCAGAAAACATGTATGCC CTCATTCAACGCCACACC tag 17 64 132 57.4 59.6 137 koaia TGTGCAGAAAACTGTATGCC CTCATTCAACGCCACCAC tag 17 64 132 57.4 60.4 59.3 134 koaia TCAAACACCACTCACCACGC TGTGTGTGTTGTAGAGTGTTGGG ca 16 28 60 69.1 27 57.3 57.9 178 koaia CCAAACACTCAACCACGG GGCATGCCTATTAGGAGGG ca 16 29 12 57.3 57.9 178 koaia CCAAACACTATAGTGACAC TATGGGTGGTGGGGGG ca 15 61 91 57.5 58.2 137 koaia CCAAACAACCAAACC TATGGGTGGTGGGGGGG ca 15 71 101 60.0 57.6 125 koaia ACACAACCAACACAC GATGGGATGGGGGGGG ca 15 <td< td=""><td>koaia</td><td>CAGGCATTCAGTCTTTACACACC</td><td>TCCTTCCCAAGAACGAAAGG</td><td>ctt</td><td>21</td><td>30</td><td>93</td><td>59.8</td><td>57.4</td><td>132</td></td<>	koaia	CAGGCATTCAGTCTTTACACACC	TCCTTCCCAAGAACGAAAGG	ctt	21	30	93	59.8	57.4	132
konia TGTEGCAGAAACATGTATGCC CTCATTCAAGCCCACC unig 17 64 132 57.4 59.1 167 konia CCAAACACCACCAACCGC TGTCTGTGTTGTGTGTGGGTGGCG ca 16 32 64 69.3 134 konia CCCAAACCCACCACAGCGC TGTCTGTGTGTGTGTGGGGTGGGC ca 16 28 60 99.1 59.4 127 konia CCCAACACTCCACCAGGG TGTGTGTGTCATGAGTGTGTG at 16 28 60 99.1 59.4 127 konia CCCAACATCGACCACATGG TGTGTGTGTGTCAATGAGTGGTGG at 16 9 125 57.3 157 konia CACACATCCAACCACCCAATGGAGCC GGCATCCATATGGAGCGGGG at 15 71 101 60.3 157 konia ACACAAGCACATACCAACC TATGGGTGGTGGGAGGG at 15 71 101 60.3 57.5 168 konia TAGACTACCCACCG AGGTAGATTCATCGGGTGG at 40 97 57.5 58.8 171 k	koaia	CCTGAATTCCATGCTTAATATTCGG	TTAAAGTCACAGAACAGATCCC	at	19	48	86	58.4	55.7	133
koain CTAACACCACCTACCCACCGC TGTCIGTGTTGAGTGTGGC ca 16 32 64 60.4 59.3 134 koain TCCAAACACTCACCACAGGC TGTGTGTGTTGAGTGTTTGG ca 16 32 64 60.4 59.3 134 koain TCCAAACACTCACCACAGGC TGTGTGTGTCAGATCTTGG ca 16 92 80 59.1 57.4 175 koain GTATGAGAGATGTAGGGCCC GGCATCATAGTGAGGC ta 15 61 91 51.3 57.9 178 koain GTATGAGAGATGTAGGGCCC GGCATCCATATAGCACCG GGCATCCATATGGAGGGC ta 15 70 100 60.0 57.6 125 koain CCCAACTCAAACCACATACCACCC GGTGCTTCTATCAGGGGGGGC ta 15 71 101 57.7 58.2 137 koain CCCAACTACACACCCC GGTGATTCTATCGGGGGGGG ta 14 41 15 54.9 57.5 165 koain CAAACCACACACACCCC AGTGATTCATCGGGGGGG ta 14 48	koaia	TTGGGCGTGTGTGTGTCTGTGC	GAGATCCACACCCATACCCG	tg	17	82	116	63.8	59.6	137
keaia TCCAAACACTCAACAAGGG TGTGTGTGTCTAGAGGTCTTGGG ca 16 28 60 59.1 59.4 127 keaia CCCACAATTCGTGCTAGG TCATGGCACAATGGGG at 16 91 123 57.3 59.4 127 keaia GATGGAGGATGTGTGCTCAAG TCATGGCCCCAATGGAGG at 16 91 123 57.3 57.9 178 keaia GATGGAGGAGTAGGGCCC GGCATCCCTAATGGAGCTGG at 15 61 91 123 57.3 57.6 125 keaia ACACAACCAATACCAACC TATGGGTGTGGGGGGG ac 15 71 101 60.0 57.7 58.2 137 keaia ACCAACCAATACCAACC GGTGATTCTATCGAGGGGG ac 14 115 143 58.0 57.5 56 keaia CTAAGCCACTTCAAGGACC AGGTGAATCTCAACGGGGGGG ac 14 69 97 57.7 58.8 147 keaia CTAAGCCACTTCAAGCACC AGGGGAATCTCACGGGG ac 14 71 <	koaia	TGTTGCAGAAACATGTATGCC	CTCATTCAACGCCACCACC	tatg	17	64	132	57.4	59.1	167
koain CCCACCAATTCTGTCCTAGG TCATGGCTCCAATTGAGTGG at 16 91 123 57.3 57.9 178 koain GTATGAGAGGATGTAGGCCC GGCATCCTATTAGGACCTGG at 15 61 91 92.1 57.3 57.9 178 koain GTATGAGAGGATGTAGGCCCC GGCATCCTATTAGGACCTGG ta 15 61 91 92.1 60.3 157 koain CCCAACTCCAATCCCATCCC TATGTGGTGGGGGGC ac 15 70 100 60.0 57.6 125 koain CCCAAGCAATCCAATCCAACCC GGTGATTGTATGTAGGGCG ca 15 23 53 58.4 58.0 168 koain ACACAGCACATAGAGACCCA AGGTAAGTGTAGAGCCC caGTAAATGTGTACCATCCC ca 15 23 53 58.4 167 koain AAACATACCCACACACCCA AGGTAATGTAGCATGCGGGG ca 14 69 97 57.7 58.8 147 koain AAATGAGCCACCTTGAGGCC TATGAGGATGTAGCGCG CAAATGAGACATAACATGAGCATTAGAGATGAGACATAACATGTAGCGC <td>koaia</td> <td>CTAACACCACCTACCCACGC</td> <td>TGTCTGTGTTTGAGTGTGTGC</td> <td>ca</td> <td>16</td> <td>32</td> <td>64</td> <td>60.4</td> <td>59.3</td> <td>134</td>	koaia	CTAACACCACCTACCCACGC	TGTCTGTGTTTGAGTGTGTGC	ca	16	32	64	60.4	59.3	134
koaia GTATGAGAGGATGTAGGGCCC GGGATGCCTATATAGGACCTGG ta 15 61 91 99.1 60.3 157 koaia CACGACATCCCATATGTACCCG TATGTGGTGTACAGGGGCG ac ti 5 70 100 60.0 105 76.1 125 koaia CCAACTAACCACCAACC TATGTGGTGGTGGGGGGG ac 15 71 101 60.0 57.7 58.2 137 koaia ACACAACCAACTAACCACC GGTGCTTCTATCTACTACCTC ca 15 71 101 57.7 58.2 137 koaia ACACAACCACACACCACCC GGTGCTTCTATCTACACCC ca 15 23 53 58.4 57.5 165 koaia AAACATACCACACACCACCACCC AGGTGATTCTATCGGGTGG ac 14 41 15 13 58.8 17.7 koaia CTAAGCCCACTTCATCTAGCATC TATAGGGTGGATCACA ac 14 71 9 60.4 55.2 157 koaia CATAGCTAGCATTAGAGATTAGAGATTAGAGATGAGC TATAGGGGTGGATCACAA ac	koaia	TCCAAACACTCACACATGCG	TGTGTGTGTGTTCATGAGTCTTTGG	ca	16	28	60	59.1	59.4	127
keaia CACGACATCCCTATGTACCCG TATGTGTGTACATGGGTGGC ac 15 70 100 60.0 57.6 125 keaia CCCAACTCAAACCC TATATGGGTGGGGGGGG ac 15 70 100 60.0 57.6 125 keaia CCCAACTCAAACGCAAACC TATATGGGTGGGGGGGGG ac 15 71 101 57.7 52.2 137 keaia TCTAGGACACTAACACC GGTGTAAGTGTACAGTCC ac 14 115 143 58.0 57.5 165 keaia ACACATACCACACACACCC AGGTGATTCATGGGGTGGGG ac 14 40 97 57.7 58.8 147 keaia TCAGCCATTTCCTCCCC TATAGGGTGGGGG ac 14 40 97 57.8 59.8 147 keaia TCAGCCTTTCCTCCCGATGC AATAGACGACCGGTTCACGGGG ac 14 71 99 60.4 56.2 157 keaia TCAGCCTTTCACGATGGC TGACATAGCATAGCATAGACATAGAGC TGACAACAATAGCACGGGC at 44 88 1	koaia	CCCACCAATTCTGTCCTAGG	TCATGGCTCCAATTGAGTGG	at	16	91	123	57.3	57.9	178
keaia CCCAACTCAAACCC TATATGGGTTGGTGGGAGGG ac 15 71 101 57.7 58.2 137 keaia ACACAAGCAATACCAACC GGTGCTTCTATCTAGTGCGC ca 15 23 53 58.4 59.0 168 keaia TCTAAGCACTTGAAGCACCA GGTGCTTCTATCTAGTGCGC ca 15 23 53 58.4 59.0 168 keaia TCTAAGCACTTGAAGCACCA GAGTATGTAGACTTAGGGTGGG ca 14 115 143 58.0 57.5 165 keaia ACACATACCACACACCACCA AGGTGATTCATGCGGTGGG ca 14 69 97 57.7 58.8 147 keaia CTAAGCCACACACACACCC AGGTGATTCATGCAGTGCGGG ca 14 62 90 58.8 157 keaia CTAAGCCACTTCATGACCT AATAGAGCAGCGGTGGCGGC ca 14 71 99 60.4 56.2 157 keaia GATGAACTGACATTAGCATTAGCAGC TGAATGTACACTAGCATAGGCG TGAATGTAACACTAGCATAGGCG TGAAATGAACATAGCATAGCATAGGCGC TGAAATGAACATAGC	koaia	GTATGAGAGGATGTAGGGCCC	GGCATGCCTATTAGGACCTGG	ta	15	61	91	59.1	60.3	157
keain ACACAAGCACATACCAACCC GGTGCTTCTATCTATGTACGTCC ca 15 23 53 58.4 59.0 168 keain TCTAGGACACTAGCAACCC GGTGATGTGAAATAGCACCC ac 14 115 143 58.0 57.5 165 keain ACACATCCCCACACCC AGGTGAAGTGGAAATAGCACC ac 14 61 5 57.7 59.8 147 keain CTAAGCCCACTTTCATGCGC TTCAATGAGCACGTGGGG ac 14 60 97.7 59.8 147 keain CTAAGCCCACTTTCATGCGC TTCAATGAGCACGTGCG ac 14 71 90.04 55.2 157 keain GATGAACTGTAACTAGCATTAGGGC TGGAAACATACACTGTACGC at 14 71 90.04 55.2 157 keain GATGAACTGTAACTAGCATTAGGGCC TGGAAACATACACTGTACGC at 14 81 800 57.1 58.8 140 keain CCATTACTGTAGGGCC TGGAAACATACACTGTAACGGCC at 4 41 83 56.7 59.8 140	koaia	CACGACATCCCTATGTACCCG	TATGTGTGTACATGGGTGGC	ac	15	70	100	60.0	57.6	125
keaia TCTAGGACACTTAGAGACCACC AGGTTAAGGTGTAGATATGACCC ac 14 115 143 58.0 57.5 165 keaia AAACATACCCACACACCG AGGTGATTCATGGGTGGGG ac 14 04 97 57.7 98.8 147 keaia CAACATACCCACACACCGC AGGTGATTCATGGGGTGGGG ac 14 62 9 57.5 165 keaia TCAGCCACTTACCCC ATATGATGCGGTGGGGG ac 14 62 9 58.9 147 keaia TCAGCCTTTCCTCCCC ATATGACGATCGGGC ta 14 71 99 60.4 56.2 157 keaia GATGAACTATAGCATTAGAGG TGACAATAGACATGGCG ta 14 78 100 51.3 125 keaia TGACTTACAGCTGTCAGGCC TGACAATAGACATGCACATTCAAGGGC ta 14 41 8 56.7 59.8 140 keaia TGACTTIACCTGTCAGGTGC TCAAATGCACACTCTAACAGCA ta 14 51 93 57.8 59.2 107	koaia	CCCAACTCAAACGCAAACC	TATATGGGTTGGTGGGAGGG	ac	15	71	101	57.7	58.2	137
koain AAACATACCCACACCCCG AGGTGATTICTATCGGGTIGGG ac 14 69 97 57.7 59.8 147 koain CTAACCCCATTTCATCCCC TTTCAATGACATGTGGCG ac 14 69 97 57.7 59.8 147 koain CTAACCCCATTTCATCCCC TTTCAATGACATGTTCACG ta 14 71 99 60.4 55.2 157 koain GATGAATCGTAATACCATTAGACG TGAAAACATACACTATAGCGC ta 14 71 99 60.4 55.2 157 koain CCACHACTGAAACACATAGACATTAGAGGC TGAAAACATACACATGTACACTTAGGGC ta 14 88 100 57.1 55.8 140 koain CCATHATCTACGTGCAGGCC TGAAAACAACACACCACCCTCTAACAGC att 4 51 35 57.8 59.2 107	koaia	ACACAAGCACATACCAACCC	GGTGCTTCTATCTATGTACGTGC	ca	15	23	53	58.4	59.0	168
konia CTAAGCCCACTITCATGCCC TTCAATGAGCATGCTGGCG ac 14 62 90 58.9 59.8 173 konia TCAGCCTTTCCTTCGATGC AAATAGAGGACGTTTCAGG ta 14 71 99 60.4 55.2 157 konia GATGAACTAGCATTAGCATTAGAGT TGAGAACATACATGCACGTTGCG ata 14 58 100 57.1 56.3 125 konia CATATCATCHTCTATGATGACAGGC GGCAAATGTCTAACTAGCGC ata 14 41 43 56.7 59.8 140 konia TGACHTACCTGTCGAGGC TCAAATGCACACCCTCTAACAGC ata 14 51 93 57.8 59.2 107	koaia	TCTAGGACACTTAGAGACCACC	AGGTTAAGGTGTAGAATATGACCC	ac	14	115	143	58.0	57.5	165
koaia TCAGCCTTICCTTCCGATGC AAATAGACGACCGTTTCACG ta 14 71 99 60.4 56.2 157 koaia GATGAACTGTAACGATTAGAGG TGAGAACAATACACTGTAGCTG ata 14 78 100 57.1 55.3 125 koaia CATATACATCTATACTCTAATGAGCC TGACAAATAGACATGTCAATTTCAATGT 44 44 8 56.7 59.8 104 koaia TGACTTIACCTGTCAGCTGC TCAAATGCAACCTCTAACAGC aat 14 51 93 57.8 59.2 107	koaia	AAACATACCCACACACCCG	AGGTGATTTCTATCGGGTTGGG	ac	14	69	97	57.7	59.8	147
konia GATGAACTGTAACATAGCATTAGAGG TGAAACAATACATGTACGTCG ata 14 88 100 97.1 55.3 125 konia CCATTATCTATCHTCATGAGGCC GTGCAAATGTCAACATGTAGGCC att 44 41 83 56.7 59.8 140 konia TGACATTACCTGTCAGCTCC TCAAATGCACACCTTAACAGC att 44 51 95 57.8 59.2 107	koaia	CTAAGCCCACTTTCATGCCC	TTTCAATGAGCATGCTGGCG	ac	14	62	90	58.9	59.8	173
konia CCATTATCTATCTTTCATAGAGGCC GTGCAAATGTTCAAATTTAGGGCC att 14 41 83 56.7 59.8 140 konia TGACTTTACCTGTCAGCTGC TCAAATGCACACCTCTAACAGC aat 14 51 93 57.8 59.2 107	koaia	TCAGCCTTTCCTTCCGATGC	AAATAGACGACCGTTTCACG	ta	14	71	99	60.4	56.2	157
koaia TGACTTTACCTGTCAGCTGC TCAAATGCACACCTCTAACAGC aat 14 51 93 57.8 59.2 107	koaia	GATGAACTGTAACTAGCATTAGAGG	TGAGAACAATACATGTACGTCG	ata	14	58	100	57.1	56.3	125
	koaia	CCATTATCTATCTTTCATAGAGGCC	GTGCAAATGTTCAAATTTAGGGCC	att	14	41	83	56.7	59.8	140
koaia AATTCTAACCTGATATCGGAGC ATGCTTCTTTGGGCGAGAGG aag 14 57 99 55.5 60.4 114	koaia	TGACTTTACCTGTCAGCTGC	TCAAATGCACACCTCTAACAGC	aat	14	51	93	57.8	59.2	107
	koaia	AATTCTAACCTGATATCGGAGC	ATGCTTCTTTGGGCGAGAGG	aag	14	57	99	55.5	60.4	114

Table 4

Koa transcriptome. Koa EST-SSR information for comparison to genomic nuSSRs

	Motif Information	Transcriptome
Me	tadata	Acacia koa
	Total number of sequences analyzed	667025
	Number of sequences with >1 EST-SSR	5245
	Total numbers of EST-SSRs	5397
	Number of EST-SSRs	42
	Number of EST-SSRs with primers	2426
Dir	nucleotides	
1	AT TA	1195
2	GC CG	1
3	AC CA TG GT	859
4	AG GA CT TC	2426
Tri	nucleotides	
1	GGC GCG CGG GCC CCG CGC	22
2	ATG TGA GAT CAT ATC TCA	92
3	AGT GTA TAG ACT CTA TAC	11
4	AGG GAG GGA CCT CTC TCC	66
5	AAT ATA TAA ATT TTA TAT	88
6	CCA CAC ACC TGG GTG GGT	70
7	AGC GCA CAG GCT CTG TGC	112
8	AAG AGA GAA CTT TTC TCT	212
9	AAC ACA CAA GTT TTG TGT	94
10	ACG CGA GAC CGT GTC TCG	45
Мо	tif Length Excluding Compound SSRs	
	2 bp	4481
	3 bp	812
	4 bp	62
SSI	Rs with Primers Excluding Compound SSRs	
	2 bp	2067
	3 bp	339
	4 bp	20

Evaluation of phylogeny using flanking region sequences

Flanking regions and a distance table were used to draw a phylogenetic tree for visualization of the relationship between these species. Phylogeny results indicated koa and koaia were closely related to each other however the aberrant koaia-A sorted separately. *G. max,* another legume family member, was also examined and is distinct from the *Acacia spp.* in this study (Figure 3).

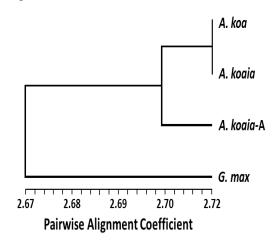


Figure 3

Phylogeny. Pairwise alignment of koa, koaia, koaia-A, and the soybean reference genomes.

Discussion

The nuSSR abundance within the koa genome was 45 % greater than that of koaia, a somewhat expected result as 2.5 times more koa sequence was retrieved and analyzed than koaia. A total of 28,275 nuSSRs in koaia resulted in 9.73 SSRs per kb of genome sequence while koa had approximately 14.4 SSRs per kb of sequence. Differences in nuSSR abundance have been reported previously for other somewhat related species such as Glycine spp. (Ozyigit et al. 2015). Model species such as Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) have considerably higher numbers of SSRs (529,000 and 285,000) per kb of sequence (Cheng et al. 2016). The model tree poplar (Populus trichocarpa) has 667,900 SSRs per kb of sequence (Sonah et al. 2011). Therefore, the lower volume of nuSSRs within the koa and koaia genomes sequenced here may explain the limited information available regarding markers for these two species. EST-SSRs were included for comparison

Here, we developed the first koa and koaia database containing high numbers of nuSSR and EST-SSR markers with unique flanking sequences. SSRs are as useful as SNPs for subsequent parental analyses and basic population genetics despite the introduction of single-nucleotide polymorphism (SNP) analyses (Cappa *et al.* 2016). Recent results in apple (Zhang *et al.* 2012) and ten other hardwood tree species (Staton *et al.* 2015) showed AT/TA motifs were the most common dinucleotides found within the sequences. These results mirrored those observed in this study where the AT/TA dinucleotide motif was most abundant. We obtained 700 tri- and tetranucleotide nuSSR primers for koa and 300 for koaia. In general, longer SSRs amplify more alleles among cultivars and species, whereas shorter SSRs do so only among species. (Smulders *et al.* 1997).

As NextGeneration sequencing technologies continue to provide high-throughput high-resolution data, analyses of expression data can be essential to experiments on non-model organisms. NextGeneration sequencing (NGS) provides a relatively inexpensive method for analysis of genome and transcriptomic sequences for non-model species such as koa, Despite its low cost, very little NGS has been published for koa thus, efforts to supply a wealth of nuSSRs and EST-SSRs for use in future studies are highly desirable.

Our results showed that *A. koa* and *A. koia* are sorted with each other. Recently a new study based on genotyping by sequencing data of various population of *A. koa* and *A. koaia* revealed that both species are genetically similar. So. Our result based on flanking region of SSRs confirmed their study. We provide, for public use, a multitude of primers for use in genomic and transcriptomic studies.

Conclusions

Koa and koaia grow on several islands within the Hawaiian archipelago. Limited regeneration and the perseverance of disease and invasive species has hindered population growth thus, increased efforts to identify genomic and genetic methods of selection are prudent. Additional sampling and genome analyses may help uncover molecular variation and other nuances within the genetic structures of koa and koaia. Development of SSRs is an inexpensive and invaluable method to research and evaluate *Acacia spp*. genomes. This study identified 11,019 SSRs unique primer pairs confirmed with ePCR. These SSRs will aid future investigations of koa and koaia genomes and support future breeding and genetic improvement program efforts.

Acknowledgements

The authors thank Drs. Nicholas LaBonte and Mark Coggeshall for their comments and critiques of a previous version of this manuscript. We acknowledge the State of Hawai'i Department of Land and Natural Resources (DLNR) – Division of Forestry and Wildlife (DOFAW) and/or State Parks, as well as the USDA Forest Service (FS) as land managers and administrators for the Hawai'i Experimental Tropical Forest. Funding provided by the US Forest Service and the Atherton Family Foundation. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.

References

Adamski DJ, NS Dudley, CW Morden and D Borthakur (2012) Genetic differentiation and diversity of Acacia koa populations in the Hawaiian Islands. Plant Species Biol. 27(3): 181-190.

https://doi.org/10.1111/j.1442-1984.2011.00359.x

- Adamski DJ, NS Dudley, CW Morden and D Borthakur (2013) Cross-amplification of nonnative Acacia species in the Hawaiian Islands using microsatellite markers from Acacia koa. Plant Biosyst. 147(4): 1088-1091. https://doi.org/10.1080/11263504.2012.749958
- Butcher PA and GF Moran (2000) Genetic linkage mapping in Acacia mangium.
 2. Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci. Theor Appl Genet. 101(4): 594-605.
 <u>https://doi.org/10.1007/s001220051521</u>
- Cappa EP, J Klapste, MN Garcia, PV Villalba and SN Marcucci Poltri (2016) SSRs, SNPs and DArTs comparison on estimation of relatedness and genetic parameters' precision from a small half-sib sample population of Eucalyptus grandis. Mol Breeding. 36(7): 96-114. https://doi.org/10.1007/s11032-016-0522-7
- Cheng J, Z Zhao, B Li, C Qin, Z Wu, DL Trejo-Saavedra, X Luo, J Cui, RF Rivera-Bustamante, S Li and K Hu (2016) A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Scientific Reports. 6(1): 1-12. <u>https://doi.org/10.1038/srep18919</u>
- Fredua-Agyeman R, D Adamski, RJ Liao, C Morden and D Borthakur (2008) Development and characterization of microsatellite markers for analysis of population differentiation in the tree legume Acacia koa (Fabaceae: Mimosoideae) in the Hawaiian Islands. Genome. 51(12): 1001-1015. <u>https://doi.org/10.1139/g08-087</u>
- Guillemaud T, L Broadhurst, I Legoff, M Henery, A Blin, C Ducatillion, N Ferrando and T Malausa (2015) Development of 23 Polymorphic Microsatellite Loci in Invasive Silver Wattle, Acacia dealbata (Fabaceae). Applications in Plant Sciences. 3(5): A1500018. <u>https://doi.org/10.3732/apps.1500018</u>
- Gugger PF, CT Liang, VL Sork, P Hodgskiss, and JW Wright (2017) Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment. Evolutionary Applications. 0(0): 1-12. <u>https://doi.org/10.1111/eva.12534</u>
- Hopley T, LM Broadhurst and MG Gardner (2015) Isolation via 454 sequencing and characterisation of microsatellites for Acacia montana (Fabaceae), Mallee wattle: an endemic shrub from southeastern Australia. Conserv Genet Resour. 7(1): 171-172. <u>https://doi.org/10.1007/s12686-014-0321-6</u>
- Le S, R Wickneswari, CE Harwood, MJ Larcombe, RA Griffin, A Koutoulis, JL Harbard, KS Cyer, LW Yee, TH Ha and RE Vaillancourt (2016) A multiplexed set of microsatellite markers for discriminating Acacia mangium, A. auriculiformis, and their hybrid. Tree Genet Genomes. 12(2): A31. https://doi.org/10.1007/s11295-016-0990-2
- Lepais O and CFE Bacles (2011) Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla F. Muell. Ex Benth. Mol Ecol Resour. 11(4): 711-724. <u>https://doi.org/10.1111/j.1755-0998.2011.03002.x</u>
- Levy E, M Byrne, DJ Coates, SJ van Leeuwen, S McArthur, B Macdonald and MG Gardiner (2014) Isolation via 454 sequencing, and characterisation of microsatellite markers for the Pilbara endemic Acacia atkinsiana (Fabaceae). Conserv Genet Resour. 6(3): 585-587.

https://doi.org/10.1007/s12686-014-0146-3

- Magoč T and SL Salzberg (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Millar MA and M Byrne (2007) Characterization of polymorphic microsatellite DNA markers for Acacia saligna (Labill.) H.L.Wendl. (Mimosaceae). Mol Ecol Notes. 7(6): 1372-1374. <u>https://doi.org/10.1111/j.1471-8286.2007.01890.x</u>
- Millar MA, M Byrne, I Nuberg and M Sedgley (2008) High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna re-

vealed by paternity analysis using microsatellites. Tree Genet Genomes. 4(3): 367-377. <u>https://doi.org/10.1007/s11295-007-0115-z</u>.

Morgante M and AM Olivieri (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J. 3(1):175-182.

https://doi.org/10.1111/j.1365-313x.1993.tb00020.x.

Nevill PG, JM Anthony and SL Krauss (2010) Isolation and characterization of microsatellite markers for the banded ironstone endemic Acacia karina (Leguminosae: Mimosaceae) and cross-species amplification with A. stanleyi and A. jibberdingensis. Conserv Genet Resour. 2(1): 321-323.

https://doi.org/10.1007/s12686-010-9219-0.

Ng CH, SC Koh, SL Lee, KKS Ng, A Mark, M Norwati and R Wickneswari (2005) Isolation of 15 polymorphic microsatellite loci in Acacia hybrid (Acacia mangium x Acacia auriculiformis). Mol Ecol Notes. 5(3): 572-575.

https://doi.org/10.1111/j.1471-8286.2005.00994.x

- Otero-Arnaiz A, A Schnabel, TC Glenn, NA Schable, C Hagen and L Ndong (2005) Isolation and characterization of microsatellite markers in the East African tree, Acacia brevispica (Fabaceae: Mimosoideae). Mol Ecol Notes. 5(2): 366-368. <u>https://doi.org/10.1111/j.1471-8286.2005.00929.x.</u>
- Ozyigit II, I Dogan and E Filiz (2015) In silico analysis of simple sequence repeats (SSRs) in chloroplast genomes of Glycine species. POJ. 8(1): 24-29. doi: <u>http://www.pomics.com/FILITZ 8_1_2015_24_29.pdf</u>.
- Rohlf FJ. (2000) NTSYSpc Numerical Taxonomy and Multivariate Analysis System version 2.2. User Guide. Exeter Software. https://www.researchgate.net/publication/246982444_NTSYS-pc_-_Numerical_Taxonomy_and_Multivariate_Analysis_System. Accessed 26 August 2017
- Ruiz-Guajardo JC, A Otero-Arnaiz, T Taylor, G Stone, TC Glenn, NA Schable, JT Miller, S Preuss, and A Schnabel (2007) Isolation of polymorphic microsatellite markers in the sub-Saharan tree, Acacia (Senegalia) mellifera (Fabaceae: Mimosoideae). Mol Ecol Notes. 7(6): 1138-1140.

https://doi.org/10.1111/j.1471-8286.2007.01809.x

- Rushanaedy I, TC Jones, NS Dudley, RJF Liao, R Agbayani, and D Borthakur (2012) Chitinase is a Potential Molecular Biomarker for Detecting Resistance to Fusarium oxysporum in Acacia koa. Trop Plant Biol. 5(3):244-252. <u>https://doi.org/10.1007/s12042-012-9108-7.</u>
- Shiraishi A, JF Leslie, S Zhong, and JY Uchida (2012) AFLP, pathogenicity, and VCG analyses of Fusarium oxysporum and Fusarium pseudocircinatum from Acacia koa. Plant Dis. 96(8): 1111-1117. <u>https://doi.org/10.1094/pdis-06-11-0491</u>

Shyu C, JA Foster and LJ Forney (2002) Electronic polymerase chain reaction (ePCR) search algorithm. Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB'02). <u>https://doi.org/10.1109/csb.2002.1039361</u>

Smulders MJM, G Bredemeijer, W Rus-Kortekaas, P Arens and B Vosman (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet. 94(2): 264-272.

https://doi.org/10.1007/s001220050409

Sonah H, RK Deshmukh, A Sharma, VP Singh, DK Gupta, RN Gacche, JC Rana, NK Singh and TR Sharma (2011) Genome-wide distribution and organization of microsatellites in plants: An insight into marker development in Brachypodium. PLoS One. 6(6): e21298.

https://doi.org/10.1371/journal.pone.0021298

Staton M, T Best, S Khodwekar, S Owusu, T Xu, Y Xu, R Jennings, R Cronn, A Kathiravetpilla, M Coggeshall, O Gailing, H Liang, J Romero-Severson, S Schlarbaum and JE Carlson (2015) Preliminary genomic characterization of ten hardwood tree species from multiplexed low coverage whole genome sequencing. PLoS One. 10(12): e0145031. https://doi.org/10.1371/journal.pone.0145031

Tamura K, G Stecher, D Peterson, A Filipski and S Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12): 2725-2729. <u>https://doi.org/10.1093/molbev/mst197.</u>

Young ND. (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol. 34(1): 479-501.

https://doi.org/10.1146/annurev.phyto.34.1.479

Zhang Q, B Ma, H Li, Y Chang, Y Han, J Li, G Wei, S Zhao, A Awas Khan, Y Zhou, C Gu, X Zhang, Z Han, S Korban, S Li and Y Han (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom. 13(1): a537. <u>https://doi.org/10.1186/1471-2164-13-537.</u>